
MOCA: Memory Object Classification and
Allocation in Heterogeneous Memory Systems

Aditya Narayan∗, Tiansheng Zhang∗, Shaizeen Aga†, Satish Narayanasamy† and Ayse K. Coskun∗
∗Boston University, Boston, MA 02215, USA; Email: {adityan, tszhang, acoskun}@bu.edu
†University of Michigan, Ann Arbor, MI 48109, USA; Email: {shaizeen, nsatish}@umich.edu

Abstract—In the era of abundant-data computing, main mem-
ory’s latency and power significantly impact overall system
performance and power. Today’s computing systems are typically
composed of homogeneous memory modules, which are optimized
to provide either low latency, high bandwidth, or low power. Such
memory modules do not cater to a wide range of applications with
diverse memory access behavior. Thus, heterogeneous memory
systems, which include several memory modules with distinct
performance and power characteristics, are becoming promising
alternatives. In such a system, allocating applications to their
best-fitting memory modules improves system performance and
energy efficiency. However, such an approach still leaves the
full potential of heterogeneous memory systems under-utilized
because not only applications, but also the memory objects within
that application differ in their memory access behavior.

This paper proposes a novel page allocation approach to utilize
heterogeneous memory systems at the memory object level. We
design a memory object classification and allocation framework
(MOCA) to characterize memory objects and then allocate them
to their best-fit memory module to improve performance and
energy efficiency. We experiment with heterogeneous memory
systems that are composed of a Reduced Latency DRAM
(RLDRAM) for latency-sensitive objects, a 2.5D-stacked High
Bandwidth Memory (HBM) for bandwidth-sensitive objects, and
a Low Power DDR (LPDDR) for non-memory-intensive objects.
The MOCA framework includes detailed application profiling,
a classification mechanism, and an allocation policy to place
memory objects. Compared to a system with homogeneous
memory modules, we demonstrate that heterogeneous memory
systems with MOCA improve memory system energy efficiency
by up to 63%. Compared to a heterogeneous memory system with
only application-level page allocation, MOCA achieves a 26%
memory performance and a 33% energy efficiency improvement
for multi-program workloads.

Index Terms—heterogeneous memory, energy efficiency, mem-
ory management

I. INTRODUCTION

The memory wall, prevalent over the last three decades,
has been widening the gap between memory access and
computation speeds [1]. With the recent advent of memory-
intensive applications, main memory performance and power
play an even more significant role in overall system energy
efficiency in modern servers and high-end supercomputers.
Increasing the number of processing cores on a single chip
adds more pressure on the memory system, thereby limiting
system performance improvement. Recent studies show that
main memory consumes more than 25% of the total system
power for servers in data centers [2]. Thus, improving memory
performance and energy efficiency is crucial for achieving
higher system efficiency.

Traditionally, the main memory (e.g., DRAM) of a com-
puting system is composed of a set of homogeneous memory
modules. The key attributes that determine the efficiency of a
memory system are latency, bandwidth, and power. An ideal
memory system should provide the highest data bandwidth
at the lowest latency with minimum power consumption.
However, there is no such perfect memory system as a memory
module with high performance generally has a high power
density. Hence, memory modules come in different flavors,
optimized to either improve system performance or reduce
power consumption.

Due to diverse memory access behavior across workloads, a
memory system with homogeneous memory modules is often
not sufficient to meet all workloads’ memory requirements.
Motivated by performance-power tradeoffs among various
memory modules for diverse workloads, heterogeneous mem-
ory systems have been proposed to improve performance and
energy efficiency for a variety of systems, from embedded
systems to modern servers (e.g., [3]–[9]). A heterogeneous
memory system is composed of several memory modules
with different performance and power characteristics. Such a
system can be realized through multiple memory controllers,
which can synchronize the accesses [10]. There are already
commercial products that utilize heterogeneous memory. For
example, Intel’s Knights Landing processor has an on-chip
high-bandwidth memory (HBM) together with an off-chip
DDR4 [5]. In GPUs, scratchpad memory is widely used
with off-chip DRAM in order to accelerate memory accesses
without losing capacity. As another example, AMD Radeon
R9 Fury X, in addition to its off-chip DDR3, also consists of
an interposer with an HBM stack for higher bandwidth [11].

To leverage the benefits of such a system, we need a
systematic memory management scheme for heterogeneous
memory systems. A heterogeneity-aware page allocation pol-
icy should ideally map a page to a memory module that is best
suited to that page’s access characteristics. Prior work proposes
allocating memory pages based on the aggregate memory
access behavior of each application [3]. Another approach
allocates critical words in a cache line to a latency-optimized
memory module [4]. However, such existing application-level
policies do not harness the heterogeneity in memory behavior
that exists within an application.

In this work, we observe that an application’s memory
objects, particularly those allocated dynamically in the heap
space, exhibit vastly diverse memory access behavior, and

such behavior often significantly differs from the application’s
aggregate memory access behavior.. To exploit this observa-
tion, we propose a framework that enables allocating memory
objects of an application to different memory modules based
on their access behavior. We refer to our framework as memory
object classification and allocation (MOCA). MOCA includes
a profiler that names, profiles, and classifies memory objects
within an application based on their memory access behavior
as well as an allocation scheme at the OS level.

We focus particularly on heap objects as these often substan-
tially contribute to the performance or energy bottlenecks of a
memory-intensive application. We name a heap object based
on the program site (where the object is instantiated) and the
calling context where it is allocated. Our profiler then classifies
each named object based on its memory access behavior
observed over a representative set of profiled executions. Then,
the classification is stored as part of the application binary. At
runtime, heap’s virtual memory is partitioned into as many
types as the number of memory modules in the system (three
in our study), and MOCA’s memory allocator allocates a heap
object to one of those partitions based on its type. The OS
is responsible for allocating pages from a particular virtual
memory heap partition to physical pages in memory device
with the desired characteristics.

Our specific contributions are listed as follows:
• As part of MOCA, we develop a technique to uniquely

name each heap object instantiated during application
execution and profile its memory accesses. MOCA then
classifies memory objects based on the profiling results.

• Again, in MOCA, we develop a runtime page allocation
mechanism that allocates each memory object to its best-
fitting memory module based on the memory object
classification results.

• We provide a detailed implementation of MOCA and
demonstrate the benefits of object-level page allocation
in a heterogeneous memory system consisting of low
power DDR (LPDDR), reduced latency DRAM (RL-
DRAM), and HBM modules. MOCA improves memory
system energy efficiency by up to 63% for multi-program
workloads over a baseline homogeneous DDR3 system.
On average, it increases memory performance by 26%
and improves energy efficiency by 33% compared to
an application-level page allocation policy [3] for multi-
program workloads with diverse memory objects.

The rest of the paper starts with the motivation for hetero-
geneous memory systems and object-level page allocation in
Sec. II. Section III describes our proposed framework, MOCA.
Section IV details MOCA implementation in a real-system and
Sec. V and VI present our simulation framework and results.
We review related work in Sec. VII and conclude in Sec. VIII.

II. MOTIVATION

A. Heterogeneous Memory Systems

Memory vendors provide memory modules with various
performance and power characteristics, targeting a wide range

Fig. 1: Memory access behavior of selected applications from
SPEC CPU2006 [12] and SDVBS [13] benchmarks. A high L2
MPKI indicates that the application is memory-intensive. A low
number of ROB Stall cycles for a memory-intensive application
implies high memory-level parallelism.

of system requirements. For example, RLDRAM is a memory
type optimized for low access latency, which makes it ideal
for switch and router applications [14]. It is implemented
similar to SRAM, where the entire address is provided in
the same clock cycle, thereby reducing the access latency
significantly. However, the static and dynamic power con-
sumption of RLDRAM is 4-5x higher than a DDR3/DDR4
module, and the bandwidth is lower. On the other hand,
LPDDR reduces power consumption substantially, but has
higher access latency and lower bandwidth; thus, it is at-
tractive for mobile platforms. HBM is an innovative memory
technology which stacks multiple DRAM layers vertically,
where layers are connected by through-silicon-vias. An HBM
boasts of more channels per device, smaller page sizes per
bank, wider activation windows and a dual command line for
simultaneous read and write [15]. These features distinguish
HBMs to provide performance and power improvements in
case of bandwidth-sensitive workloads. However, there is no
single memory module that can provide the lowest latency,
highest bandwidth, and lowest power consumption at the same
time. Thus, we argue that homogeneous memory systems are
often not sufficient in an era of diverse computation- and
memory-intensive workloads.

Another drawback of homogeneous memory systems is
their incognizance to the workload running on the system.
Workloads differ widely in their memory access behavior as
shown in Fig. 1, making homogeneous memory systems sub-
optimal in terms of energy efficiency and performance. This
figure shows the diverse memory access behavior for a set of
applications from SPEC CPU2006 [12] and San Diego Vision
Benchmark Suite (SDVBS) [13]. We plot the last-level cache
misses per kilo instructions (LLC MPKI), which quantifies
memory intensiveness, and the Reorder Buffer (ROB) head
stall cycles per load miss, which is a metric for memory level
parallelism (MLP) [16]. MLP is the notion of issuing and
servicing multiple memory requests in parallel. We provide
more details about the chosen metrics in Sec. III.

Phadke et al. [3] introduce an application-level allocation
policy for heterogeneous memory systems. They profile the
memory access behavior of every application as a whole and

Fig. 2: Memory access behavior of memory objects for selected SPEC CPU2006 [12] and SDVBS [13] applications. The x-axis plots
L2 MPKI and the y-axis plots ROB head stall cycles per load miss. The size of a circle indicates the size of that object.

allocate the entire application to the best-fit memory module.
For example, a computation-intensive workload such as gcc
has low L2 MPKI. It achieves similar performance using any
type of memory module but the overall power consumption
can be reduced using LPDDR. On the other hand, a memory-
intensive workload (e.g., mcf or milc) can achieve substantially
higher performance using memory modules with low access
latency or high bandwidth. Thus, a heterogeneous memory
system, which contains different memory modules, is able to
cater to a wide range of applications and provide higher energy
efficiency [3], [4]. Yet, achieving higher energy efficiency
is contingent upon placing an application’s data in the right
memory module.

B. Exploiting Heterogeneity at a Finer Granularity

Operating at a coarser granularity, application-level profil-
ing and page allocation often do not fully utilize the perfor-
mance and energy benefits of heterogeneous memory systems.
This is because not all memory objects within an application
display similar memory access behavior. Many applications
are composed of a number of memory objects with signifi-
cant variations in their memory accesses. Objects within an
application are often accessed at different frequencies, have
different memory sizes, or exhibit different levels of MLP. We
claim that it is beneficial to profile applications and allocate
pages at the granularity of memory objects.

Figure 2 shows the distribution of memory objects within
selected applications from the SPEC CPU2006 and SDVBS
benchmark suites. Similar to application-level results, we use
L2 MPKI and ROB stall cycles per load miss to determine
whether a memory object is latency-sensitive, bandwidth-
sensitive, or neither. We see a wide distribution across both of
these metrics for objects within the same application. Memory-
intensive applications such as milc and mser have only a
few memory objects with high L2 MPKI. In contrast to an
application-level allocation, which would place all the objects
into an RLDRAM module for these applications, a finer-

level allocation could place the objects with low L2 MPKI
into an LPDDR module, thereby reducing the overall power
consumption.

In order to tap into this heterogeneity in memory access
behavior of objects within an application, we design an object-
level page allocation policy. This policy, which we describe
next, places each object into the best-fitting memory module
in a given heterogeneous memory system.

III. MOCA: MEMORY OBJECT CLASSIFICATION AND
ALLOCATION

To leverage the advantages of heterogeneous memory sys-
tems for performance and energy efficiency improvement, we
propose the MOCA framework. MOCA consists of an offline
profiling stage that uniquely names every memory object
allocated in the heap memory space1 through a consistent
naming convention. It then collects statistics of metrics that
characterize the memory access behavior of each named mem-
ory object within every application. Using this information,
MOCA classifies memory objects based on their sensitivity to
memory access latency and memory bandwidth. These steps of
profiling and classification are conducted offline. Then, during
runtime execution of an application, MOCA runs a method
to allocate each memory object to the best-fitting memory
module, based on the memory object classification. Figure 4
shows the flow of MOCA.

Our work targets applications that run repeatedly on a given
system. Many such applications exist in mobile systems, PCs,
data centers, or supercomputers. We use representative training
inputs during profiling and test with other reference inputs.
Such profiling-based approaches work well for applications
with fairly similar behavior across different input sets (e.g.,
[17], [18]).

1An application’s memory use mainly includes stack, heap, and code. Stack
and code segments often have low LLC MPKI (i.e., they tend to utilize
the caches well) and have minimal impact on performance when placed on
different memory modules. Therefore, our work focuses on the heap usage.

App C code:
void main() {
 array = malloc(16);
 ...
 foo();
}
void foo() {
 string = malloc(20);
}

App ASM code:...
4004e9: e8 ca fe ff ff callq 4003b8 <malloc@plt>
4004ee: 48 89 45 f8 mov %rax,-0x8(%rbp)
...
4004f7: e8 c8 ff ff ff callq 4004c4 <foo>
4004fc: c9 leaveq
...
4004d1: e8 e2 fe ff ff callq 4003b8 <malloc@plt>
4004d6: 48 89 45 f8 mov %rax,-0x8(%rbp)

Heap Status:

array

string

 ...

Naming Information:

return addr. start addr. size

0x4004ee

0x4004d6
0x4004fc

0x602010

0x602030

16

20

Fig. 3: An example of memory object naming convention.

Application Application

MO: Memory object Pow Mem: Lowest power and highest latency
Lat Mem: Lowest latency and highest power BW Mem: Highest bandwidth

Heter. Mem.
System Config.

MO1 MO2

MO3 MO4

MO1 MO2

MO3 MO4

Profiling

Classification

Object Level
Page Allocation

Lat Mem BW Mem Pow Mem

B
in

a
ry

 In
stru

m
e
n
ta

tio
n

Fig. 4: The workflow of MOCA. The profiling stage uniquely
names memory objects and profiles their memory access behavior.
Classification stage uses this information to classify objects. At
runtime, each memory object is allocated with pages from the
best-fitting memory module based on object’s type.

A. Memory Object Profiling

The profiling stage uniquely names memory objects and
collects statistics for each of them. To name memory objects,
we use the return address of each dynamic memory allocation
function (e.g., malloc, calloc, etc. in C) and record the virtual
address of its caller function in the stack. These two addresses
are unique to every object. In addition, we also record the
size of each object. Our naming convention for an example
C code is shown in Fig. 3. In the figure, the memory object
array is instantiated directly from the main function. So, the
object is named with the return address of the corresponding
malloc function and start address of the caller function. The
memory object string, being instantiated inside a function foo,
is named with the return address of its malloc function inside
foo and the return address of foo in the main function. This
naming convention enables us to distinguish memory objects
instantiated via the same function, even when the function is
invoked from different locations in a program.

Once we name all memory objects within an application,
we need metrics to characterize their memory access behavior.
We record the LLC MPKI for each object as LLC MPKI
provides an indication of the memory access intensity. In
addition, we collect average ROB head stall cycles per load
miss [16] for each object. ROB head stall time is computed
as the average cycles spent waiting at the head of the ROB
for load misses. This metric has been identified and used as
an effective measure for MLP in prior work [3], [16].

B. Memory Object Classification

In classification stage, we use the collected statistics from
profiling (memory objects, their LLC MPKI and ROB head
stall times) to classify objects as being either latency-sensitive,
bandwidth-sensitive, or neither. Memory objects with high
LLC MPKI are generally memory-intensive. Among high-

Thr_BW

Pow Mem

Pow Mem

Lat Mem

BW Mem
Thr_Lat LLC MPKI

ROB Head
Stall Cycles

Fig. 5: Classification of memory objects based on thresholds

LLC-MPKI memory objects, the ones exhibiting low ROB
head stall time have high MLP (memory latencies are largely
hidden as indicated by low ROB stalls), i.e., such objects
benefit from a high-bandwidth memory module. We classify
such objects as bandwidth-sensitive. The rest of the memory-
intensive objects with low MLP (high ROB head stall time)
are sensitive to access latency of memory modules (i.e., higher
latency leads to larger ROB stall time) and we classify them
as latency-sensitive objects. Objects with low LLC MPKI are
not sensitive to either latency or bandwidth. Such objects can
be placed in low-power memory modules without affecting
performance, thereby reducing memory power consumption.

Figure 5 depicts this classification where Lat Mem is a
RLDRAM module, Pow Mem is an LPDDR module and BW
Mem is an HBM module. We classify objects with LLC
MPKI greater than the latency threshold (Thr Lat) as memory-
intensive. The rest of the objects do not access memory
frequently and can be safely allocated to Pow Mem. For
memory-intensive objects, we classify the ones with ROB head
stalls greater than the bandwidth threshold (Thr BW) as being
latency-sensitive due to the lack of MLP and objects with ROB
head stalls lower than Thr BW are classified as bandwidth-
sensitive and allocated to BW Mem. In MOCA, we empirically
set the latency and bandwidth sensitivity thresholds based on
the energy/performance characteristics of the memory modules
in the given system (see Sec. IV-C).

C. Page Allocation for Memory Objects

The offline profiling and classification stages collectively
provide the name and characteristics of every memory ob-
ject in an application. We instrument the memory object
classification information into application binaries. Specifi-
cally, we modify the standard memory allocation functions
(e.g., malloc) to enable specifying object “types”: bandwidth-
/latency-sensitive or neither. MOCA splits the heap memory
space accordingly with these types (see Fig. 6). The physical
memory address space is also divided based on the available
memory module types in the heterogeneous memory system.

At runtime, MOCA uses the object-level information to
perform page allocation. When a memory object is instantiated
through MOCA’s modified memory allocator (including the
extra arguments of the object types), that object is allocated

text
data
bss

heap

stack

Memory Map

Lat_Mem

BW_Mem

Pow_Mem

Heter. Mem. System

Lat-MO
Heap

BW-MO
Heap

Pow-MO
Heap

Fig. 6: Virtual and physical memory space separation for MOCA
support in real systems

Training
Input

Application A
Memory
Object
Naming

Performance
Counters

Statistics
Collection

Offline Profiler

Binary of
Application A

Instrumented
Application A

Page
Allocation
Algorithm

Heterogeneous
Memory System

Runtime AllocatorBinary
Instrumentation

Heterogeneous Memory Configuration
(1GB RLDRAM+2GB LPDDR+1GB HBM)

Test
Input

Latency & Bandwidth
Thresholds

Memory
Object

Classification

Fig. 7: Real-system flow of MOCA framework

with virtual pages from the heap space based on its type.
For example, an object with high LLC MPKI and low ROB
stalls gets placed into the bandwidth-sensitive heap. In the
page translation process, based on the memory object’s virtual
page number, the OS identifies the type of the memory
object and maps a physical frame from the memory module
corresponding to its type, as shown in Fig. 6.

If there is enough space in the best-fit memory module, the
memory object gets the physical pages from this memory mod-
ule. If the best-fitting memory module capacity is exhausted,
MOCA proceeds to the next best memory module (e.g., next
best for HBM is LPDDR, etc.) and continues allocation until
all objects get physical pages.

IV. IMPLEMENTATION

Section III has discussed the operation of MOCA. This
section provides implementation details of MOCA in a real
system. Figure 7 depicts the real-system implementation flow.
A. Memory Object Profiler (Offline)

As introduced in Sec. III-A, we use the return addresses of
the memory allocation functions and addresses of their caller
functions to uniquely name memory objects. To implement
the naming process, we modify the memory allocation func-
tions to get the return addresses of each memory allocation
function and its caller function using a built-in function

builtin return address(). We create a shared library of the
modified memory allocation functions and preload this library
while executing an application. We add a profiler flag to our
compiler to maintain all the objects within an application in a
lookup table (LUT). This LUT contains all the information of
every object (call stack, size, start address, LLC MPKI, ROB
head stall cycles per load miss).

B. Statistics Collection and Object Classification (Offline)

MOCA uses the hardware performance counters of the pro-
cessor to record the LLC misses and the ROB head stall cycles

for each memory object. Each time an object is read/written
to, if the ROB stalls for a memory read or if there is an LLC
miss, we identify the accessed memory object (based on the
requested address) and increment the corresponding counter
for that memory object in the LUT. We also update the object’s
size as needed.

C. Classification Threshold Setup (Offline)

In MOCA, we empirically set the Thr Lat and Thr BW
that are used in classifying the memory objects. While ex-
perimenting with our profiled applications, we search for the
lowest LLC MPKI value of a memory object where placing
that object in a RLDRAM module results in an overall memory
energy efficiency improvement. We set this LLC MPKI value
as Thr Lat. Similarly, Thr BW is the highest ROB stall time
value of a memory object that gives memory energy efficiency
improvements for the given system when this object is placed
in an HBM module.

For our target heterogeneous system, we set Thr Lat as 1
and Thr BW as 20. In a similar fashion, one can perform
a sensitivity analysis in a given heterogeneous memory sys-
tem to identify the breakeven points where the RLDRAM
and HBM (or another available module) starts giving energy
efficiency improvements. Thr Lat and Thr BW need to be
customized for a given system, as memory, cache, and core
microarchitecture parameters significantly impact performance
and energy efficiency.

D. Page Allocator (Runtime)

MOCA’s runtime page allocation algorithm runs on top of
the existing OS memory management. As noted earlier, we
use the classification information of objects to instrument an
application binary with a “type” for each of its heap objects.
The OS, upon encountering a heap object, then knows from
which memory type it should allocate that object’s pages2.

When the CPU issues a memory request, it goes to the L1
cache and, at the same time, the CPU searches translation
lookaside buffer (TLB) for the physical page number of this
memory request. On a hit, the TLB sends the physical page
corresponding to the requested virtual page. Otherwise, there is
a page fault, followed by a page walk, which searches through
the OS-maintained page table to find the required virtual-
physical page translation. Then, the requested page table entry
(PTE) is returned and inserted into TLB. The OS maintains
the starting, ending, and the next available page number of
each memory module in a heterogeneous memory system.
Whenever a PTE returns from a page table walk, MOCA
determines the physical page number for the next available
page from the desired memory module of the corresponding
memory object. The OS is also given the priorities of memory
modules for different memory object types in case the most
desired memory module is full (i.e., next best module if the
ideal one is full).

2Alternatively, one could instrument the application binary with object
statistics (LLC MPKI and ROB stalls) and pass the Thr Lat and Thr BW
thresholds to the OS.

TABLE I: Microarchitectural details of simulated system

Execution Core 1GHz x86 ISA with out-of-order execution
Fetch/Decode/Dispatch/Issue/Commit width 3,
84-entry ROB, 32-entry LQ,
tournament branch predictor with 4K BTB entries

On-chip caches 64KB split L1 I and D cache, 2-way, 2 cycle ,
64B line size, 4 MSHR
Unified L2, 512KB, 16-way, 20 cycles, 64B line
size, 20 MSHR

Memory Controller Address mapping RoRaBaChCo, 4 channels,
FR-FCFS scheduling

As for the virtual pages that do not belong to heap objects,
we assign them physical pages from the LPDDR and update
the page table accordingly.

E. Overhead of MOCA

The profiling and classification of memory objects are
conducted offline and do not impact system performance at
runtime. The profiler needs to register every memory object
and update its statistics in the LUT. We measure the per-
formance overhead of running our applications with profiling
turned on, and observe only 0.59% slowdown on average.

In our page allocation algorithm, the performance overhead
comes from the OS selecting the best-fit memory module
at runtime for every memory object. Since the OS needs to
perform allocations for objects only at their instantiation, this
overhead is negligible. Note that, in contrast to page migration
policies that need to monitor runtime information, MOCA only
slightly modifies the page allocation method in the OS [19].

V. EXPERIMENTAL METHODOLOGY

We present the details of our simulation framework, the
baseline and target memory systems, as well as the workload
sets in this section.

A. Simulation Framework

To demonstrate the benefits of heterogeneous memory sys-
tems, we conduct experiments with both a single-core system
and a multicore system with four cores. We model each
core based on the core architecture of AMD Magny-Cours
processor [20]. The microarchitectural parameters are listed
in Table I. We modify Gem5 [21] as explained in Sec. IV
and use it for full-system architectural simulations. We use
a Linux 2.6.32 disk image as the host operating system. For
each application, we generate simpoints [22] for the training
input data. We fast-forward to these simpoints and run the
applications for 100 million instructions to collect memory
object statistics for each application, and then take a weighted
value of metrics at these simpoints to perform memory object
classification. Memory objects instantiated during both the
fast-forward phase and the execution phase are all recorded for
profiling and classification purpose. We consider five levels of
return addresses in our callstack for naming memory objects.

We use the reference input set for the comparison among
different page allocation techniques. For each workload set,
we fast-forward to five billion instructions and run for one
billion instructions. We feed the Gem5 output statistics to
McPAT [23] for core and cache power calculation. For better

TABLE II: Timing and architectural parameters for various
memory modules used in this work

DDR3
[25]

HBM
[25], [28]

RLDRAM
[27]

LPDDR2
[26]

Burst length 8 4 8 4
of banks 8 8 16 8

Row buffer size 128B 2kB 16B 1kB
of rows 32K 32K 8K 8K

Device width 8 128 8 32
tCK(ns) 1.07 2 0.93 1.875
tRAS(ns) 35 33 6 42
tRCD(ns) 13.75 15 2 15
tRC(ns) 48.75 48 8 60
tRFC(ns) 160 160 110 130

Standby Power(mW/GB) 256 335 30 6.5
Active Power(W/GB) 1.5 4.5 1.1 0.4

simulation accuracy, we calibrate the runtime dynamic core
power values using measurements collected on the AMD
Magny-Cours processor. We calculate the dynamic core power
from power simulation across workloads and calculate the
calibration factor to scale McPAT raw data to target power
scale. Such calibration approaches have been performed in
prior work [24]. For our multicore system, we observe an
average total core power of 21W. We model performance
characteristics of our memory system designs in Gem5 and use
MICRON’s DRAM power calculators for DDR3, RLDRAM
and LPDDR2 [25]–[27] to calculate memory power consump-
tion. This calculator takes in memory read and write access
rates as inputs and provides detailed DRAM power traces for
each banks. For HBM, we scale down the DDR3 precharge and
power-down current [28], and then estimate memory power
from SDRAM power calculator [25]. We assume that the I/O
power and the on-chip bus power are negligible compared to
total chip power.

B. Homogeneous Memory System

We have a system with 2GB DDR3 module as the baseline
for homogeneous memory systems, as most high-end servers
employ this memory type. We also test three other homoge-
neous memory systems comprising of 2GB LPDDR2, 2GB
RLDRAM, and 2GB HBM, respectively. Each of the four
memory controllers on the processor is connected to 512MB
memory. The architectural, timing and power parameters of
these memory modules are shown in Table II.

C. Heterogeneous Memory System

Our target heterogeneous memory system consists of four
memory channels and each channel is connected to a type of
memory module. We model this memory system to consist
of a 768MB HBM module, a 256MB RLDRAM module, and
two 512MB LPDDR2 modules. We use a dedicated memory
controller for each memory channel as the device timing pa-
rameters differ for different memory modules. The HBM and
RLDRAM modules are connected to one memory controller
each on the processor and we employ two memory controllers
to connect two 512MB LPDDR2 modules separately.

We compare our proposed object-level page allocation in
heterogeneous memory system with an application-level allo-
cation [3], where all the memory objects in one application are

Fig. 8: Memory performance of homogeneous and heterogeneous
memory systems for single workloads

TABLE III: Benchmarks Classification

L (latency sensitive) mcf, milc, libquantum, disparity
B (bandwidth sensitive) mser, lbm, tracking
N (non-memory intensive) gcc, sift, stitch

allocated to that application’s best-fit memory module. When
there are no pages left in the best-fit module, the objects are
then allocated to this application’s next-best memory module.
D. Workloads

We run selected C-based applications from SPEC CPU2006
[12] and SDVBS [13]. For SPEC benchmarks, we conduct
profiling using the training input sets and perform allocation
on reference input sets. In case of SDVBS benchmarks, we
select two different images from MIT-Adobe fivek dataset
[29] for profiling and allocation. The applications from these
benchmark suites are chosen such that we cover a wide spec-
trum of LLC MPKI and ROB stall time. As shown in Table
III , we categorize the applications as latency-sensitive (L),
bandwidth-sensitive (B) and non-memory-intensive (N) for
application-level allocation. To run workloads on a multicore
system, we create workload sets consisting of a diverse mix of
these applications. E.g., 2L1B1N represent a workload set with
two latency-sensitive applications, one bandwidth-sensitive
application and one non-memory-intensive application. 2

VI. EXPERIMENTAL RESULTS

We present the experimental results and analysis in this
section. We first conduct experiments with single-application
workloads running on a single-core system. We then run
experiments on a multicore system with multi-programed
workloads as modern data-centers tend to collocate multiple
applications on the same machines [30].

A. Single-Core System Performance and Energy Efficiency

First, we demonstrate the benefits of heterogeneous mem-
ory systems in a single-core computing system. Using the
same single-core processor, we compare the memory access
time and memory energy-delay-product (EDP) under different
memory systems ranging from homogeneous memory systems
(based on DDR3, RLDRAM, HBM, and LPDDR2, separately)
to heterogeneous memory systems with application-level al-
location (Heter-App) and object-level allocation (MOCA). We
calculate memory access time by adding up the queue latency,
bus latency and the time required for the memory request
to get serviced. We compute memory EDP by multiplying
memory power and memory access latency. The memory
performance and memory EDP results are shown in Fig. 8 and

Fig. 9: Memory EDP of homogeneous and heterogeneous memory
systems for single workloads

Fig. 9, respectively. Both plots are normalized to the results
of the homogeneous memory system based on DDR3 memory
module (Homogen-DDR33).

We can observe from these figures that, on average, MOCA
reduces the memory access time by 51% and the memory
EDP by 43% over Homogen-DDR3. Overall, Homogen-RL
unsurprisingly has the lowest memory access time whilst the
worst energy efficiency. On the other hand, Homogen-LP has
the worst performance among all memory systems, but due
to its low power cost, it still has better EDP than Homogen-
RL and Homogen-DDR3. Since the memory footprint of the
applications under consideration is always higher than the
individual memory module capacity in our heterogeneous
memory system, all the objects in an application are never
allocated to the best-fit memory module. Hence, the perfor-
mance of Heter-App is generally lower than the corresponding
homogeneous memory counterpart. MOCA achieves the best
energy efficiency among all experimented memory systems
and stays closest to Homogen-RL’s performance.

When comparing with Heter-App, MOCA provides more
benefits in performance and energy efficiency for latency-
sensitive applications, such as disparity. As shown in Fig. 2,
disparity has two major memory objects, one with a high
L2MPKI and the other with a relatively low L2MPKI. Heter-
App first allocates the lower-L2MPKI object in RLDRAM
module since it is the first one identified during runtime. Since
RLDRAM module capacity is used up by this object, the
higher-L2MPKI object is allocated in HBM module. On the
other hand, MOCA is aware of both objects’ characteristics,
and thus, allocates the higher-L2MPKI object in RLDRAM
and the lower-L2MPKI one in HBM, which improves the
memory performance and reduces the memory EDP. Similarly,
all the objects in gcc are allocated in LPDDR module in Heter-
App, while MOCA allocates the higher-L2MPKI object into
RLDRAM module and thereby improves performance. There
is a slight drop in performance for milc and mser using MOCA.
This is because apart from two or three memory-intensive
objects, all other objects are non-memory-intensive. MOCA
places the low-L2MPKI objects in LPDDR modules while
Heter-App places all of them in RLDRAM or HBM modules.

In general MOCA outperforms Heter-App by 14% in mem-
ory access time and 15% in memory EDP, demonstrating that
an object-level page allocation is able to unearth more of

3Similarly, we name the homogeneous memory systems composed of
RLDRAM, HBM, and LPDDR memory modules as Homogen-RL, Homogen-
HBM, and Homogen-LP, respectively.

Fig. 10: Memory performance of homogeneous and heteroge-
neous memory systems for multi-program workloads

Fig. 11: Memory EDP of homogeneous and heterogeneous mem-
ory systems for multi-program workloads

heterogeneous memory systems’ potential than an application-
level page allocation.

B. Multicore System Performance and Energy Efficiency

We next evaluate MOCA’s benefits on the target multicore
system with four cores. For different workload sets from Table
III, we measure the total memory access time and calculate the
memory power consumption for every memory system. Figure
10 and Figure 11 show the normalized memory access time
and memory EDP, respectively, for all tested memory systems.

Similar to single-application results, multi-program work-
loads also exhibit lower EDP values with heterogeneous mem-
ory systems. Even though MOCA achieves higher memory
access time compared to Homogen-RL and Homogen-HBM, its
energy efficiency improvement is 63% over Homogen-DDR3
and 40% over Homogen-LP, which makes MOCA the most
energy-efficient one among all tested memory systems. In
addition, MOCA reduces the memory access time by 26% and
the memory EDP by 33% over Heter-App.

Workload sets comprising of latency-sensitive and
bandwidth-sensitive applications contend more extensively
for RLDRAM and HBM than the rest of workload sets.
MOCA prioritizes the high-L2MPKI objects to RLDRAM
and the high-MLP objects to HBM, thereby reducing overall
memory access time. In addition, MOCA also places the
non-memory-intensive objects to LPDDR modules, thereby
reducing the memory power consumption significantly. Thus,
we see energy efficiency improvement from MOCA over
Heter-App – which tries to place all objects in RLDRAM
module. On the contrary, the last five workload also consists
of non-memory-intensive applications. The higher-L2MPKI
objects from these applications are allocated to the RLDRAM
modules, so the performance improvement of MOCA is as
high as 59% (2B2N) than Heter-App. Although the power
consumption increases, the reduced memory access time
results in lower EDP.

We also see the impact of MOCA on the system performance
and energy efficiency in Fig. 12 and Fig. 13, respectively. On

Fig. 12: System performance with homogeneous and heteroge-
neous memory systems for multi-program workloads

Fig. 13: System EDP with homogeneous and heterogeneous
memory systems for multi-program workloads

average, MOCA is close to Homogen-HBM or Homogen-RL in
performance and achieves better energy efficiency compared
to all the other memory systems. MOCA improves system
energy efficiency by up to 15% compared to Homogen-DDR3.
Compared to Heter-App, we get 10% improvement in both
performance and energy efficiency using MOCA.

C. Different Heterogeneous Memory System Configurations

We also conduct an investigation on heterogeneous memory
system configuration’s impact on performance and energy
efficiency and evaluate MOCA’s scalability under different
heterogeneous memory systems. We choose the following
three configurations:

1) 256MB RLDRAM, 768MB HBM and 1GB LPDDR2
2) 512MB RLDRAM, 512MB HBM and 1GB LPDDR2
3) 768MB RLDRAM, 768MB HBM and 512MB LPDDR2
The memory performance and energy efficiency results are

shown in Fig. 14 and Fig. 15, respectively, for five workload
sets across the three memory system configurations. All results
are normalized to Heter-App results. For memory-intensive
workload sets (e.g., 3L1B, 1L3B and 3L1N), MOCA achieves
lower memory access time with config1 than Heter-App.
This is because config1 has a lower RLDRAM capacity, and
these workload sets contend highly for RLDRAM module
in Heter-App. Hence, some of the high-L2MPKI objects are
not allocated to RLDRAM due to such contention. However,
MOCA prioritizes these high-L2MPKI objects to RLDRAM
and thus improves the performance under config1. As we
increase the RLDRAM capacity in config2 and config3, the
memory performance of both Heter-App and MOCA improves.
However, Heter-App has better performance than MOCA be-
cause it allocates all objects to the RLDRAM module. For
all workload sets except for 2B2N, the performance of Heter-
App is either on par or better than MOCA. This workload
mainly consists of non-memory-intensive applications, so the
memory performance does not vary much across different
configurations.

(a) 3L1B (b) 1L3B (c) 3L1N (d) 2L1B1N (e) 2B2N

Fig. 14: Normalized memory access time for application- and object-level allocation with different memory system configurations

(a) 3L1B (b) 1L3B (c) 3L1N (d) 2L1B1N (e) 2B2N

Fig. 15: Normalized EDP for application- and object-level allocation with different memory system configurations

Fig. 16: L2 MPKI of stack and code segment for all applications

However, the memory power consumption of config2 and
config3 increases significantly due to higher RLDRAM ca-
pacity. Since MOCA prioritizes only high-L2MPKI objects
to RLDRAM and HBM, and low-L2MPKI ones to LPDDR
as opposed to Heter-App, which allocates all objects from a
high-L2MPKI set to RLDRAM, MOCA provides better energy
efficiency. Since config1 provides the best memory system
energy efficiency among all three configurations, we select
this one for all our experiments.

D. Classifying Stack Data and Code Segment

In this work, we mainly consider memory objects allocated
in the heap space. In addition, there are also memory ac-
cesses from the code segment as well as the stack space.
However, the memory access intensity of these segments is
considerably lower than that of the heap objects. Figure 16
shows the L2MPKI for stack and code segments of the target
applications. These segments exhibit lower L2MPKI values
due to the higher locality of code segment and lower data
size of the stack segment. Therefore, we allocate pages from
LPDDR module for these segments in MOCA.

VII. RELATED WORK

Heterogeneous memory systems have been studied in var-
ious contexts in prior work. We first review related work
that discusses the use of on-chip scratchpad memory, 3D-
stacked DRAM (Hybrid Memory Cube or HBM) or other
memory technologies like PCM to construct heterogeneous
memory systems. We also look at methodologies that exploit
heterogeneity in memory accesses and allocation policies to
obtain high performance and energy efficiency.

A. Heterogeneous Memory Systems

Several prior works construct a heterogeneous memory
system comprising of either on-chip scratchpad memory [31],
[32] or 3D stacked memory [33]–[36] or non-volatile memory

such as PCM [37], [38] with a traditional DRAM. Many of
these works employ optimal page-level allocation policies to
utilize the lowest latency memory module in the system. To
do so, they either track frequently accessed pages [33], [35],
[36], [38] or control the amount of memory mapped to such
a module based on bandwidth utilization [34]. Heterogeneous
memory systems have also been proposed for reduced data
processing time in cloud computing [9]. Intel’s Knights Land-
ing Processor (KNL) [5] incorporates an HBM in addition to
DDR4 memory. In KNL, the programmer explicitly allocates
workloads’ critical data in HBM using functions built on top of
existing API (e.g., libnuma) or compiler annotation. Our work
uses an offline profiler to study the behavior of memory objects
on training input sets, and the OS automatically chooses the
best-fitting memory module for the objects at runtime.

B. Exploiting Heterogeneity in memory accesses

Phadke et al. [3] employ latency, bandwidth, and power op-
timized memory modules and choose a single optimal memory
module for an application based on offline profiling. Our work
shows that we can uncover substantial performance and energy
savings by placing memory objects within an application in
suitable memory modules. Chatterjee et al. [4] place critical
words in a cache line in latency-optimized memory module
and rest of the cache line in power-optimized modules. In
contrast, our proposal uses application profiles to deduce
latency/bandwidth sensitivity of memory objects and places
them accordingly in memory modules. Agarwal et al. [39]
propose a page placement policy, which places highly accessed
pages in bandwidth-optimized memory in a heterogeneous
memory system. This is conducive to GPU programs that hide
memory latency well. In contrast, we design a framework that
addresses both latency and bandwidth sensitivity of memory
objects and places them accordingly.

C. Profiling Policies to guide data placement

Shen et al. [31] use PIN-based profiling [40] to track array
allocations for placing frequently accessed and low-locality
arrays in the on-chip scratchpad. They also decompose larger
arrays into smaller chunks for fine-grained data placement.
Dulloor et al. [37] profile memory access patterns of data
structures as either sequential, random, or involving pointer

chasing. Data structures exhibiting latency-sensitive patterns
(e.g. pointer chasing) are placed in DRAM and the rest are
placed in PCM. Peon-Quiros et al. [32] track the access
frequency and changing memory footprint over time of dy-
namically allocated data structures to place them in either
on-chip SRAM or off-chip DRAM modules. While future
memory systems will employ such varied forms of memory
technologies as envisioned in these prior work, our work
instead, aims to highlight the heterogeneity benefits in main
memory and can be employed in tandem with these works.

VIII. CONCLUSIONS

Heterogeneous memory system is a promising solution for
an efficient memory system; it albeit needs intelligent data
placement. Prior solutions employ either application-agnostic
or application-level data placement. This paper points out
that memory objects within an application exhibit substantial
heterogeneity in their memory access behavior. We exploit this
observation to design an intelligent data placement method
for a heterogeneous memory system. We present MOCA, a
framework for heterogeneous memory systems, which profiles
an application and places each object in a memory module that
best suits that object’s memory access behavior.

ACKNOWLEDGEMENT

We thank Schuyler Eldridge and Nathaniel Michener for
their help on the initial Gem5 framework setup. This work
has been partially supported by NSF grants CCF-1716352,
CAREER-1149773 and CCF-1527301.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” in Proc. Intl. Symp. on Computer Architecture (ISCA),
1996, pp. 90–101.

[2] K. Lim et al., “Disaggregated memory for expansion and sharing in blade
servers,” in Proc. ISCA, 2009, pp. 1–12.

[3] S. Phadke and S. Narayanasamy, “MLP aware heterogeneous memory
system,” in Proc. Design, Automation and Test in Europe (DATE), 2011,
pp. 1–6.

[4] N. Chatterjee et al., “Leveraging heterogeneity in dram main memories
to accelerate critical word access,” in Proc. IEEE/ACM Intl. Symp. on
Microarchitecture (MICRO), 2012, pp. 13–24.

[5] A. Sodani, “Knights landing (knl): 2nd generation intel® xeon phi
processor,” in Proc. IEEE Hot Chips Symposium (HCS), 2015, pp. 1–
24.

[6] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Heteroos: Os
design for heterogeneous memory management in datacenter,” in Proc.
ISCA, 2017, pp. 521–534.

[7] S. P. Olarig, D. J. Koenen, and C. S. Heng, “Method and apparatus for
supporting heterogeneous memory in computer systems,” Mar. 4 2003,
US Patent 6,530,007.

[8] O. Avissar, R. Barua, and D. Stewart, “Heterogeneous memory man-
agement for embedded systems,” in Proc. Intl. Conf. on Compilers,
Architecture, and Synthesis for Embedded Systems, 2001, pp. 34–43.

[9] K. Gai, M. Qiu, and H. Zhao, “Cost-aware multimedia data allocation
for heterogeneous memory using genetic algorithm in cloud computing,”
IEEE Trans. on Cloud Computing, pp. 1–1, 2016.

[10] M. Awasthi et al., “Handling the problems and opportunities posed
by multiple on-chip memory controllers,” in Proc. Intl. Conf. Parallel
Architectures and Compilation Techniques, 2010, pp. 319–330.

[11] J. Macri, “Amd’s next generation gpu and high bandwidth memory
architecture: Fury,” in Proc. HCS, 2015, pp. 1–26.

[12] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[13] S. K. Venkata et al., “Sd-vbs: The san diego vision benchmark suite,” in
Proc. IEEE Intl. Symp. on Workload Characterization, 2009, pp. 55–64.

[14] C. Toal et al., “An RLDRAM II implementation of a 10Gbps shared
packet buffer for network processing,” in Proc. IEEE Conf. on Adaptive
Hardware and Systems, 2007, pp. 613–618.

[15] J. Standard, “High bandwidth memory (HBM) DRAM,” JESD235, 2013.
[16] O. Mutlu, H. Kim, and Y. N. Patt, “Efficient runahead execution: Power-

efficient memory latency tolerance,” IEEE Micro, vol. 26, no. 1, pp. 10–
20, Jan 2006.

[17] F. Pereira, T. Mitchell, and M. Botvinick, “Machine learning classifiers
and fmri: a tutorial overview,” Neuroimage, vol. 45, no. 1, pp. S199–S209,
2009.

[18] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
A benchmark,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2009, pp. 304–311.

[19] M. M. Tikir and J. K. Hollingsworth, “Hardware monitors for dynamic
page migration,” Journal of Parallel and Distributed Computing, vol. 68,
no. 9, pp. 1186–1200, 2008.

[20] P. Conway et al., “Blade computing with the amd opteron processor
(“magny-cours”),” in Proc. HCS, 2009, pp. 1–19.

[21] N. Binkert et al., “The Gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, July 2011.

[22] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[23] S. Li et al., “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. MICRO,
2009, pp. 469–480.

[24] R. Kumar et al., “Single-isa heterogeneous multi-core architectures: The
potential for processor power reduction,” in Proc. MICRO, 2003, pp. 81–
92.

[25] “DDR3 SDRAM power calculator.” [Online]. Available:
https://www.micron.com/products/dram/ddr3-sdram

[26] “LPDDR2 SDRAM power calculator.” [Online]. Available:
http://www.micron.com/products/dram/lpdram

[27] “RLDRAM3 power calculator.” [Online]. Available:
http://www.micron.com/products/dram/rldram-memory

[28] B. Li et al., “Exploring new features of high-bandwidth memory for
gpus,” IEICE Electronics Express, vol. 13, no. 14, pp. 20 160 527–
20 160 527, 2016.

[29] V. Bychkovsky et al., “Learning photographic global tonal adjustment
with a database of input/output image pairs,” in Proc. CVPR, 2011, pp.
97–104.

[30] T. Eilam et al., “Managing the configuration complexity of distributed
applications in internet data centers,” IEEE Communications Magazine,
vol. 44, no. 3, pp. 166–177, 2006.

[31] D. Shen, X. Liu, and F. X. Lin, “Characterizing emerging heterogeneous
memory,” in Proc. Intl. Symp. on Memory Management, 2016, pp. 13–23.

[32] M. Peón-quirós et al., “Placement of linked dynamic data structures
over heterogeneous memories in embedded systems,” ACM Trans. Embed.
Comput. Syst., vol. 14, no. 2, pp. 37:1–37:30, Feb. 2015.

[33] M. R. Meswani et al., “Heterogeneous memory architectures: A hw/sw
approach for mixing die-stacked and off-package memories,” in Proc. Intl.
Symp. on High Performance Computer Architecture, 2015, pp. 126–136.

[34] L. Tran et al., “Heterogeneous memory management for 3D-DRAM
and external DRAM with QoS,” in Proc. Asia and South Pacific Design
Automation Conference, 2013, pp. 663–668.

[35] X. Dong et al., “Simple but effective heterogeneous main memory
with on-chip memory controller support,” in Proc. High Performance
Computing, Networking, Storage and Analysis, 2010, pp. 1–11.

[36] M. Lee, V. Gupta, and K. Schwan, “Software-controlled transparent
management of heterogeneous memory resources in virtualized systems,”
in Proc. Memory Systems Performance and Correctness, 2013, pp. 1–6.

[37] S. R. Dulloor et al., “Data tiering in heterogeneous memory systems,”
in Proc. European Conf. on Computer Systems, 2016, pp. 1–16.

[38] M. Pavlovic, N. Puzovic, and A. Ramirez, “Data placement in hpc
architectures with heterogeneous off-chip memory,” in Proc. IEEE Intl.
Conf. on Computer Design, 2013, pp. 193–200.

[39] A. Agarwal et al., “Page placement strategies for gpus within heteroge-
neous memory systems,” in Proc. Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2015, pp. 607–618.

[40] C.-K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proc. ACM Conf. on Programming
Language Design and Implementation, 2005, pp. 190–200.

