
Task Mapping on a Dragonfly Supercomputer
Ozan Tuncer

Boston University
Boston, MA, USA

otuncer@bu.edu

Yijia Zhang
Boston University

Boston, MA, USA
zhangyj@bu.edu

Vitus J. Leung
Sandia National Laboratories

Albuquerque, NM, USA
vjleung@sandia.gov

Ayse K. Coskun
Boston University

Boston, MA, USA
acoskun@bu.edu

Abstract—The dragonfly network topology has recently gained
traction in the design of high performance computing (HPC)
systems and has been implemented in large-scale supercomputers.
The impact of task mapping, i.e., placement of MPI ranks
onto compute cores, on the communication performance of
applications on dragonfly networks has not been comprehensively
investigated on real large-scale systems. This paper demonstrates
that task mapping affects the communication overhead signifi-
cantly in dragonflies and the magnitude of this effect is sensitive
to the application, job size, and the OpenMP settings. Among the
three task mapping algorithms we study (in-order, random, and
recursive coordinate bisection), selecting a suitable task mapper
reduces application communication time by up to 47%.

I. INTRODUCTION
Optimizing performance continues to be key objective in

HPC, and the role of inter-process communication in perfor-
mance calls for strategies to reduce communication latency
by ensuring data locality. Task mapping, i.e., the process of
placing the MPI ranks of a parallel program onto the com-
pute cores designated by the system software, can effectively
improve locality. Recent work has shown 34% application
running time reduction by selecting a better task mapping
method [1], resulting in both higher resource utilization and
lower energy consumption.

Dragonfly is an emerging hierarchical network topology
for HPC systems due to its low diameter and high bisection
bandwidth [2]. Dragonfly is composed of groups of routers
which act as high-radix virtual routers connected to compute
nodes. Prior work has studied task mapping on dragonflies
mostly through simulations [3], [4], [5], [6]. Using small-scale
experiments (up to 256 nodes) on a real Cray XC30 system,
a recent study concluded that the impact of task mapping is
minimal on dragonflies [7].

In this paper, we experiment with three task mapping algo-
rithms, in-order, random, and recursive coordinate bisection
(RCB), on a real large-scale dragonfly system, and demonstrate
that the impact of task mapping on communication overhead
becomes significant for large-scale dragonfly networks.

II. EXPERIMENTAL METHODOLOGY
We assess the impact of task mapping on dragonfly sys-

tems using the Trinity supercomputer1, two mini-applications
developed by the Department of Energy community for per-
formance evaluation in HPC systems, and three task mapping
algorithms.

1Trinity supercomputer: http://www.lanl.gov/projects/trinity/

A. Target System

Trinity is a 8.1PFlop/s, 4.2MW supercomputer with a Cray
XC30 architecture. It consists of over 9000 compute nodes
with 32 processing cores per node, and is the tenth most
powerful supercomputer in the June 2017 Top500 list2. Trinity
uses a dragonfly topology with 26 groups, each with 384
nodes. The nodes within a group are connected to each
other with flattened butterfly topology, whereas the groups are
connected to each other with all-to-all topology.

B. Applications

We use the Mantevo benchmark suite [8], which is designed
for performance evaluation and network scaling studies and
represents the computational cores of various HPC applica-
tions. We select two mini-applications that are sensitive to
task mapping in torus networks: MiniGhost, which represents
modeling of complex multi-dimensional problems such as
large deformations and/or strong shocks, and MiniMD, which
is a proxy for the force computations in molecular dynamics
applications. While both applications focuses on a 3D prob-
lem with nearest-neighbor communication, MiniMD also uses
MPI_Allreduce for FFT calculations and sends messages
to the MPI ranks that are not nearest neighbors but a few
hops away from the source rank in the problem geometry, in
a single time step.

C. Task Mapping Algorithms

We use the following three task mapping approaches:
• In-order is the default task mapper. It assigns the MPI

ranks in-order to the cores of the allocated compute
nodes, which are sorted by the allocation order.

• Random randomly assigns the MPI ranks to cores.
• RCB [1] recursively splits the allocated system nodes as

well as the MPI ranks of a given 3-D application into
equal halves based on the x, y, and z coordinates of the
nodes/ranks. In both network space and the application
space, the split is performed on the longest dimension. At
the end of recursive splits, the remaining rank is mapped
to the remaining core. RCB is originally built for 3-D
mesh topologies. To adapt this algorithm to dragonfly,
we use the group number of a compute node as its z-
coordinate, and the row and column numbers within the
group as the x- and y-coordinates of that node. While

2Top 500 Supercomputer Sites: http://www.top500.org/



our adapted version loses some information on the exact
dragonfly topology such as the global link locations, it
can reduce the distance messages must travel.

D. Experiments Conducted
We run the selected applications on 1, 2, 4, . . . , 4096 nodes.

For each application size (i.e., number of nodes), we repeat
our experiments 8 times using different sets of nodes that are
assigned by the system software depending on the system state.
For each node allocation, we fully utilize the given nodes by
running one thread on each core using 6 different openMP
settings, where we use 1, 2, 4, . . . , 32 threads per MPI rank.
For each OpenMP setting, we re-run the same application
using different task mappers.

III. RESULTS
Figure 1 shows the time spent during MPI communication

as reported by the applications. For each set of parameters,
the communication time with the task mappers are normalized
with respect to the in-order (default) mapper. To eliminate the
impact of node allocation on the results, we show the median
communication time (out of the 8 runs). In our experiments,
the mapping overhead is negligible compared to application
communication times.

Our results demonstrate that task mapping can change
the communication time significantly when running parallel
programs on dragonfly networks. In Fig. 1(a), RCB mapper
reduces the communication time by 47% when MiniGhost is
running on 128K threads with 1 thread per rank, whereas in
Fig. 1(c), random mapper increases the communication time
by 210% when MiniMD is running on 64K threads with the
OpenMP setting as 1 thread per rank.

Because the two applications differ in their communication
patterns, they benefit from different task mapping strategies. In
Fig. 1(a) when running MiniGhost, RCB is up to 47% better
than in-order mapper; meanwhile in Fig. 1(c) when running
MiniMD, in-order mapper is always better than the others.

We find that the task mapper performance is also sensitive
to application scale. Along the horizontal axis in Fig. 1(a), we
see that the normalized communication time of RCB mapper
varies more than 134%, from 0.53 to 1.25. RCB tends to
perform worse than in-order mapper with less than 8K threads
(corresponds to 256 nodes in our system), whereas with more
than 8K threads, RCB turns out to be the best choice among
the three task mappers. These results show that conclusions
from small-scale experiments may not be extended to large-
scale experiments.

Another factor that affects the impact of task mapping is
the OpenMP settings (i.e., number of threads per rank). While
the performance difference between task mappers is less than
7% in Fig. 1(b), with a different threads-per-rank setting in
Fig. 1(a), the performance difference reaches up to 47%.

ACKNOWLEDGMENT
This work has been partially funded by Sandia National

Laboratories (SNL). SNL is a multimission laboratory man-
aged and operated by National Technology and Engineering

(a) MiniGhost with 1 thread per rank

(b) MiniGhost with 32 threads per rank

(c) MiniMD with 1 thread per rank

(d) MiniMD with 32 threads per rank

Fig. 1: Application communication time normalized with
respect to the in-order task mapper. The results show that task
mapping affects the communication overhead significantly.

Solutions of Sandia, LLC., a wholly owned subsidiary of Hon-
eywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-
NA0003525.

REFERENCES

[1] M. Deveci et al., “Exploiting geometric partitioning in task mapping for
parallel computers,” in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, 2014, pp. 27–36.

[2] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in ACM SIGARCH Computer Architecture
News, vol. 36, no. 3. IEEE Computer Society, 2008, pp. 77–88.

[3] V. T. Chakaravarthy et al., “Mapping strategies for the PERCS architec-
ture,” Intl. Conf. on High Performance Computing, (HiPC), 2012.

[4] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” Intl. Conf. for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–11, 2011.

[5] B. Prisacari et al., “Efficient task placement and routing in dragonfly
networks,” in Proceedings of the 23rd ACM International Symposium on
High-Performance Parallel and Distributed Computing. ACM, 2014.

[6] F. Kaplan et al., “Unveiling the Interplay Between Global Link Arrange-
ments and Network Management Algorithms on Dragonfly Networks,”
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, 2017.

[7] R. D. Budiardja, L. Crosby, and H. You, “Effect of rank placement on
cray xc30 communication cost,” in The Cray User Group Meeting, 2013.

[8] M. A. Heroux et al., “Improving performance via mini-applications,”
Sandia Nat. Lab., Tech. Rep. SAND2009-5574, vol. 3, 2009.


