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Abstract. The popularity of Android and the personal information
stored on these devices attract the attention of regular cyber-criminals
as well as nation state adversaries who develop malware that targets this
platform. To identify malicious Android apps at a scale (e.g., Google
Play contains 3.7M Apps), state-of-the-art mobile malware analysis sys-
tems inspect the execution of apps in emulation-based sandboxes. An
emerging class of evasive Android malware, however, can evade detec-
tion by such analysis systems through ceasing malicious activities if an
emulation sandbox is detected. Thus, systematically uncovering potential
methods to detect emulated environments is crucial to stay ahead of ad-
versaries. This work uncovers the detection methods based on discrepan-
cies in instruction-level behavior between software-based emulators and
real ARM CPUs that power the vast majority of Android devices. To sys-
tematically discover such discrepancies at scale, we propose the Proteus
system. Proteus performs large-scale collection of application execution
traces (i.e., registers and memory) as they run on an emulator and on
accurate software models of ARM CPUs. Proteus automatically identi-
fies the instructions that cause divergent behavior between emulated and
real CPUs and, on a set of 500K test programs, identified 28K divergent
instances. By inspecting these instances, we reveal 3 major classes of root
causes that are responsible for these discrepancies. We show that some of
these root causes can be easily fixed without introducing observable per-
formance degradation in the emulator. Thus, we have submitted patches
to improve resilience of Android emulators against evasive malware.

1 Introduction
Android is a fast growing ecosystem. By acting as a trusted medium between
developers and users, application repositories (e.g., Google Play Store) have en-
abled explosive growth in the number of mobile applications available to billions
of users worldwide [6]. Currently, the Play Store consists of more than 3.7M An-
droid applications with thousands of new applications emerging every day [9].
Unfortunately, this massive ecosystem is also appealing to miscreants who seek
to infect a wide set of users with malicious applications.

To protect users, malware analysis systems are widely used in both academia
and industry. Since malware can easily defeat static analysis via obfuscation and
packing [14], contemporary analysis systems for Android adopt dynamic analysis
to inspect the runtime behavior of applications. State-of-the-art malware analyz-
ers for Android are based on emulators [23, 28, 30], which can easily scale across
multiple hosts to inspect vast number of Android apps. Such emulation-based



analysis also offers easy instrumentation [30] and fast state restore capabilities
(e.g., orders of magnitude faster than bare-metal [22]), making the emulation-
based analysis approach appealing to security researchers and practitioners.

The effectiveness of these dynamic malware analysis systems, however, is
largely at risk due to an emerging class of evasive malware. Such malware looks
for discrepancies that exist between emulated and real systems before triggering
any malicious attempt. By ceasing malicious activities on an emulated enviro-
ment, the malware can thwart existing emulator-based malware analyzers. The
situation is alarming as studies show a rising number of malware instances that
employ evasion tactics [18] (e.g., Branco et al. find evasion methods in more than
80% of 4M malware samples [13]). For Android, several recent classes of evasive
malware (e.g., Xavier [1], Grabos [7]) have already been identified in the Play
Store. A crucial step for defending against such malware is to systematically
extract the discrepancies between emulated and real systems. Once discovered,
such discrepancies can be eliminated [19] or can be used to inspect applications
for presence of evasion tactics leveraging these artifacts [13].

Many of the approaches to date [10, 25, 29] discover discrepancies of emulation-
based sandboxes in an ad hoc fashion by engineering malware samples or specific
emulator components (e.g., scheduling). Such manual approaches cannot provide
large-scale discovery of unknown discrepancies, which is needed to stay ahead of
adversaries. Recent work [17] automatically identifies file system and API dis-
crepancies used by several Android malware (e.g., [1, 7]). Evasion tactics that
rely on such artifacts can be rendered ineffective by using modified system im-
ages and ensuring the API return values match those in real devices [12]. Besides
API/file checks, a malware can also leverage differences in the semantics of CPU
instructions to fingerprint emulation [13] (e.g., by embedding checks in the na-
tive code [25]). As opposed to ad hoc approaches or API/file heuristics, our
work focuses on systematically discovering instruction-level discrepancies that
are intrinsically harder to enumerate and fix for modern complex CPUs.

Prior discoveries of instruction-level discrepancies in emulated CPUs are lim-
ited to x86 instruction set [21, 24, 27], while the vast majority mobile devices
use ARM CPUs. Despite the large number of discrepancies reported in prior
work [21, 24], such findings are not readily useful for improving the fidelity of
emulators as their analysis does not reveal the root causes of discrepancies. Such
analysis of root causes is essential as not all discrepancies are reliable detection
heuristics due to Unpredictable ARM instructions [4], whose behavior varies
across platforms. In addition, reliance on physical CPUs to obtain the ground
truth instruction behavior poses practical limitations on the number of test cases
(e.g., instructions, register/memory operands, system register settings) that can
be covered. Approaches to improve coverage [27] are based on heavy analysis of
ISA specifications, which are notorious for their complexity and size.

To address the shortcomings above and identify instruction-level discrepan-
cies in Android emulators at a scale, we propose to collect and analyze a large
number of instruction-level traces corresponding to execution on real ARM CPUs
and emulators. By recording how each ARM instruction modifies the architec-



tural state (i.e., registers and memory) on an emulated and real ARM CPU, we
can automatically detect divergences that are directly observable by user-level
programs. To scale the divergence analysis system, we demonstrate the feasibility
of using accurate software models for ARM CPUs instead of physical hardware.

We build our instruction-level analysis framework into a new system, Pro-
teus. Proteus automatically identifies architectural differences between real
and emulated ARM CPUs. Proteus uses official software models for ARM
CPUs (i.e., Fast Models [3]) to gather detailed and accurate instruction-level
traces corresponding to real CPU operation. We instrument QEMU to collect
traces for emulated CPUs. We target QEMU as it forms the base of state-of-the-
art Android malware analysis systems [23, 28, 30] as well as the Android SDK
emulator. We evaluate our system with over a million CPU instructions. Our
randomized test cases allow us to examine instruction behavior that would not
be triggered during execution of conventional compiler-generated programs.

Proteus automatically groups the instructions that generate similar diver-
gent behavior and reveals several major classes of instruction-level discrepancies
between emulated and real ARM CPUs. We find that a single root cause (e.g.,
relaxed opcode verification) can account for a large number divergent cases and
that some of these sources of divergences can be eliminated by minor modifi-
cations in the QEMU source code. To improve resilience of Android emulators
against detection via CPU semantic attacks, we have disclosed our root cause
findings including patches where appropriate to the QEMU community1. Our
evaluation of discovered discrepancies on physical devices and SDK emulators
demonstrates how unprivileged user-mode programs can deterministically fin-
gerprint Android emulators to easily perform CPU semantic attacks (e.g., by
using a few CPU instructions in native code). To the best of our knowledge, this
is the first systematic study to demonstrate instruction semantic attacks against
QEMU’s ARM support. Overall, we make the following specific contributions:

– Proteus: We design, implement, and evaluate a scalable approach for dis-
covering discrepancies between emulated and real ARM CPUs (Section 3).
Our system collects a large number of instruction-level traces from accurate
software models of ARM CPUs and from an instrumented QEMU instance.
Proteus automatically identifies the instructions and conditions that cause
a divergence, and groups instructions with similar behavior to facilitate fur-
ther inspection for root cause analysis (Section 4).

– Novel Attack Surface:We systematically analyze the divergences found by
Proteus and uncover novel detection methods for Android emulators based
on instruction-level differences between emulated and real ARM CPUs (Sec-
tion 5.1). We show the effectiveness of these methods for deterministically
distinguishing physical devices from Android emulators (Section 5.3).

– Fidelity Improvements: We identify a set of root causes (Section 5.2)
that are responsible for a large set of divergences. We show that some of
these root causes can be eliminated in Android emulators through minor
fixes without causing any observable performance overhead (Section 5.4).

1 We have eliminated several root causes as part of our work and have already submitted a patch.



2 Background
This section provides a brief overview of the ARM architecture and clarifies the
terminology that we use throughout the rest of this paper. We also describe the
attack model we are assuming in this work.
2.1 ARMv7-A Architecture
This paper focuses on ARMv7-A instruction set architecture (ISA), the vastly
popular variant of ARMv7 that targets high-performance CPUs which support
OS platforms such as Linux and Android (e.g., smartphones, IoT devices). The
ARM architecture implements a Reduced Instruction Set Computer (RISC) or-
ganization where memory accesses are handled explicitly via load/store instruc-
tions. Each ARM instruction is of fixed 32-bit length. ARMv7-A features 16
32-bit registers (i.e., 13 general purpose registers (R0-R12), stack pointer (SP),
link register (LR), program counter (PC)) accessible in user-mode (usr) programs.
The CPU supports 6 operating modes (usr,hyp,abt,svc,fiq,irq) and 3 privilege
levels PL0, PL1 and PL2 (i.e., lower numbers correspond to lower privilege levels).
The Current Program Status Register (CPSR) stores the CPU mode, execution
state bits (e.g., endianness, ARM/Thumb instruction set) and status flags.
Undefined Instructions: The ARMv7 specification explicitly defines the
set of encodings that do not correspond to a valid instruction as architecturally
Undefined. For example, Figure 1 shows the encoding diagram for multiplica-
tion instructions in ARMv7. The architecture specification [4] states that the
instructions are Undefined when the op field equals 5 or 7 in this encoding.

Fig. 1: Encoding diagram for multiplication instructions in ARMv7 ISA [4].

An Undefined instruction causes the CPU to switch to the undefined (und)
mode and generates an undefined instruction exception. An undefined instruction
exception is also generated when an instruction tries to access a co-processor that
is not implemented or for which access is restricted to higher privilege levels [4].

Unpredictable Instruction Behavior: The ARM architecture contains a
large set of instruction encodings for which the resulting instruction behavior is
unspecified and cannot be relied upon (i.e., Unpredictable). ARM instructions
can exhibit Unpredictable behavior depending on specific cases of operand
registers, current CPU mode or system control register values [4]. For example,
many instructions in the ARM architecture are Unpredictable if the PC is used
as a register operand. In addition, some instruction encoding bits are specified as
“should be” and denoted as “(0)” and “(1)” in ARM’s official encoding diagrams.
While different encodings for “should be” bits do not correspond to different
instructions, the resulting behavior is Unpredictable if a given encoding fails
to match against the specified “should be” bit pattern.

The effect of an Unpredictable instruction is at the sole discretion of the
CPU manufacturer and can behave as a NOP or Undefined instruction, or can
change the architectural state of CPU. Consider the “LDMDA pc!,{r0,r1,r5,r6,
r8,sp,lr}” Unpredictable instruction (encoded as 0xE83F6163), which loads
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Fig. 2: Overview of Proteus.

the given set of registers from consecutive memory addresses starting at PC and
writes the final target address back to PC. This instruction causes undefined in-
struction exception on a real CPU while it modifies the PC and causes an infinite
loop on QEMU. Note that both behaviors comply with the ARM specification.

2.2 Threat Model
The aim of the malware author is to evade detection by the analysis tools and
distribute a malicious application to real users. The malware possesses a set of
detection heuristics to distinguish emulators from real devices. Malware achieves
evasion by ceasing any malicious behavior on an emulated analysis environment,
which could otherwise be flagged by the analysis tool. Once the malware escapes
detection and reaches real users, it can execute the harmful content within the
application or dynamically load the malicious payload at runtime [26].

Our work focuses on discrepancies that are observable by user-level programs.
Thus, we assume applications running in usr mode at the lowest PL0 privilege
level. Since our technique detects emulators by natively executing CPU instruc-
tions and monitoring their effects, we assume an Android application that con-
tains a native code. This is a common case for many applications (e.g., games,
physics simulations) that use native code for the performance-critical sections
and for the convenience of reusing existing C/C++ libraries [2, 26].

We assume that applications are subject to dynamic analysis in a QEMU-
based emulation environment. Indeed, state-of-the-art dynamic analysis frame-
works that are commonly used in academia [28, 30] and industry [23] use QEMU
as the emulation engine. In addition, the Android emulator that is distributed
with the Android SDK is also based on QEMU.

3 Proteus System Architecture
The aim of the proposed Proteus system (Figure 2) is to find the differences
in semantics of instructions executed on a real and an emulated ARM CPU.
Proteus consists of a trace collection part and an analysis component to auto-
matically identify and classify divergences. This section provides an overview of
the core components of Proteus and describes its high-level operation.

Central to our system is collection of detailed instruction-level traces that
capture the execution behavior of programs on both emulated and real CPUs.
The traces capture all updates to user-visible registers as well as the operands
in memory transactions from load/store instructions. If a program terminates
by a CPU exception, the respective signal number is also recorded.



The “Program Generator” component ( 1 ) generates the test programs which
are used for collecting instruction-level traces and discovering discrepancies. Note
that ARM CPU emulation in QEMU is inadvertently tested using millions of
apps by Android developers. Thus, programs generated for divergence identi-
fication should also exercise platforms for uncommon cases beyond the set of
instructions emitted by compilers and found in legitimate Android apps.

For each generated test program, we collect its instruction-level traces by
executing the same binary on two different platforms ( 2 ) which provide the
traces corresponding to execution on an emulator and a real CPU.

The “Divergence Identification & Categorization” component ( 3 ) compares
emulator and real CPU traces of a program to identify the initial point of di-
vergence. A divergence can be due to a mismatch in register values, memory
operands or exception behavior. Divergent cases that stem from the same mis-
match are grouped together automatically to facilitate manual inspection of dis-
covered discrepancies. Our hypothesis behind the grouping is that there exist a
small number of root causes that cause the same divergent behavior (e.g., excep-
tion mismatch) on potentially a large set of test cases. For instance, we can group
together the divergent instructions that generate an illegal instruction exception
in a real CPU but execute as a valid instruction in emulator. We also check if
the divergent instruction is Unpredictable ( 4 ). Since Unpredictable instruc-
tions can exhibit different behavior across any two platforms, we do not treat
divergences that stem from these instructions as a reliable detection method.

Overall, Proteus provides us with the instruction encoding that caused the
divergent behavior, register values before that instruction, divergence group as
well as the difference between the traces of emulated and real CPU (e.g., signal
number, CPU mode, etc.) which occurs after executing the divergent instruction.
We can optionally identify why QEMU fails to faithfully provide the correct
behavior as implemented by the real CPU and fix the source of mismatch ( 5 ).
Proteus can also generate a proof-of-concept emulation detector ( 6 ), which re-
constructs the divergent behavior by setting respective register values, executing
the divergent instruction and checking for the resulting mismatch that Proteus
identifies during the “Divergence Identification & Categorization” stage.

4 Proteus Implementation
In this section, we describe our implementation of the proposed Proteus system
for detecting instruction-level differences between emulated and real ARMCPUs.
In Section 4.1, we describe our framework for acquiring instruction-level traces.
Section 4.2 describes how we use this framework to collect a large number of
sample traces and automatically identify discrepancies.

4.1 Instruction-level Tracing on ARM-based Platforms
Collected Trace Information: For our purposes, a trace consists of all general-
purpose registers that are visible to user-level programs, which provide a snap-
shot of the architectural state. Specifically, we record the R0-R12, SP, PC, LR and
CPSR registers (see Section 2). Finally, we record operands of all memory oper-
ations. Various ARM instructions can load/store multiple registers sequentially



from a base address. We record all the data within the memory transaction as
well as the base address. This trace information gives us a detailed program-
visible behavior of CPU instructions. Thus, any discrepancy within the trace is
visible to a malware and can be potentially leveraged for evasion purposes.

Emulator Traces through QEMU Instrumentation: QEMU dynamically
translates the guest instructions (e.g., ARM) for execution on the host machine
(e.g., x86). Translation consists of several steps. First, guest instructions within a
basic block are disassembled and converted into a platform-agnostic intermediate
representation called TCG (Tiny Code Generator). Next, generated TCG code
blocks (i.e., translation block) are compiled into host ISA for execution.

To implement tracing capability in QEMU, we inject extra TCG operations
into each translation block during the translation phase. These extra TCG oper-
ations dump the trace information during the execution phase. We use the helper
functionality within QEMU to generate the extra TCG code. The main use of the
helper functionality in QEMU is to allow developers to extend the capabilities
of TCG operations for implementing complex instructions. We inject the extra
TCG operations for every disassembled instruction to achieve per-instruction
tracing granularity. Specifically, we modify the disassembly routines of ARM in-
structions to inject TCG operations that record registers. We also modify the
load/store routines to record address and data values for memory transactions.

We use QEMU 2.7.0 from Android repositories2, which forms the base of the
SDK emulator used in modern Android malware analyzers [23, 28, 30]. QEMU
2.7.0 is the most recent version adopted in current SDK emulators. To ease in-
strumentation and facilitate the data collection, we use QEMU in user-mode
configuration as opposed to full-system emulation. We use full-system SDK em-
ulators during our evaluation of discovered discrepancies (Section 5.3).

Accurate Real CPU Traces using ARM Fast Models: Gathering detailed
instruction-level traces from real CPUs is challenging and, due to practical lim-
itations on the number of devices that can be used, does not scale well. In this
work, we propose to use accurate functional models of ARM CPUs (i.e., Fast
Models [3]) to obtain traces corresponding to execution on real CPUs. Fast Mod-
els are official software models developed and maintained by ARM and provide
complete accuracy of software-visible semantics of instructions.

ARM Fast Models provide a set of trace sources which generate a stream of
trace events when running the simulation. Once a target set of trace sources are
specified, Fast Models emit trace events whenever a change occurs on a trace
source. These trace events are provided over a standardized interface calledModel
Trace Interface (MTI). We use an existing plugin called GenericTrace to record
trace events over the MTI interface.

Our work is based on a Cortex-A15 fast model which implements the ARMv7
ISA. We specify “inst”, “cpsr ”, “core_loads”, “core_stores” and “core_regs” trace
sources, which capture changes in register values as well as data/address operand
values in memory transactions.
2 https://android.googlesource.com/platform/external/qemu-android/+/qemu-2.7.0
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4.2 Identifying Emulated vs. Real CPU Discrepancies with Tracing
This section describes how we use our tracing capabilities (Section 4.1) to find
differences in instruction semantics between emulated and real ARM CPUs.

Generating Test Cases: We generate valid ELF binaries as inputs to our
tracing platforms. We choose to use programs that contain random instructions.
Specifically, each input binary contains 20 random bytes corresponding to 5 ARM
instructions. We use this randomized approach to be able to exercise emulators
with uncommon instructions which are not likely to be emitted by compilers. We
use more than one instruction per binary to be able to cover more instructions
each time a simulation is launched for a test program.

Each test program starts with a few instructions that set the CPU state, clear
registers and condition flags. By default, the programs run on the Fast Model
in svc mode and no stack space is allocated. Thus, we use these initialization
instructions to ensure that CPU mode is set to usr and SP points to the same
address on both platforms. We also clear all registers to ensure that programs
start from identical architectural state on both emulator and real CPU. These
initialization instructions are followed by 5 random instructions. Finally, each
test case ends with an exit system call sequence (i.e., mov r7,#1; svc 0x0).

Identifying Divergence Points: This phase of the Proteus system consumes
the traces collected from QEMU and ARM Fast Model to identify and group
divergent behaviors. To identify the initial point where QEMU and Fast Model
traces of an input program diverge, we perform a step-by-step comparison.

The step-by-step comparison procedure is illustrated in Figure 3. We skip
the portion of the traces which corresponds to the initialization instructions de-
scribed in the previous section (Step 1) to avoid false alarms that arise from the
initial state differences between QEMU and Fast Model. We walk through the
remaining instruction sequence until either a difference exists in the collected
trace data or the test program on QEMU terminates due to an exception. If the
program terminates on QEMU or the CPU mode on Fast Models switches to a
different mode than usr, we examine whether this exception behavior matches



between QEMU and real CPU (Step 2). We perform the comparison using the
CPU mode from the Fast Model and the signal received by the program upon
termination on QEMU. Note that there is no exception handling or signal mech-
anism on Fast Models as no OS is running. Depending on this CPU mode and
signal comparison, we determine whether the observed behavior falls into one
of the four possible divergent types below. We use a tuple representation as
<FastModel_response, QEMU_response> to categorize divergent behavior.

– <und,!SIGILL>: This group represents the cases where QEMU fails to rec-
ognize an architecturally Undefined instruction. If the Fast Models indicate
that CPU switches to und mode, the expected behavior for QEMU is to de-
liver a SIGILL signal to the target program. This is because execution of an
Undefined instruction takes the CPU into und mode and generates an ille-
gal instruction exception. Thus, the cases where Fast Model switches to und
mode while QEMU does not deliver a SIGILL signal is a sign of divergence.

– <usr,SIGILL>: This class of divergence contains cases where QEMU termi-
nates by an illegal instruction signal (SIGILL) while Fast Models indicate
the target instruction is valid (i.e., cpu remains in usr mode).

– <abt,!SIGBUS>: This class captures the cases where QEMU fails to recognize
a data/prefetch abort and hence does not generate a bus error (i.e., deliver
SIGBUS). Prefetch aborts are caused by failing to load a target instruction
while data aborts indicate that the CPU is unable to read data from memory
(e.g., due to privilage restrictions, misaligned addresses etc.) [4].

– <usr,SIGBUS>: This divergence type represents the opposite of the previous
case. Specifically, QEMU detects a bus error and delivers a SIGBUS to the
test program while the Fast Models indicate that the memory access made
by the target program is valid (i.e., cpu is not in abt mode).

If no exception is triggered for an instruction, we further compare the registers
and memory operands within the collected trace data. We determine memory
operand divergence (Step 3) if the address or the number of transferred bytes
differ between QEMU and Fast Model traces. We do not treat data differences
as divergence since subtle differences may exist in the initial memory states
of QEMU and Fast Models. We drop cases with different memory values from
further examination as the loaded data would propagate into register state and
cause false positive divergence detection. Finally, if no divergence is identified in
exception behavior or in memory operands, we compare the user-level registers
(Step 4) to detect any register state divergence. Steps 2-4 presented in Figure 3
continues for the remaining random instructions in the test program.

Since Unpredictable instructions can cause different legitimate behaviors on
any two CPU implementations, we cannot use these instructions to determinis-
tically differentiate emulators from real systems. Thus, if a divergent instruction
identified in Steps 2-4 is Unpredictable, we do not classify this case into any di-
vergence group. However, an officially verified tool or a programmatic methodol-
ogy to check if a given ARM instruction would generate Unpredictable behavior
is unavailable. Thus, we use an open-source specification of ARMv7 architecture
written in Standard ML (SML) and proposed by the earlier work [15].



Generating Detector Programs: Based on the identified divergent instruc-
tion semantics, Proteus can optionally generate a proof-of-concept program
that determines whether the program is executed on an emulator or a real sys-
tem. This section describes how our system generates these programs and pro-
vides insight into how a real-life malware can implement CPU semantic attacks.

Proteus generates detector programs by rewriting a set of pre-built tem-
plate binaries to reconstruct the divergent behavior. The template programs
simply execute the divergent instruction and check whether the resulting ef-
fect matches with QEMU or real CPU behavior. Before executing the divergent
instruction, we set up the environment with the necessary changes to trigger di-
vergent behavior and observe its effect. These changes are (1) setting the register
values (CPSR and R0-R12) with the values provided from the divergence iden-
tification phase, (2) installing signal handlers for exception-related divergent
behavior. We use sigsetjmp/siglongjmp provided by the standard C library to
preserve the CPU state which would otherwise be altered by the changes we per-
form. Listing 1.1 illustrates an example detector program for the <abt,!SIGBUS>
group. The current CPU state is saved with sigsetjmp on line 11. The regis-
ter state is loaded with target values (line 13) and the divergent instruction

1 sig_atomic_t sig_info = 0;
2 sigjmp_buf buf;
3
4 void catch_signals(int signum) {
5 if (signum == SIGBUS)
6 sig_info = 1;
7 siglongjmp(buf , 1);
8 }
9 sig_atomic_t say_my_name () {

10 prepare (); // register signal handlers
11 if(! sigsetjmp(buf ,1)) {
12 // Set target registers
13 asm("LDR r4 ,=0 x00008075");
14 // execute divergent instruction
15 asm(".byte 0x10 ,0x00 ,0x97 ,0xe8");
16 siglongjmp(buf , 1);
17 }
18 cleanup (); // remove signal handlers
19 return sig_info;
20 }
21 void main() {
22 sig_atomic_t ret = say_my_name ();
23 (ret ==1) ? printf("real cpu"):printf("emulator");
24 }

Listing 1.1: A sample program snippet
for detecting Android emulator.

(LDM r7,{r4}) is executed (line 15)
to reconstruct the divergent behavior.
The program determines emulation if
it does not receive a SIGBUS after the
divergent instruction accesses the mis-
aligned memory address stored in R4.
The original CPU state before con-
structing the divergent behavior is re-
stored on either line 7 or 16. We simply
build one template program for each of
the six divergence groups. Depending
on the divergence group, for a given
divergent instruction, we pick the cor-
responding sample template to rewrite
a new detector program.

5 Evaluation
This section demonstrates the capabilities of Proteus for identifying the dis-
crepancies of QEMU’s emulated CPU from a real ARM CPU. We systematically
analyze the divergences reported by Proteus to identify the root causes of the
discrepancies. On a real smartphone and Android emulator, we demonstrate how
our findings can fingerprint the underlying platform. Finally, we demonstrate
the feasibility of fixing several root causes of divergences without any observable
performance penalty. Overall, we seek to answer the following questions:
– Are there any observable discrepancies between an emulated and real CPU?

If so, how prevalent are these differences? (Section 5.1)
– How effective are the divergences reported by Proteus in terms of finger-

printing real hardware and dynamic analysis platforms? (Section 5.3)



– What are the root causes of the discrepancies (Section 5.2) and can we
eliminate them in QEMU without impacting its performance? (Section 5.4)

5.1 Divergence Statistics from Proteus
In order to address our first research question, we use Proteus to examine the

Fig. 4: #Instructions before
divergence or exception.

instruction-level traces from 500K input test
programs. Figure 4 shows the number of in-
structions executed in the test programs until
a divergence occurs or QEMU stops due to an
exception. The majority of the test cases (45%)
finish after a single instruction only and, almost
all test cases (>94%), either diverge or cause an
exception on QEMU after executing the 5 in-
structions in our test programs. Overall, our system analyzed over 1.06M CPU
instructions. Table 1 presents an overall view of the results by Proteus show-
ing a comparison between QEMU and Fast Models in terms of the exception
behavior (Table 1a) as well as extent of divergences per group (Table 1b).
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(a) Exception behavior comparison.

<und, !SIGILL> 10167 (2%)

<usr, SIGILL> 5270 (1.1%)

<abt, !SIGBUS> 13010 (2.6%)

<usr, SIGBUS> 0
mem_op_difference 200 (0.05%)

register_divergence 12 (0.002%)

(b) Divergences by type.

Table 1: Divergence statistics generated by Proteus for 500K test cases con-
taining 2.5M random ARM instructions. Remaining instances of 500K programs
(not shown in the Table 1a) are (1) 83,125 (17%) cases due to Unpredictable
instructions, (2) 27,048 (5.4%) non-divergent cases where programs finish suc-
cessfully on both platforms and (3) 1216 cases that differ due to memory values.
Note that we do not treat these 3 cases as divergent (see Section 4.2).

Table 1a presents a summary of the cases where either QEMU terminates
the program or the CPU mode changes in Fast Models. Overall, we observe two
types of signals in QEMU (i.e., SIGILL, SIGSEGV) and CPU mode in Fast Models
cover und, abt, svc and usr modes. None represents the cases where QEMU
does not generate an exception. Most instances correspond to illegal instruction
(<und, SIGILL>) and valid memory access (<usr, SIGSEGV>) cases in which
the behavior in QEMU complies with Fast Models (i.e., not divergent). A large
number of instances are Supervisor Call (svc) instructions which cover a large
encoding space in ARM ISA. svc instructions are used to request OS services and
are not a major point of interest for our work as we focus on the discrepancies
that are observable in the user space. In Table 1a, such non-divergent cases are
highlighted in gray. The remaining instances in Table 1a, along with the non-
exception related differences (i.e., memory operand and register) are grouped
into the divergence types as per the methodology described in Section 4.2.



Table 1b provides the number of instances per each divergence type. The
largest number of divergences (i.e., 2.6% of 500K test programs) belong to <abt,
!SIGBUS> group which hints that QEMU does not correctly sanitize the invalid
memory references that cause data/prefetch aborts in CPU. Proteus also finds
a large number of instructions that are recognized as architecturally Undefined
only by the Fast Models (i.e., <und, !SIGILL> group). These point to cases
where QEMU does not properly validate the encoding before treating the in-
struction as architecturally valid. We also find a large number of instructions
which are detected as illegal only by QEMU, executing without raising an ille-
gal instruction exception on the Fast Model (i.e., <usr, SIGILL> group). Pro-
teus also finds a smaller number of cases (i.e., 0.05%) with divergent register
update or memory operation which correspond to register_divergence and
mem_op_difference groups in Table 1b, respectively. These examples hint at
cases where the implementation of a valid instruction contains potential errors
in QEMU, causing a different register or memory state than on a real CPU.
Overall, despite the significant testing of QEMU, we observe that there are still
many divergences where QEMU does not implement the ARM ISA faithfully.

5.2 Root Cause Analysis

While the Proteus system can identify large numbers of discrepancies between
real and emulated ARM CPU, it does not pinpoint the root causes in QEMU that
lead to a different behavior than ground truth (i.e., Fast Model behavior). This
section presents our findings from an analysis of root causes of divergent behavior
in QEMU. This analysis gives us, compared to large number of divergences
identified, a smaller set of unique errors in QEMU that lead to divergence on
a wide set of programs (Table 1b). Analyzing the root causes also allows us to
pinpoint implementation flaws and devise fixes (Section 5.4).

In our analysis, for a divergence group, we first identify common occurrences
in the bit fields [27:20] of a divergent 32-bit instruction encoding. In the ARM
architecture, these bits contain opcodes that are checked while decoding the in-
struction on QEMU and real CPU. We identify the instructions with the most
commonly occuring opcodes to (1) consult the ISA specification to check how
these instruction should be decoded and (2) check how QEMU processes these
instruction. We determine the root cause of the discrepancy by manually ana-
lyzing QEMU’s control flow while executing a sample of these instructions. Once
we examine the source of discrepancy (e.g., a missing check, an unimplemented
feature of QEMU), we remove all possible encodings that stem from the same
root cause from our statistics to find other unique instances of errors in QEMU.

Through this iterative procedure, we identified several important classes of
flaws in QEMU that result in a different instruction-level behavior than a real
CPU. We discuss some of our findings in the following paragraphs.

Incomplete Sanitization for Undefined Instructions: We discover that
QEMU does not correctly generate illegal instruction exception for a set of
Undefined instruction encodings. These cases are identified from the <und,
!SIGILL> group provided by Proteus. Thus, a malware can achieve evasion



simply by executing one of these instructions and ceasing malicious activity if
no illegal instruction exception is generated.

We find that this particular group of divergences arises as QEMU relaxes the
number of checks performed on the encoding while decoding the instructions.
For instance, the ARM ISA defines a set of opcodes for which the synchroniza-
tion instructions (e.g., SWP, LDREX) are Undefined, and thus should generate
an illegal instruction exception. However, QEMU does not check against these
invalid opcodes while decoding the synchronization instructions, causing a set
of Undefined encodings to be treated as a valid SWP instruction. In fact, we
identified 715 divergent test cases which are caused by this missing invalid op-
code check for the SWP instruction. In Table 2, we provide the encoding and the
conditions that cause divergent behavior for this SWP instruction example as well
as other similar errors in QEMU that we have identified.

Instruction Encoding (cond ∈ [0, 0xE]) Divergent
Condition

QEMU
Behavior

Real CPU
Behavior #Cases

cond:4|0001|op:4|*:12|1001|*:4 op = 1,2,3,5,6,7 SWP Inst. Undefined 715
cond:4|1100010|*:9|101|*:1|op:4|*:4 op != 1,3 64-bit VMOV Undefined 424

cond:4|11|op:6|*:20 op = 1,2 VFP Store Undefined 51
cond:4|11101|*:2|0|*:8|1011|*:1|op:2|1|*:4 op = 2,3 VDUP Inst. Undefined 3

cond:4|110|op:5|*:8|101|*:9 op != 4,5,8-25,
28,29 VFP Store Undefined 2

Table 2: Several Undefined instruction encodings that are treated as valid in-
structions by QEMU. “:X” notation represents the bit length of a field while “*”
represents that the field can be filled with any value (i.e., 0 or 1).

During our root cause analysis, we find that a large portion of the instances in
<und, !SIGILL> group (87%) are due to instructions accessing the co-processors
with ids 1 and 2. These co-processors correspond to FPA11 floating-point proces-
sor that existed in earlier variants of the ARM architecture while newer architec-
tures (>ARMv5) use co-processor 10 for floating point (VFP) and 11 for vector
processing (SIMD). While accesses to co-processors 1 and 2 are Undefined on a
real CPU, QEMU still supports emulation of these co-processors [8]. Thus, these
instructions generate an illegal instruction exception only on the real CPU.

Misaligned Memory Access Checks: As hinted by Proteus with the large
number of instances in the <abt, !SIGBUS> group in Table 1b, we identify that
QEMU does not enforce memory alignment requirements (e.g., alignment at
word boundaries) for the ARM instructions that do not support misaligned
memory accesses. The data aborts caused by such misaligned accesses would
take the CPU into abt mode and the program is expected to be signalled with
SIGBUS to notify that the memory subsystem cannot handle the request. Due
to missing alignment checks in QEMU, a malware can easily fingerprint emula-
tion by generating a memory reference with a misaligned address and observing
whether the operation succeeds (i.e., in QEMU) or fails (i.e., on a real system).

The ARMv7 implementations can support misaligned accesses for the load-
/store instructions that access a single word (e.g., LDR, STR), a half-word (e.g.,
LDRH, STRH) or only a byte of data (e.g., LDRB, STRB). However, other instructions
that perform multiple loads/stores (e.g., LDM, STM) or memory-register swaps for



synchronization (e.g., SWP, LDREX, STREX) require proper alignment of the data
being referenced. The alignment requirement can be word, half-word or double-
word depending on the size of data being accessed by the instruction.

We demonstrate in Section 5.3 how the divergence due to missing alignment
enforcements in QEMU can enable evasion in a real-world scenario.
Updates to Execution State Bits: By analyzing the divergent instructions
reported by Proteus within the register_divergence group, we identified
another important root cause in QEMU due to masking out of the execution state
bits during a status register update. Specifically, we analyzed the cases where
execution state bits within CPSR differ after an MSR (move to special registers)
instruction. Execution state bits in CPSR determine the current instruction set
(e.g., ARM, Thumb, Jazelle) and the endianness for loads and stores. While
MSR system instructions allow to update CPSR, writes to execution state bits
are not allowed with the only exception being the endianness bit (CPSR.E). The
ARM ISA specifies that “CPSR.E bit is writable from any mode using an MSR
instruction” [4]. However, since updates on the CPSR.E bit by an MSR instruction
are ignored in current QEMU, software can easily fingerprint the emulation by
simply trying to flip this bit (e.g., using MSR CPSR_x, 0x200 instruction) and
checking whether the endianness has been succesfully changed.
Observations from other statistics: Our initial investigations on <usr,
SIGILL> and mem_op_divergence groups did not reveal any further root causes
as above. We find that the majority of the divergent cases in mem_op_divergence
group (>97%) are due to VFP/SIMD instructions effecting the extension reg-
isters. Our current work focuses on the user-mode general purpose registers
only. During analysis on <usr, SIGILL> group, we identified divergences due to
Unpredictable instructions. This issue is due to the incomplete SML model [15]
which misses some Unpredictable instructions in our test cases (Figure 2). For
instance, we find that 761 divergence cases in <usr, SIGILL> group are due to
Unpredictable encodings of a PLD (i.e., preload data) instruction, which behave
as a NOP in Fast Model but generate an illegal instruction exception in QEMU.

5.3 Demonstration with Real Smartphones and the SDK Emulator
In this section, we address our second research question on evaluating the effec-
tiveness of the divergences found by Proteus for real-world emulation detection.
To tackle this objective, we evaluate the divergences described in Section 5.2 on
a physical mobile platform and Android emulator. We use Nexus 5 (ARMv7)
and Nexus 6P (ARMv8) smartphones as our real hardware test-beds and use the
full-system emulator from the Android SDK. We choose the SDK emulator as it
has been a popular base for Android dynamic analysis frameworks [23, 28, 30].

Evaluating Unsanitized Undefined Encodings: We use the detection bi-
naries generated by Proteus to evaluate the Undefined instructions that are
incompletely sanitized in QEMU (i.e., <und, !SIGILL> group). These cases are
expected to generate an illegal instruction exception only on a real CPU.

We find that the SDK’s copy of QEMU does not incorporate the FPA11
floating point co-processor emulation which is supported in our version of QEMU



and accessed by the instructions that use co-processors 1 and 2. Thus, these
instructions are Undefined in SDK emulator as well and we cannot successfully
distinguish the emulator from the real hardware. As discussed in Section 5.1,
FPA11 instructions account for 87% of the cases in <und, !SIGILL> group.
However, we can successfully fingerprint the SDK emulator using all the other
divergent Undefined instructions. Specifically, all the encodings described in
Table 2 can deterministically distinguish between SDK emulator and Nexus 5.
The detector programs (Section 4.2) simply register a set of signal handlers and
detect the SDK emulator if the program does not receive SIGILL upon executing
the divergent Undefined instruction.

1 /* Put some known data into memory */
2 int *ptr = calloc(1,sizeof(int));
3 ptr [0] = 0x12345678;
4 asm("mov r8 ,%0" : : "r"(ptr));
5
6 /* Read ptr[0] with CPSR.E set to 1 */
7 asm("msr CPSR_x , #0x200\n\t");
8 asm("ldr r4 ,[r8]\n\t");
9 asm("msr CPSR_x , #0x000\n\t");

10
11 asm("mov %0, r4" : "=r"(val) : : );
12 printf("0x%08X\n", val);

Listing 1.2: PoC for emulator de-
tection by flipping endianness bit.

13 /* Put some known data into memory */
14 int *ptr = calloc(1,sizeof(int));
15 ptr [0] = 0x12345678;
16
17 //Shift address to a non -word boundary
18 ptr = (int*)((char*)ptr + 0x1);
19
20 //Try to read from misaligned address
21 asm("mov r3 ,%0" : : "r"(ptr));
22 asm("LDM r3 ,{%0}": "=r"(val) : : );
23
24 printf("0x%08X\n", val);

Listing 1.3: PoC for emulator de-
tection by misaligned memory read.

Evaluating Missing Alignment Checks and Endianness Support: We
also show that we can successfully detect the SDK emulator by leveraging the
ignored endianness bit updates as well as the missing memory address align-
ment checks. Listing 1.2 provides a proof-of-concept (PoC) code sample that
fingerprints emulation by flipping the endianness bit in the CPU (i.e., CPSR.E)
and performing a load operation on a known data value to determine whether
the endianness has been changed. Executing this code snippet on a real hard-
ware (i.e., Nexus 5 in our case) reads the array value as 0x78563412 instead of
0x12345678 as the CPSR.E bit is set to switch from little-endian to big-endian
operation for data accesses. However, since the CPSR.E bit update is ignored in
QEMU, the LDR instruction reads the array element into R4 as 0x12345678 on
the SDK emulator. Thus, a malware can easily fingerprint emulation by simply
checking the value of target register (i.e., R4 in this example). Similarly, Listing
1.3 illustrates how the missing alignments checks in QEMU can be leveraged to
fingerprint emulation. We shift the word-aligned ptr pointer by one byte to cre-
ate a misaligned reference address. Reading from this misaligned pointer with an
LDM (i.e., load multiple) instruction causes a bus error (program receives SIGBUS)
on a real hardware while it succesfully reads the high-order part (0x123456) of
the target address on the SDK emulator. Thus, a malware can simply deter-
mine emulation depending on whether a SIGBUS signal is received (i.e., on a real
system) upon intentionally causing a misaligned memory access.

Evaluation on a ARMv8 CPU: The 64-bit ARMv8 architecture, which is
used in recent smartphones, is compatible with ARMv7. Thus, the CPU semantic
attacks we demonstrate in this work also apply to devices powered with ARMv8



CPUs (e.g., Nexus 6P). We evaluated PoC detectors for each root cause we
discovered (i.e., Table 2, Listings 1.2 and 1.3) on a Nexus 6P smartphone and
successfully distinguished this device from the SDK emulator as well.

5.4 Improving the Fidelity of QEMU

With the capabilities of Proteus for identifying and classifying divergences in
instruction-level behavior, in this section, we show the feasibility of eliminating
the sources of discrepancies to improve QEMU’s fidelity.

We have modified the QEMU source code of the SDK emulator to elimi-
nate the top 3 detection methods in Table 2 based on incomplete sanitization of
opcodes for Undefined encodings. Specifically, based on the ARM ISA specifica-
tion [4], we fixed the decoding logic of QEMU to verify all opcode fields for these
3 cases and trigger an illegal instruction exception for the Undefined encodings.

Fig. 5: Overhead evaluation
of fidelity enhancements.

These fixes eliminated 1190 divergent cases in
Table 2. Using various CPU benchmarks from
MiBench suite [16], in Figure 5, we verified that
the minimal extra code needed to perform ad-
ditional opcode checks does not introduce any
measurable performance overhead. We acknowl-
edge, however, that addressing the alignment
check and endianness support in QEMU will
require more comprehensive changes than the
missing opcode checks for Undefined encodings.

6 Discussion and Limitations
Countermeasures: One possible defense against the CPU semantic attacks
demonstrated in this work is to, as evaluated in Section 5.4, fix the root causes
of instruction-level discrepancies in QEMU. We believe enhancing the fidelity of
QEMU is crucial considering the critical role of emulators for Android malware
analysis and the growing number of malicious apps that seek to leverage evasion
tactics. As a first step towards this objective, we are disclosing our root cause
findings and, in fact, have already shared a patch with the QEMU’s maintainers.

As Proteus enumerates a set of divergent instructions, similar to prior work
that inspects x86 binaries to detect evasion [13], we can scan Android apps for
the presence of divergent instructions. Such analysis can be adopted by malware
analyzers (e.g., Google’s Bouncer [23]) to discover evasive malware that leverages
these detection heuristics and prevent them from infecting the Android users.

Another potential countermeasure against the evasive malware that leverages
low-level CPU discrepancies is to use real hardware for dynamic analysis instead
of emulators [22]. Such a fundamentally different approach can eliminate CPU-
level discrepancies. However, practical limitations such as cost, scalability and
maintenance inhibits wide-spread adoption of such approaches. In addition, the
instrumentation required for analyzing applications on physical devices intro-
duces artifacts itself which allows for fingerprinting [27]. Thus, malware analysis
systems for Android will continue to rely on emulators [23, 28, 30].



Limitations: Proteus uncovers several classes of observable artifacts in ARM
CPU implementations between emulator and real devices. However, there could
be other instruction-level discrepancies in current Android emulators that our
system could not identify as our scope in this work was limited in several direc-
tions. This section discusses these limitations and describes the open-problems.

We demonstrated the capabilities of Proteus on the ARMv7 architecture
and for the instructions in ARM mode. Recent Android devices also use the
latest 64-bit ARMv8 variant of the ISA. Since ARMv8 provides compatibility
with ARMv7, as evaluated in Section 5.3, the discrepancies we have discovered in
this work also apply to ARMv8 CPUs. Discovering ARMv8-specific discrepancies
using Proteus simply requires acquiring a Fast Model for an ARMv8 CPU (e.g.,
Cortex-A53) and repeating the experiments. Our present work did not explore
instructions executing in Thumb mode which provides improved code density
via 16-bit instructions with limited functionality. Finally, this work focuses on
the ARM registers and did not explore potential discrepancies in the extension
registers used by VFP/SIMD instructions. Expanding our system to include
Thumb instructions and extension registers is part of our immediate future work.

Our present study also does not fully address data-dependent divergences
(e.g., depending on the input values from registers or memory). Such limitation
is common to fuzzing approaches as exhaustively exploring all possible inputs
is computationally infeasible. One approach to improve Proteus in this regard
would be to repeat the same test cases with several randomized inputs as well
as corner cases (e.g., min/max values) as in prior work [21, 27].

As discussed in Sections 5.2 and 5.3, some of the divergences found by Pro-
teus are due to Unpredictable instructions and do not correspond to an imple-
mentation flaw. This is particularly the case as the ARMv7 specification written
in SML [15], which we used to check Unpredictable instructions, does not
cover all Unpredictable instruction encodings. A significant contribution of our
analysis is that we discovered deterministic CPU-level discrepancies even in the
presence of some Unpredictable instructions in our test cases. Recently, ARM
has released an official machine readable ISA specification written in a domain-
specific language named ASL [5]. Unfortunately, the lack of official documen-
tation and tools to work with ASL prevents us from relying on this resource.
However, we find ASL specifications a promising future solution for enumerating
Unpredictable encodings and improving our overall testing methodology.

7 Related Work
This sections overviews prior work on discovering emulation detection methods
and explains how Proteus distinguishes from or complements them. We also
discuss existing defense approaches against evasive malware.

Finding Discrepancies of Emulation Environments: Jing et al. [17] iden-
tify a large number of detection heuristics based on the differences in file sys-
tem entries and return values of Android API calls. For instance, presence of
“/proc/sys/net/ipv4/tcp_syncookies” file or a False return value from the
“isTetheringSupported()” API implies emulation. Such discrepancies can be



easily concealed by editing Android’s system images and API implementations
to fake real device view [12, 19]. Petsas et al. detect QEMU-based emulation by
observing the side effects of caching and scheduling on QEMU [25]. Other work
leverages performance side channel due to low graphics performance on emula-
tors to fingerprint emulation [29]. These techniques, however, have practical lim-
itations as they require many repeated trial and observations which increases the
detection risk of malware. Our work systematically uncovers observable differ-
ences in instruction semantics, which achieve deterministic emulation detection
through execution of a single CPU instruction.

Similar to our approach, other works also aim at discovering discrepancies of
emulators at instruction granularity. Various techniques [21, 24] execute random-
ized instructions on emulator and real hardware to identify the discrepancies of
x86 emulators. To ensure coverage of a wide set of instructions, other work [27]
carefully constructs tests cases with unique instructions based on manual analy-
sis of the x86 ISA manual while our technique is fully automated. In addition, the
analysis and findings of these studies are limited to x86 instruction set only while
the vast majority of mobile devices are powered by ARM CPUs. In addition,
these studies classify divergences based on instructions (e.g., using mnemonic,
opcodes) which oversees the fact that even different instructions (e.g., LDM and
STM) can diverge due to the same root cause (e.g., missing alignment check). Our
study points to the unique root causes in the implementation of CPU emulators.
Thus, as we show in Section 5.4, our findings are readily useful for improving the
fidelity of QEMU. Finally, as reliance on physical CPUs practically limits the
number of test cases (e.g., instructions, register/memory operands, system regis-
ter settings), we propose a novel scalable system which uses accurate functional
models of ARM CPUs (i.e., Fast Models).

Martingoni et al. [20] used symbolic execution traces from a high-fidelity
emulator to construct test cases that would achieve high coverage while testing
a low-fidelity emulator. Unavailability of such high-fidelity emulator for Android,
however, limits the applicability of this technique for our use.

Defense Against Evasive Malware: Several work proposes to detect diver-
gent behavior in malware as a defense mechanism. Balzorotti et al. [11] detect
divergent behavior due to instruction semantics by replaying applications on em-
ulators with the system call sequences gathered from real devices and comparing
the runtime behavior. Lindorfer et al. [18] propose a more generic methodology
for detecing evasive malware based on the similarity of execution behaviors col-
lected from a set of virtual machines. These approaches do not systematically
expose potential causes of divergences that a future malware can use. Our work
addresses the problem of proactively finding these instruction-level discrepancies
and opens the possibility of pre-emptively fixing them.

Specifically for Android, other works [12, 19] systematically remove observ-
able differences from API calls, file system and properites of emulator devices
and demonstrate resistance against evasion. Such approaches, however, require
enumeration of root causes of discrepancies. Our Proteus system aids these ap-
proaches by enumerating the divergent cases between emulator and real CPUs.



8 Conclusion
Scalable dynamic analysis of Android malware relies on emulators. Due to pres-
ence of observable discrepancies between emulated and real systems, however, a
malware can detect emulation-based analysis and alter behavior to evade detec-
tion. Restoring the effectiveness of Android malware analysis requires systematic
approaches to proactively identify potential detection tactics that can be used by
malicious authors. This work presented the first systematic study of differences in
instruction-level behavior of emulated and real ARM CPUs that power the vast
majority of Android devices. We presented the Proteus system for large-scale
exploration of CPU semantic attacks against Android emulators. Proteus au-
tomatically analyzed detailed instruction-level traces collected from QEMU and
accurate software models of ARM CPUs and revealed several major root causes
for instruction-level discrepancies in QEMU. We demonstrated the feasibility of
enhancing the fidelity of QEMU by fixing the root causes of divergences without
any performance impact. We are disclosing our findings and submitted patches to
QEMU as a step towards improving QEMU’s resiliency against evasive malware.
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