
30

Scale & Cap: Scaling-Aware Resource Management for Consolidated
Multi-threaded Applications

CAN HANKENDI and AYSE KIVILCIM COSKUN, Boston University

As the number of cores per server node increases, designing multi-threaded applications has become essen-
tial to efficiently utilize the available hardware parallelism. Many application domains have started to adopt
multi-threaded programming; thus, efficient management of multi-threaded applications has become a sig-
nificant research problem. Efficient execution of multi-threaded workloads on cloud environments, where
applications are often consolidated by means of virtualization, relies on understanding the multi-threaded
specific characteristics of the applications. Furthermore, energy cost and power delivery limitations require
data center server nodes to work under power caps, which bring additional challenges to runtime man-
agement of consolidated multi-threaded applications. This article proposes a dynamic resource allocation
technique for consolidated multi-threaded applications for power-constrained environments. Our technique
takes into account application characteristics specific to multi-threaded applications, such as power and
performance scaling, to make resource distribution decisions at runtime to improve the overall performance,
while accurately tracking dynamic power caps. We implement and evaluate our technique on state-of-the-art
servers and show that the proposed technique improves the application performance by up to 21% under
power caps compared to a default resource manager.

CCS Concepts: � Hardware → Platform power issues; � Software and its engineering → Designing
software;

Additional Key Words and Phrases: Multi-threaded, multi-core, power, energy efficiency, virtual machines

ACM Reference Format:
Can Hankendi and Ayse Kivilcim Coskun. 2017. Scale & cap: Scaling-aware resource management for
consolidated multi-threaded applications. ACM Trans. Des. Autom. Electron. Syst. 22, 2, Article 30 (January
2017), 22 pages.
DOI: http://dx.doi.org/10.1145/2994145

1. INTRODUCTION

As the demand on the cloud continuously increases, the efficient use of power and
compute resources has become increasingly important. It is predicted that 70% of
all workloads will be executed on cloud resources by 2015 [Cisco 2013]. In order to
meet the increasing user demand, the number of servers installed on cloud resources
has been tripled in the last decade [Borovick 2011]. Although increasing the number
of servers can boost the compute capacity, power delivery and financial constraints
limit the maximum achievable performance. In order to comply with power and cost
constraints, power-capping techniques have become an essential feature for any data
center [Cochran et al. 2011]. Independent system operators (ISOs) have started offering

Authors’ addresses: C. Hankendi and A. K. Coskun, 8 St. Mary’s St. Boston, MA, 02215; emails: {hankendi,
acoskun}@bu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-4309/2017/01-ART30 $15.00
DOI: http://dx.doi.org/10.1145/2994145

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

http://dx.doi.org/10.1145/2994145
http://dx.doi.org/10.1145/2994145

30:2 C. Hankendi and A. K. Coskun

significant cost savings for data centers that can dynamically comply with changing
power constraints [Chen et al. 2013], further motivating dynamic power capping.

In addition to the limitations due to power delivery, the management of increasing
the number of users becomes significantly complex for large-scale computing clusters.
Therefore, virtualization has become another important standard for large-scale com-
puting systems, as it provides flexible and efficient management of cloud resources
through seamless consolidation. Consolidating multiple virtual machines (VMs) al-
lows increasing overall utilization of the cloud resources, which significantly reduces
the number of active server nodes that is required to meet the quality-of-service (QoS)
requirements [Beloglazov and Buyya 2010]. However, consolidation brings additional
challenges to cloud management. Consolidating multiple VMs on a single server may
lead to increased resource contention, which, in turn, can hurt the performance. In order
to reduce the resource contention due to consolidation, state-of-the-art VM placement
techniques use metrics that measure the memory activity to find the best matching
VMs that minimally interfere with each other’s execution [Dhiman and Rosing 2007].

Although placement techniques are critically important to minimize the resource
contention due to consolidation, they lack the ability to manage the available resources
on a given server to optimize the performance or comply with the power constraints.
While there is a significant amount of work in literature to address the consolidation
and resource distribution problem under power constraints for single-threaded work-
loads [Nathuji and Schwan 2008; Hankendi et al. 2013; Reda et al. 2012], the emergence
of multi-threaded workloads on cloud resources and related challenges require these
techniques to be revisited. Ideally, multi-threaded applications are designed to exhibit
linear performance improvement and power consumption with increasing number of
threads when a sufficient amount of resources are available. However, communica-
tion and synchronization overheads and microarchitectural bottlenecks might lead to
sublinear performance improvement, which needs to be considered while making re-
source allocation decisions. For example, allocating more resources to an application
with higher power efficiency may improve overall throughput in a consolidated server,
assuming equivalent priorities and QoS constraints for the applications sharing the
server.

In this article, we propose a dynamic resource allocation technique for consolidated
environments that run multi-threaded applications while operating under power caps.
Our work differentiates from prior research allocation methods [Hankendi et al. 2013;
Dhiman and Rosing 2007; Isci et al. 2010] by (1) jointly considering the application
power and performance scalability information to make decisions, (2) introducing a
formal linear programming–based solution that is able to manage various numbers of
VMs under a wide range of power and performance constraints, and (3) demonstrating
the relative benefits of VM placement and server-level resource allocation algorithms
under power-constrained operation. We implement our runtime resource allocation
technique on state-of-the-art servers with multi-core processors. Our specific contribu-
tions are as follows:

—We analyze existing dynamic resource allocation techniques [Isci et al. 2010; Dhiman
and Rosing 2007; Hankendi et al. 2013] and show their shortcomings for multi-
threaded applications.

—We propose a dynamic resource allocation technique that incorporates both power
and performance scaling characteristics of multi-threaded applications to improve
the overall performance under power caps, while providing QoS guarantees. We
implement a linear programming (LP)–based solution on a separate management
node to make resource allocation decisions at runtime on multiple state-of-the-art
multi-core servers.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:3

—We evaluate our technique together with a set of modern placement algorithms and
identify the performance benefits due to placement and resource allocation decisions.
Our results show that our technique improves the performance by up to 24% with
respect to the default resource manager of the hypervisor, while meeting the power
constraints at 98% of the time within a ±2W error range.

Section 2 presents two case studies that motivate the idea of jointly using power
and performance scalability information to improve performance under power caps.
Section 3 introduces Scale & Cap, which is a linear programming–based formal so-
lution for resource allocation problem under power and performance constraints. Sec-
tion 4 provides the details of our experimental setup. Section 5 presents the benefits
of Scale & Cap when integrated with state-of-the-art VM placement techniques. Sec-
tion 6 discusses the state-of-the-art solutions for VM placement, resource allocation,
and power capping, and Section 7 concludes the article.

2. IMPACT OF APPLICATION POWER AND PERFORMANCE SCALABILITY
ON CONSOLIDATION EFFICIENCY

The total amount of available compute resources on a server varies over time due to
the power cap given to the server, thermal emergencies, user demands, and application
types. Traditionally, CPU utilization has been used as the metric to determine the
resource distribution ratio across single-threaded applications [Nathuji et al. 2009].
By using the CPU utilization metric to distribute the resources proportionally, these
techniques aim to minimize the performance degradation while maximizing the server
utilization. However, with the emergence of multi-threaded applications, using a single
dimensional metric, such as CPU utilization, becomes inefficient to capture the multi-
threaded specific characteristics. In this section, we first present two motivational
examples to show the need for a novel approach to the resource allocation problem
for multi-threaded applications. We then introduce our dynamic resource allocation
technique that jointly uses the power and performance characteristics to capture the
multi-threaded characteristics.

2.1. Is CPU Utilization Enough?

CPU utilization metric measures the percentage of busy cycles of a specific period
of time. Traditional resource allocation techniques distribute the available compute
resources proportional to the CPU utilization levels of the consolidated applications
[Xen 2011; VMware 2013]. Although, for single-threaded applications, CPU utilization
can capture all CPU requirements of an application; for multi-threaded applications,
we need to incorporate an additional dimension, which is the performance scalability.
Performance scalability can be defined as the characteristics of a multi-threaded ap-
plication that reflect how the performance of the application is increasing (i.e., scaling)
with increased amount of resources. Ideally, all multi-threaded applications are de-
signed to scale perfectly with an increasing amount of resources (i.e., 2x performance
improvement for 2x increase in allocated resources). However, due to various multi-
threaded application bottlenecks, such as communication, synchronization, serial code,
and the like, most of the multi-threaded applications do not scale linearly with an in-
creasing amount of resources. Therefore, each multi-threaded application has a specific
performance/resource curve that reflects its performance scalability.

On the ESXi hypervisor, the total available computational capacity of a server node
is represented in MHz, where the total amount of CPU resources, R, is equal to the
number of physical CPUs multiplied by the maximum core frequency. CPU resource
usage of a VM can be constrained by adjusting the CPU resource limits on the ESXi
hypervisor. Figure 1 shows the QoS scaling of four applications from PARSEC and

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:4 C. Hankendi and A. K. Coskun

Fig. 1. Performance scaling of some of the PARSEC benchmarks and hadoop from Cloudsuit as a function
of CPU resource limits.

Cloudsuite as a function of the CPU resources (in MHz). As Figure 1 shows, bodytrack
cannot utilize all the available hardware resources; therefore, its QoS does not improve
beyond a certain amount of CPU resources (i.e., 15,970MHz). In addition, reducing the
CPU resources has a larger performance impact on the poorly scaling VMs (e.g., can-
neal, bodytrack) at lower CPU resource limits. Therefore, considering the performance
scalability while making resource allocation decisions is expected to have a substantial
impact on the overall performance of the system.

Similar to the performance scalability characteristics, each application has a dis-
tinct peak power consumption and a power weight, wi, which represents the power
consumed at one unit of computing capacity (i.e., MHz in the virtual environment),
while running application i. In Figure 2, we show the peak power consumption and
the power weights of 14 applications and the average value for all applications. In
order to obtain the peak power values, we run the applications alone with maximum
amount of thread counts that are equal to the total core count for each server (i.e., 12
threads for the AMD-based and 8 threads for the Intel-based server) with the default
resource manager. As the figure shows, both peak power and power weight values show
significant variation. Similar to our argument for performance scalability, resource dis-
tribution without considering the power weights of the individual applications can lead
to inefficient resource distribution by not being able to favor more power-efficient appli-
cations. In order to better illustrate our observations, we present two case studies that
demonstrate the benefits of considering performance scalability and power weights
while making resource distribution decisions.

2.2. Case Study #1: Applications with Distinct Performance and Power Scaling

In this example, we compare the benefits of various resource distribution approaches
on two applications that do not exhibit only distinct resource requirements (i.e., perfor-
mance scaling), but also distinct power characteristics. Such an application-pair from
PARSEC suite is canneal and facesim. The performance of canneal can scale almost up
to 12-threads, while facesim’s performance increase saturates beyond 8-threads. On the
contrary, facesim is a more power-hungry application when compared to canneal due

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:5

Fig. 2. Peak power (left axis, red bars) and power weight (right axis, blue bars) values for four PARSEC
benchmarks and the PARSEC average (right-most bars) measured on AMD Opteron 6172.

Fig. 3. Total QoS comparison for consolidating (a) canneal-facesim and (b) blackscholes-swaptions on
AMD Opteron 6172 with various power caps for the utilization-based approach (baseline), naive approach
(only scaling-aware), and power-aware (scaling and power-aware) approach. Power-awareness brings up to
18% and 11% QoS improvements over the scaling-only approach.

to its higher Instruction-per-cycle (IPC) [Hankendi and Coskun 2012]. These contra-
dicting properties play a significant role while making resource distribution decisions.
In order to illustrate this, we compare three algorithms: (1) utilization-aware [Nathuji
and Schwan 2008], (2) only performance scalability-aware [Hankendi et al. 2013], and
(3) power and performance scalability-aware in Figure 3(a). The utilization-aware ap-
proach proportionally distributes the total available amount of resources based on
the CPU utilization of each VM by calculating a weight value (wi) as shown in Algo-
rithm 1. The scaling-aware resource distribution first estimates the CPU requirements
of each VM and then prioritizes the ones with smaller requirements to maximize the
overall QoS of the server, as shown in Algorithm 2. On the other hand, the power
and performance scaling-aware approach maximizes the QoS for given power weights,
CPU demands, power constraints, and the total amount of available resources us-
ing a linear programming–based solver, which is explained in detail in Section 3. As
the power-aware approach uses power weights as an additional metric, it can further
improve the overall QoS by guiding its decision based on both resource and power
constraints.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:6 C. Hankendi and A. K. Coskun

ALGORITHM 1: Utilization-aware Resource Distribution
Inputs:
U [n] // Utilization Array
Rk // Total amount of available resources
Output: ri
W = sum(U [n]);
for i = 1 to n;
wi = U [i]/W
ri = Rk ∗ wi
end

ALGORITHM 2: Scalability-aware Resource Distribution
Inputs:
C[n] // CPU Demand Array
Rk // Total amount of available resources
Output: ri
sort: C[n] for i = 1 to n;
if Rk > 0 then

ri = C[i];
Rk = Rk − ri;

else
return

end
end

2.3. Case Study #2: Applications with Similar Performance but Distinct Power Scaling

In order to show the benefits of adding power considerations to the resource distribution
technique, we evaluate two applications from PARSEC benchmark suite that exhibit
similar performance scalability characteristics, but distinct power requirements, such
as blackscholes and swaptions. Although both of these applications can scale up to
12-threads, swaptions consumes significantly higher power than blackscholes (e.g.,
151W vs. 172W). We use the same baselines as the previous case study.

In Figure 3(b), we show the total QoS of consolidating blackscholes and swaptions
under various power caps for three approaches: power and scaling-aware, only scaling-
aware, and utilization-based (baseline). As Figure 3(b) shows, utilization-aware and
scaling-aware techniques perform exactly the same, as the performance scalability of
these two applications can not be distinguished. Therefore, only scaling-aware resource
distribution equally favors these two applications, as they have similar performance
scaling capacity. On the other hand, the power and scaling-aware approach favors the
one with lower power weight value. The power and scaling-aware approach improves
the total QoS up to 11% in comparison to only scaling-aware and utilization-based
approaches. As blackscholes and swaptions have very similar performance scaling
behavior, scaling-awareness does not bring any benefits over the utilization-based ap-
proach. This also demonstrates that the 11% performance improvement is solely due
to power-awareness.

3. SCALE & CAP: LINEAR PROGRAMMING–BASED DYNAMIC RESOURCE ALLOCATION

Based on our observations in the previous section, we conclude that the power efficiency
and performance scaling characteristics of parallel applications play a significant role.
In order to incorporate our findings into a formal solution, we formulate the problem
as a linear programming problem. The main goal of the solution provided here is to
maximize the total QoS of consolidated applications without violating the individual

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:7

QoS requirements of the applications under power constraints through resource
allocation. We first formulate the problem of maximizing QoS for n number of VMs,
then explain how to incorporate power efficiencies of individual applications into our
linear programming solution.

We define the maximum QoS as the performance (i.e., runtime) of an application
when running alone on the target system. This measurement gives us the upper-bound
for the performance of each application, which we use as the maximum QoS of 1. Any
performance loss is reflected as the percentage of the maximum QoS performance. The
problem of maximizing QoS of a server when consolidating m applications with QoS
values on a single physical server can be represented as follows.

maximize
m∑

i=1

qi

subject to 0 ≤ qi ≤ 1, i = 1, . . . , m.

(1)

For an application i, the achievable maximum QoS (qi) is a function of the resource
demand, (di), and the total amount of resources allocated, (si). In order to achieve
the maximum QoS, the amount of supplied resources (si) should not be lower than
the resource demand of the application (di). Therefore, we can define the QoS of an
application, i, as a function of resource demand (di) and the allocated/supplied resources
(si). For the case where di ≤ si, QoS is 1, as the demand is met by the supply. Therefore,
our focus is to solve the resource distribution problem, where resources are limited
(di ≥ si). For such cases, QoS of the application i, qi is described as follows:

qi = si/di

subject to 0 ≤ si ≤ di ≤ Rk.
(2)

Rk is the total resource capacity of a server, k. For consolidating i = 1, . . . , m number
of applications on a server, k, Equation (1) (i.e., the QoS maximization problem) becomes

maximize
m∑

i=1

si/di

subject to 0 ≤ si ≤ di ≤ Rk.

(3)

In order to be able to guarantee certain performance requirements, we need to be able
to enforce lower bounds for the QoS of each application. We can use lower-bound for
minimum performance guarantees and upper-bound for maximum performance limi-
tations, as data centers may provide incentives to users for bounding the maximum
performance. Therefore, our problem becomes a constrained QoS maximization prob-
lem, which can be represented by putting lower and upper bound constraints on qi (i.e.,
si/di) of the applications, such that

maximize
m∑

i=1

si/di

subject to 0 ≤ si ≤ di ≤ Rk

li ≤ qi ≤ ui.

(4)

Based on the equations just given, we can convert the problem into a linear-
programming problem as follows:

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:8 C. Hankendi and A. K. Coskun

Fig. 4. LP-solution for resource distribution across two applications (m = 2) with various lower and upper
bounds for a given amount of resources Rk.

Find q that maximizes
f (q) = q1 + q2 + . . . qm

subject to
m∑

i=1

diqi ≤ Rmax

li ≤ qi ≤ ui.

(5)

Solutions of this LP-problem provide us the q vector, which consists of a set of possible
qn values, q1, q2, . . . qm, to assign for each application, i, to maximize the f (q) (i.e., total
QoS) under a total resource capacity constraint, Rmax. For an unlimited amount of
resources, Rmax, the maximum value of f (q) would be m, as q1, q2, . . . , qm = 1. For an
application, i, with a total resource demand di, the total amount of resources required
to provide a QoS of qi is, si = diqi. From the LP solution, we can derive the necessary
amount of resources, si, that maximizes the total QoS of the system (i.e., f (x)). Figure 4
shows the LP-solution for bodytrack and blackscholes benchmarks under various lower
and upper QoS constraints.

3.1. Maximizing Server-QoS with Power Constraints

For the case where there are power constraints, the amount of resources needs to be
reduced to Rk, where Rk ≤ Rmax. In order to determine the value of Rk, our runtime
system utilizes the power feedback, Pt, and the system utilization measurement win-
dow, R(t), which is the running average of the last four resource demand estimates,
R[tn−3, . . . , tn]. For a given time, t, and power constraint at time t, Pcap(t), it is possible
to derive the Rk(t) by using the linear correlation between R(t) and P(t). Based on
our experimental results and reported results from prior work, we assume that power
constraints on the system are linear and can be derived at runtime through power
measurement feedback. As a naive approach that allows us to meet power constraints
through modifying Rk, we simply compute Rk(t) based on the P(t) for a given power
constraint, Pcap(t) by

Rk(t) = Pc,k(t)/Pk(t − 1) ∗ Rk(t − 1) (6)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:9

Table I. Definitions of the Abbreviations Used in the LP Solution

Abbreviation Definition
Pk Power consumption of a server, k.
pi Power consumption estimation of an application, i.
Rk Total amount of resources allocated to a server.
ri Total amount of resources allocated to an application, i.
Wk Power weight of a consolidated application set, i.
wi Power weight of an individual application, i.
ui Performance upper bound for application, i.
li Performance lower bound for application, i.
k Server index
i Workload index

By using the most recent power weight Wk(t − 1), it is possible to find an Rk(t) that
consumes Pk(t) ≤ Pc,k(t). After deriving the Rk(t) value to be enforced on the server,
the QoS maximization problem can be solved by solving the problem represented in
Equation (5). However, this approach simply uses a lumped value, Wk, for modeling
the power/performance relation of a set of applications, where each individual applica-
tion has a distinct power weight value, wi. Therefore, any change on ri has a different
impact on pi, and therefore Pk, where, Pk = ∑m

i=1 pi. Ignoring the power weight dif-
ferences across applications leads to inefficient resource distribution as illustrated in
Section 2.3. In order to derive the power weights of the applications, we use VM-level
power estimations on the Intel-based server. As VM-level power estimations are not
available for the AMD-based server, we use offline data for the AMD-based server.
For the Intel-based server, power weights (wi) values can be derived at runtime by
PVMi (t)/RVMi . We incorporate the power weight (wi) information into the LP solution
as shown in Equation (7).

f (q) = q1 + q2 + . . . qm

subject to
m∑

i=1

si ≤ Rk

m∑

i=1

si ∗ wi ≤ Pcap

li ≤ qi ≤ ui.

(7)

As the power weight value (wi) represents the power consumed-per-MHz computation,
we estimate the power consumption by summing up the si ∗ wi multiplication in Equa-
tion (7). By enforcing an additional constraint in the form of power constraints, we
target to use the available resources and power as efficiently as possible. We list all
variables and their definitions in Table I.

3.2. Runtime Implementation of Scale & Cap

We implement the LP solution in MATLAB and compile it as an executable file. In order
to simplify the implementation, we convert the QoS maximization problem (maxf (n))
to a minimization problem (minf (−n)). We then use linprog MATLAB routine to solve
the minimization problem to find the q. The inputs to the MATLAB routine are the
user constraints for upper and lower-bounds, respectively ui and li, power constraints
(Pcap), power measurements from the power meter (Pk), and VM-level metrics from the
hypervisor to derive wi and ri values. We show the overall flow of the runtime imple-
mentation in Figure 5. We evaluate runtime resource allocation techniques together

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:10 C. Hankendi and A. K. Coskun

Fig. 5. Illustration of the runtime implementation. Runtime implementation consists of two stages: place-
ment and resource allocation. At runtime, resource allocation decisions are determined through real-time
power and performance monitoring.

with placement algorithms. We use offline workload characteristics to determine the
VM placement decisions that are guided by the algorithms explained in Section 5.2. On
the other hand, resource allocation decisions are determined at runtime using real-time
power and VM-level performance monitoring.

We compiled the MATLAB module as a C library to call on a separate management
node at runtime that communicates with the host through the VMware vCLI Perl API
to change the allocated resources for each VM [VMware 2015]. The main control loop
of the implementation runs every 2 seconds, which is the same as the esxtop sampling
rate. Changing resource limits at this granularity imposes a negligible performance
overhead on the applications. The LP solution routine takes between 0.2 to 0.4 seconds
to return the updated ri values. The API-based communication with the hypervisor
completes its function within the range of 0.1 to 0.3 seconds. Therefore, within a 2
second window, the runtime implementation can finalize its decision and action. For
faster control, it is also possible to implement the LP solution with alternative libraries
and/or languages. However, note that for large-scale systems, the monitoring period is
reported to be over 20 seconds [VMware 2013].

4. EXPERIMENTAL SETUP

As our main target is managing multi-core environments, our experimental setup
includes two state-of-the-art servers: one with Intel Xeon E5 and the other with AMD
Magny Cours (Opteron 6172) multi-core processors. Intel Xeon E5-2603 processors
consist of 8 cores. Each core has 32KB of private L1 and 256KB of private L2 cache.
All 8 cores share 10MB of L3 cache and 32GB memory. Magny Cours consists of two
6-core dies attached together on a single chip. Each 6-core die includes a 12MB shared
L3 cache, and each core has a 512KB private L2 cache. All cores also share a 16GB
off-chip memory. We virtualize both systems with the VMware ESXi 5.5 hypervisor.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:11

We create VMs with multiple vCPUs (SMP VMs) such that each VM accommodates a
multi-threaded application. Each VM runs Ubuntu 12.04 as the guest OS.

We run all 13 applications from the PARSEC multi-threaded benchmark suite
[Bienia et al. 2008], 4 applications from Cloudsuite [Ferdman and et al. 2012], and
3 applications from the BigDataBench benchmark suite [Wang et al. 2014] in our ex-
periments, as a representative set of multi-threaded workloads on the cloud resources.
We track application-specific performance metrics for the PARSEC benchmarks by
utilizing the Application Heartbeats framework [Hoffmann et al. 2011]. CloudSuite
applications report application-specific performance without requiring a modification
to the source code. We choose to evaluate application-specific performance metrics, be-
cause instruction count–based performance metrics do not always provide meaningful
performance feedback to the user. For instance, for image processing applications (e.g.,
bodytrack) the QoS metric is frames-per-second (FPS), whereas the QoS metric for the
option trading application (e.g., blackscholes) is the number of options. We report the
relative QoS for each application, where we define the maximum QoS of an application
(i.e., QoS=1) as the case where the application is running alone with the maximum
amount of available CPU resources (e.g., maximum number of cores, no resource limits
imposed by the hypervisor).

To measure VM-level CPU metrics, we utilize the esxtop utility that is available in
the ESXi hypervisor. We sample the VM-level metrics every 2 seconds, which is the
maximum sampling rate for esxtop. We measure the system power by using a Wattsup
PRO power meter with a 1 second sampling rate. As the total system power determines
the electricity cost of a server, we focus on the system power rather than the component
power (i.e., processor, disk, etc.). The resource allocation decisions are handled by the
hypervisor and the OS-level tools, as described in Section 3.

In all of our experiments, we only evaluate the parallel phases of the applications, as
the parallel phase of multi-threaded applications dominates the application execution
time in real-life clusters. We implement a consolidation management module that
synchronizes the starting point of the parallel phases of the applications [Hankendi
and Coskun 2012] and collects performance data only for the parallel phases, until one
of the applications’ parallel phases finishes.

5. EXPERIMENTAL RESULTS

In this section, we quantify the benefits of power and performance scaling-aware re-
source distribution across multiple VMs. We compare our technique with previously
proposed resource distribution policies and present the performance improvements
under various power caps. In addition to comparison among resource distribution
techniques, we also compare the benefits from placement and resource distribution
techniques to gain insights about the interaction as well as to provide quantitative
comparisons between two resource management schemes.

5.1. Evaluating Resource Allocation Techniques

In order to quantify the benefits of our resource distribution technique, we choose
three approaches that are already implemented or proposed in prior work, namely,
the default ESXi manager, demand proportional distribution, and performance scal-
ing proportional resource distribution [Hankendi et al. 2013]. We briefly explain each
approach as follows:

Baseline: Our baseline case for all experiments is the policy where we allocate equal
numbers of cores to numbers of threads requested by the user. We set hard limits
across VMs by using CPU resource limits, which prevents dynamic adjustment of
under-utilized resources.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:12 C. Hankendi and A. K. Coskun

Default Manager (ESXi): The default manager allocates CPU resources based on the
requested resource limits or reservations. Resource limits are hard constraints that
can not be modified by the manager. On the other hand, resource reservations are soft
constraints, such that the resources that are not utilized can be lent to other VMs by
the ESXi manager. Therefore, we reserve n number of vCPUs for n number of threads
requested for each VM. In this scenario, the default manager can lend any unused CPU
resources to other VMs, but can never limit the VM usage.
Demand proportional: Demand metric for a workload has been defined as the max-
imum amount of utilization of the system for a given number of threads. Demand pro-
portional policy distributes the available resources across VMs proportional to their
demand estimations.
Scaling priority: Similar to the demand proportional approach, scaling priority ap-
proach uses the demand metric for all VMs to make resource distribution decisions.
However, this technique favors the higher demand workloads (i.e., better scaling ones)
over the lower demand ones, rather than proportionally distributing the available
resources.
Proposed: The proposed technique incorporates both the scalability estimations
through demand metric and the power efficiency through MHz/W metric. The pro-
posed approach utilizes these two measurements to solve a maximization problem
using linear programming, as explained in Section 3.

5.2. Placement Algorithms

We focus on three different placement techniques that are previously proposed to im-
prove performance of consolidated environments, namely memory-based, similarity-
based, and demand-based placement algorithms. The main idea behind all three place-
ment algorithms is reducing the contention that might occur when consolidating mul-
tiple workloads, thus improving the performance. Each of these algorithms uses a
different metric as a proxy to evaluate the potential contention. The goal is to create a
balanced resource consumption across all VMs to improve the overall performance.

For evaluating the placement algorithms, we first collect the necessary measure-
ments for each benchmark when they are executed alone and use offline data while
making placement decisions. In Algorithm 3, we show the pseudo-code for the memory-
based placement algorithm. Algorithm 3 first sorts all the benchmarks in the workload
queue based on the last-level cache miss rates, which can be used as an indicator of the
memory accesses. As a next step, Algorithm 3 starts grouping the benchmarks starting
from the top of the list, then the bottom of the list, and then progresses through the
list until the total number of threads or the total utilization of the benchmark group
does not exceed predetermined threshold values.

Similarly, the demand-based algorithm applies the same idea using the demand met-
ric, which is a virtualized environment specific metric. ESXi hypervisor provides VM-
level metrics to pinpoint the CPU resource usage and bottlenecks. Resource demand of
a VM can be estimated by adding these two metrics from esxtop.

RUN: The percentage of total schedule time of the VM, which excludes the system time
(%UTIL = %RUN + %SYS).
READY: The percentage of time that the VM is ready to run, but not scheduled. This
metric implies that the application will be able to utilize the CPU if more resources
were allocated to the VM. Therefore, READY metric can be utilized to estimate maxi-
mum utilization level, which reflects the performance scalability characteristics of the
applications.

By balancing the demand across the VM group, it is possible to reduce performance
degradation due to CPU contention. These two placement techniques, memory and

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:13

ALGORITHM 3: Balanced Memory Placement
Input: Wij // Workload Matrix
Output: VM mapping
initialization;
k = 1;
sort(Wij .memaccess) // Sort based on memory accesses
for each VM in sorted.Wij ;
if Si.util < Umax and Si.thread < Tmax then

add sorted.Wij(k) to Si;
k = i − j − 1; // Reverse list index to continue from bottom

else
k = k + 1; // Continue from the list

end

demand-based, focus on either memory or the CPU as the main source of contention.
In order to be able to capture characteristics in other dimensions, similarity-based
approaches are recently proposed [Delimitrou and Kozyrakis 2013]. Similarity-based
techniques evaluate a set of performance counters and derive the similarities of bench-
mark on the selected dimensions through various correlation techniques. We use Pear-
son’s correlation over the USED% of the applications similar to the technique described in
prior work [Kim et al. 2013]. The final result of this evaluation is a score of similarity,
which is then used as the main metric for sorting and grouping the applications to
match them using a similar algorithm described in Algorithm 3.

5.3. Experimental Evaluation

In order to compare and evaluate the aforementioned resource allocation (RA) tech-
niques, we create workload sets out of the benchmarks explained in Section 4. Each
workload set consists of applications with various thread counts. We generate 100
workload sets such that each workload set consists of a total of 12 threads or 8 threads
for AMD and Intel-based servers, respectively. Therefore, we aim to create a data cen-
ter scenario in which the servers are not over-utilized. To fairly compare the resource
distribution policies, we use the same default placement scenario for all policies. The
default placement policy is a first-fit bin packing algorithm run on the list of applica-
tions with thread numbers requested.

In Figure 6, we present the performance improvement with various resource alloca-
tion techniques together with various placement techniques under 100W power cap for
the AMD-based server. We compare the performance improvement with respect to the
default baseline case, which uses the first-fit bin packing algorithm as the placement
technique and with the hard CPU limits that are directly proportional to the number
of threads requested. We also provide the breakdown of the total performance im-
provement as placement and resource allocation techniques. On the x-axis, we list the
resource allocation techniques (grey) and the performance improvements with three
different placement techniques (red, green, purple). Similarly, Figure 7 shows the re-
sults for the same set of experiments with a power cap of 130W. We choose 130W as
a representative value for the medium power cap and 100W as a representative value
for the high power cap, meaning low power consumption. AMD-based server consumes
65W in idle mode with a peak power value of 171W.

The first observation from these figures is that incorporating the power weights of
the application in the LP solution improves the performance by up to 10% from the best
performing placement+RA technique, which uses only the performance scalability in-
formation for resource allocation with similarity-based placement (x-axis: Scaling Prop.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:14 C. Hankendi and A. K. Coskun

Fig. 6. Performance improvements with various resource allocations (x-axis) together with various place-
ment techniques (red, green, and purple bars) under a power cap of 100W. The proposed technique improves
the performance by up to 21% with respect to the default ESXi manager.

Fig. 7. Performance improvements with various resource allocations (x-axis) together with various place-
ment techniques (red, green, and purple bars) under a power cap of 130W. The proposed technique improves
the performance by up to 11% with respect to the default ESXi manager.

with grey and green bars). For the scaling-based resource allocation, similarity-based
placement works best; as for the similarity weights, scaling information has the high-
est impact. However, for higher power ranges (Figure 6), as power weight information
becomes more predominant, the similarity-based approach starts to favor scalability
information in a lesser degree, which causes imperfect matches from the scalability per-
spective. For the proposed approach, which incorporates the scaling and power weight
information, memory-based placement provides the highest improvements. The un-
derlying reason is that the similarity-based approach fails to capture the importance
of the power weight information and highly favors the scalability information. As ex-
pected, favoring scalability works better with the scalability-based resource allocation

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:15

Fig. 8. Performance variation for all applications for various VM density cases. Higher VM density leads
to higher variation, and the memory-bounded applications have the highest variation due to higher cache
sensitivity.

approach. For the proposed approach, memory-based placement improves the perfor-
mance by up to 3.5% with respect to the best performing placement algorithm.

The second observation is that the performance improvements due to resource allo-
cation techniques are consistently higher than the performance improvements due to
placement techniques, with only a few exceptions. Furthermore, resource allocation-
based improvements become significantly higher than placement-based improvements
for lower peak powers (i.e., higher power cap). The reason is that for tight power bud-
gets, power and scaling variations across applications become more apparent, while the
high power budgets provide enough room to consolidate all applications with minimal
restrictions. As we evaluate a scenario where there is no oversubscription, high power
budgets converge to the default performance without needing a complicated resource
allocation techniques, and the benefits due to placement techniques become more dom-
inant. This also explains the reason why resource allocation techniques bring more
benefits at lower power budgets.

5.4. The Impact of VM Density on Placement Techniques

In order to evaluate the impact of VM density of the benefits due to placement tech-
niques, we create three workload set scenarios with various average utilization values.
Low Load represents a case where the majority of the workloads are utilizing the sys-
tem around 20%. We call this case the Low Load, since the average utilization of the
server will be low when there is no consolidation. Consolidating a Low Load work-
load set leads to higher numbers of VMs to be consolidated. This is expected to have
implications when choosing a placement algorithm.

The benefit of choosing a good placement algorithm is due to reducing the potential
resource interference across multiple applications (or VMs). In Figure 8, we show the
performance degradation due to consolidation for various placement algorithms at
three different VM density scenarios. High VM Density represents the case that has
the highest number of VMs consolidated at a particular time period. By using the Low

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:16 C. Hankendi and A. K. Coskun

Fig. 9. Comparison of placement techniques in terms of performance degradation (i.e., lower is better).

Load workload set, we can create consolidation cases where a higher number of VMs
are consolidated at the same time. Similarly, by using the High Load set, we end up
with consolidation cases with low VM densities. As the placement algorithms become
more critical when there is more contention, the High VM Density case is expected to
have the most benefits from placement algorithms.

In Figure 9, we show the performance degradation at different VM densities for 4
different placement algorithms. In addition to the placement algorithms described in
Section 5.2, we also evaluate a regression-based placement algorithm, which is a sim-
ple linear regression model that uses an offline data to predict the best possible VM
matching for a given set of workloads. The offline data includes the performance results
of each benchmark when consolidated with others for all workload sets. Therefore, the
regression-based approach is expected to be the best possible placement algorithm by
using the offline data available. Depending on the placement algorithm, the degra-
dation ranges from 24% to 1%, where the High VM Density case causes the highest
degradation. For Medium and Low VM densities, there is minimal differences across
different placement algorithms. However, at High VM densities, choosing a memory-
based placement algorithm reduces the degradation by up to 11%. For higher VM
densities, the memory overhead for VM creation causes additional memory contention.
Therefore, the memory-sensitive approach can bring up to 7% with respect to other
placement techniques.

In order to look at the impact of increased VM density and the higher memory stress,
we compared three placement techniques for the same 100 consolidation sets and
reported the best performing placement techniques for each of these distinct workload
sets. In Figure 10, we color code the best performing placement technique for varying
VM densities and active memory sizes. As the figure shows, memory-based placement
needs to be favored for high memory and high VM density consolidation scenarios,
due to the aforementioned reasons. On the other hand, the similarity-based placement
technique starts to perform better for lower VM density and lower memory sizes, as
the CPU resources become more critical for CPU-heavy workload sets and similarity-
based favors the CPU resource demand metric when making placement decisions, as
also explained in Section 5.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:17

Fig. 10. Best performing placement technique for various VM density and active memory size. The memory-
based technique is superior to other techniques with increasing number of VMs consolidated at the same
time, which also leads to higher active memory size.

The main limitations of the proposed technique is as follows: Scale & Cap achieves
significant performance improvements under power constraints by exploiting the per-
formance and power scalability differences across consolidated applications. Therefore,
application sets that exhibit similar power and performance behavior would not be ideal
candidates for the proposed technique. For instance, consolidating multiple instances
of a specific application will not provide any power and/or performance improvements.
In our experiments, we evaluate mainly CPU and memory-bounded applications. In
order to achieve similar performance benefits for workloads that are disk, or network-
bounded, additional metrics and monitoring capabilities might be required. Although
Scale & Cap can be implemented on servers without any power monitoring sensors,
the implementation would be more complex and might require offline data collection
to achieve the highest benefits. Therefore, Scale & Cap works best with servers that
have built-in power monitoring capabilities.

6. RELATED WORK

VM management is a multi-dimensional problem, where the objective is optimally
distributing the limited resources to meet competing objectives, such as power and per-
formance. Therefore, there is a large body of work in VM management, each of which
aims to provide solutions for various execution scenarios from various stand points.
In this work, we look at the VM management problem from the resource distribution/
allocation perspective. However, in this section, we summarize the prior work in VM
management that is relevant to our work. We mainly focus on three main categories,
namely, placement and scheduling techniques, resource allocation techniques, and
power-capping techniques.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:18 C. Hankendi and A. K. Coskun

6.1. Placement and Scheduling

Placement techniques mainly target to reduce the performance degradation due to
interference across applications and VMs [Beloglazov et al. 2012]. Therefore, the max-
imum performance improvement due to placement algorithms is limited with the
maximum performance degradation due to interference. Placement techniques aim
to find the best application groups that will create the least contention due to interfer-
ence. One of the main sources of contention is the rate of cache accesses. For instance,
co-locating (i.e., placing) multiple memory-bound applications together will degrade
the performance due to increased amount of cache contention.

In order to reduce the degradation due to co-location, many techniques focus on bal-
ancing the memory accesses across application groups [Dhiman and Rosing 2007]. For
instance, co-locating memory-intensive applications with CPU intensive applications
will reduce the cache contention when compared to the case where memory-intensive
ones are co-located together. Another line of work used various metrics to capture
the interference impact at various dimensions [Delimitrou and Kozyrakis 2013; Jiang
et al. 2010; Zhang et al. 2014]. Although these techniques are reported to significantly
improve the performance of co-located applications, they are agnostic about the power
constraints that might be enforced due to a variety of reasons. Therefore, placement
techniques are limited in terms of having the capability of managing multiple objec-
tives such as power and performance. Resource allocation techniques are essential to
be able to control multiple objectives at the server level.

The common goal of resource allocation techniques is improving the performance of
the server through efficiently distributing the available resources (i.e., compute and/or
power resources) [von Laszewski et al. 2009; Shafique et al. 2013]. One line of work in
resource allocation considers only the performance as the single dimension to optimize.

6.2. Resource Allocation

Consolidation and migration policies target balancing the activity on various server
components such as CPU, memory, or disk to improve energy efficiency (e.g., Merkel
et al. [2010]). Modern virtualization environments such as Xen, KVM, and vSphere pro-
vide resource management mechanisms to improve the efficiency of the server nodes
mainly through scheduling techniques [Xen 2011; VMware 2013; KVM 2015]. While
KVM relies on default Linux resource management, Xen and vSphere provide man-
agement options such as Xen Management Tools and vSphere’s Distributed Resource
Scheduler (DRS), which mostly rely on VM migration to provide balanced load distri-
bution across server nodes. Merkel et al. [2010] propose co-scheduling and migration
policies based on task activity vectors, which are used to characterize applications.
Their proposed policies mitigate the resource contention through vector balancing for
single-threaded applications. Kusic et al. [2008] propose a dynamic resource provision-
ing framework based on look-ahead control for virtualized server environments. Vasic
et al. [2012] propose the DejaVu framework that makes resource allocation decisions
based on the history of the VMs to reduce the resource management overhead. In order
to improve the clusters with workloads that heavily utilize the disk, Romosan et al.
[2005] propose co-scheduling algorithms based on load balancing frequently used files.
Zheng et al. [2009] present an empirical infrastructure for data center management.
Their proposed infrastructure allocates a server node (i.e., sandbox) to experimen-
tally derive the energy/performance tradeoffs. Beloglazov and Buyya [2010] propose
a threshold-based dynamic consolidation technique, which provides SLA performance
guarantees. The proposed algorithm selects VMs to migrate to different physical nodes
based on resource utilization [Beloglazov and Buyya 2010]. Bonvin et al. [2011] pro-
pose a dynamic resource allocation algorithm to meet SLA performance and availability

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:19

guarantees by adding or removing new resources (i.e., allocation of cores or entire new
server nodes). However, their proposed work does not consider power and energy as-
pects. Wang et al. [2012] propose a framework that allows user-specified workload
provisioning policies to optimize energy efficiency on clusters. Their framework al-
locates threads to available cores across the cluster depending on the user-specified
performance/power constraints. Vasic et al. [2012] propose the DejaVu framework that
makes resource allocation decisions based on the history of the VMs to reduce the
resource management overhead.

6.3. Power Capping

Most of the modern processor cores support dynamic voltage-frequency scaling (DVFS)
and power gating capabilities. Therefore, DVFS and core power gating have become tra-
ditional power management knobs [Li and Martinez 2006]. Recent commercial servers
also provide power-capping capabilities [Samson 2009]. For example, Intel Sandybridge
provides a power estimator and a runtime average power limiter (RAPL) [David et al.
2010].

Raghavendra et al. [2008] propose a global power management technique for clusters
to coordinate the power provisioning for individual nodes under power constraints
[Raghavendra et al. 2008]. Reda et al. [2012] propose a runtime controller to meet the
peak power constraints through DVFS and packing threads onto a smaller number of
cores, while optimizing the application performance. Ma et al. [2012] propose a power-
capping technique by power-gating the cores and applying per-core DVFS for a mixture
of single and multi-threaded applications running on native servers.

For capping the power in virtualized environments, Nathuji and Schwan [2008] de-
sign a power allocation technique for VMs to improve the performance for a given power
budget by allocating power budgets proportionally across VMs according to the service
level agreement (SLA) requirements of individual VMs. The proposed technique uses
CPU utilization data to distribute the available power budget. Dhiman et al. [2009] pro-
pose a VM scheduling technique that estimates VM-level CPU and memory usage based
on system-level metrics to guide co-scheduling and migration decisions. Their proposed
technique consolidates the applications that have complementary resource usage char-
acteristics to reduce the performance degradation. Hwang et al. [2012] study the impact
of CPU consolidation in virtualized multi-core environments. Their study investigates
finding the optimum VM density for multi-core processors for single-threaded applica-
tions that have distinct characteristics (i.e., memory/CPU-bounded) and they propose
a consolidation policy that uses DVFS and core power gating. Vasic et al. [2012] in-
troduce the DejaVu framework that makes resource allocation decisions based on the
history of the VMs to reduce the resource management overhead. Another line of work
in VM resource management targets reducing the resource contention to improve the
efficiency of the virtualized servers [Delimitrou and Kozyrakis 2013; Kim et al. 2013].
Hankendi et al. [2013] proposed a dynamic power-capping technique for consolidated
environments that uses performance scalability information to make resource alloca-
tion decisions, while meeting power caps.

Scale & Cap considers multi-threaded application-specific aspects while making
resource distribution decisions. The main distinguishing aspects of Scale & Cap are
as follows:

—Scale & Cap accurately captures the scalability characteristics of multi-threaded
applications in multiple dimensions (i.e., power and performance) to make resource
allocation decisions across a various number of VMs, while prior work can not capture
both power and performance scalability aspects.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

30:20 C. Hankendi and A. K. Coskun

—We implement and evaluate our technique on a real-life server and show that our
resource allocation technique can work seamlessly with placement techniques to
further improve the energy efficiency, while prior work focuses on either placement or
allocation techniques without evaluating the interactions across different techniques.

—We provide analyses on the interactions between placement and resource allocation
techniques and provide guidelines for developing better management techniques
under various execution scenarios (i.e., memory-bound execution scenarios, high/low
VM density scenarios).

—Scale & Cap can handle managing up to 12 consolidated VMs at a time for a 12-core
system, while prior work evaluates either a constant number of VMs or low VM
density cases.

7. CONCLUSION

Energy-related costs are among the biggest contributors to the total cost of ownership of
the data centers. Thus, constraining the peak power consumption has become a common
practice for cost management and reliable power delivery. As more than 50% of the cloud
resources are virtualized, it becomes essential to design power-capping solutions for
virtualized servers. In tandem, multi-threaded applications start to emerge on the cloud
resources from various application domains. Multi-threaded applications introduce
additional challenges due to their more complex characteristics such as performance
scalability.

In this work, we present Scale & Cap, a resource allocation technique that in-
corporates the multi-threaded specific performance scalability and power efficiency
characteristics to distribute the available resources across multiple VMs running het-
erogeneous applications. We formulate our solution as a linear programming-based
algorithm and implement Scale & Cap on two multi-core servers. We evaluate various
resource allocation and placement techniques together and provide insights regarding
the interaction between placement and resource allocation techniques. Our results also
show that for tight power budgets, resource allocation brings up to 21% performance
improvements in comparison to only using a placement algorithm.

REFERENCES

Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Computing Systems
28, 5 (2012), 755–768.

Anton Beloglazov and Rajkumar Buyya. 2010. Adaptive threshold-based approach for energy-efficient con-
solidation of virtual machines in cloud data centers. In International Workshop on Middleware for Grids,
Clouds and e-Science. 1–6.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite:
Characterization and architectural implications. In International Conference on Parallel Architectures
and Compilation Techniques (PACT).

Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. 2011. Autonomic SLA-driven provisioning for
cloud applications. In Cluster, Cloud and Grid Computing (CCGrid). 434–443.

Lucinda Borovick. 2011. The benefits of a virtualized approach to advanced-level network services. Interna-
tional Data Corporation (IDC), Whitepaper (February 2011).

Hao Chen, Can Hankendi, Michael C. Caramanis, and Ayse K. Coskun. 2013. Dynamic server power capping
for enabling data center participation in power markets. In International Conference on Computer-Aided
Design (ICCAD’13). 122–129.

Ryan Cochran, Can Hankendi, Ayse Kivilcim Coskun, and Sherief Reda. 2011. Pack & cap: Adaptive DVFS
and thread packing under power caps. In International Symposium on Microarchitecture (MICRO).
175–185.

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. 2010. RAPL: Mem-
ory power estimation and capping. In International Symposium on Low Power Electronics and Design
(ISLPED). 189–194.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

Scaling-Aware Resource Management for Consolidated Multi-threaded Applications 30:21

Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous dat-
acenters. In Architectural Support for Programming Languages and Operating Systems (ASPLOS).
77–88.

Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing. 2009. vGreen: A system for energy-efficient com-
puting in virtualized environments. In International Symposium on Low Power Electronics and Design
(ISLPED). 243–248.

Gaurav Dhiman and Tajana Simunic Rosing. 2007. Dynamic voltage frequency scaling for multi-tasking sys-
tems using online learning. In International Symposium on Low PowerElectronics and Design (ISLPED).

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware. In International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS). 37–48.

Can Hankendi and Ayse K. Coskun. 2012. Reducing the energy cost of computing through efficient co-
scheduling of parallel workloads. In Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 994–999.

Can Hankendi, Sherief Reda, and Ayse K. Coskun. 2013. vCap: Adaptive power capping for virtualized
servers. In International Symposium on Low Power Electronics and Design (ISLPED). 415–420.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Rinard.
2011. Dynamic knobs for responsive power-aware computing. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 199–212.

Inkwon Hwang, Timothy Kam, and Massoud Pedram. 2012. A study of the effectiveness of CPU consolidation
in a virtualized multi-core server system. In International Symposium on Low PowerElectronics and
Design (ISLPED). 339–344.

Canturk Isci, James E. Hanson, Ian. Whalley, Malgorzata Steinder, and Jeffrey O. Kephart. 2010. Runtime
demand estimation for effective dynamic resource management. In Network Operations and Manage-
ment Symposium (NOMS). 381–388.

Congfeng Jiang, Jilin Zhang, Jian Wan, Xianghua Xu, Yuyu Yin, Ritai Yu, and Changping Lv. 2010. Power
aware resource allocation in virtualized environments through VM behavior identification. In 2010
IEEE/ACM International Conference on Green Computing and Communications & International Con-
ference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM’10). 313–318.

Jungsoo Kim, Martino Ruggiero, David Atienza, and Marcel Lederberger. 2013. Correlation-aware virtual
machine allocation for energy-efficient datacenters. In Conference on Design, Automation and Test in
Europe (DATE). 1345–1350.

Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei Jiang. 2008. Power and
performance management of virtualized computing environments via lookahead control. In International
Conference on Autonomic Computing (ICAC). 3–12.

KVM. 2015. Kernel-based Virtual Machine. Retrieved from http://www.linux-kvm.org/page/FAQ.
Jian Li and Jose F. Martinez. 2006. Dynamic power-performance adaptation of parallel computation on

chip multiprocessors. In International Symposium on High-Performance Computer Architecture (ISCA).
77–87.

Kai Ma and Xiaorui Wang. 2012. PGCapping: Exploiting power gating for power capping and core lifetime
balancing in CMPs. In Parallel Architecture and Compilation Techniques (PACT). 13–22.

Andreas Merkel, Jan Stoess, and Frank Bellosa. 2010. Resource-conscious scheduling for energy efficiency
on multicore processors. In European Conference on Computer Systems (EuroSys). 153–166.

Ripal Nathuji and Karsten Schwan. 2008. VPM tokens: Virtual machine-aware power budgeting in datacen-
ters. In International Symposium on High Performance Distributed Computing (HPDC). 119–128.

Ripal Nathuji, Karsten Schwan, Ankit Somani, and Yogendra Joshi. 2009. VPM tokens: Virtual machine-
aware power budgeting in datacenters. Cluster Computing (2009), 189–203.

Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and Xiaoyun Zhu. 2008.
No “power” struggles: Coordinated multi-level power management for the data center. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 48–59.

Sherief Reda, Ryan Cochran, and Ayse K. Coskun. 2012. Adaptive power capping for servers with multi-
threaded workloads. IEEE Micro 32, 5 (2012), 64–75.

Ru Romosan, Doron Rotem, Arie Shoshani, and Derek Wright. 2005. Co-scheduling of computation and
data on computer clusters. In 17th International Conference on Scientific and Statistical Database
Management (SSDBM). 103–112.

Ted Samson. 2009. AMD Brings Power Capping to New 45nm Opteron Line. Retrieved from http://www.
infoworld.com/d/green-it/amd-brings-power-capping-new-45nm-opteron-line-906.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

http://www.linux-kvm.org/page/FAQ
http://www.infoworld.com/d/green-it/amd-brings-power-capping-new-45nm-opteron-line-906
http://www.infoworld.com/d/green-it/amd-brings-power-capping-new-45nm-opteron-line-906

30:22 C. Hankendi and A. K. Coskun

Muhammad Shafique, Benjamin Vogel, and Jorg Henkel. 2013. Self-adaptive hybrid dynamic power man-
agement for many-core systems. In Design, Automation Test in Europe Conference Exhibition (DATE).
51–56.

Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo Bianchini. 2012. DejaVu:
Accelerating resource allocation in virtualized environments. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 423–436.

VMware. 2013. Resource Management with VMware DRS. Retrieved from http://www.vmware.com/pdf/
vmware_drs_wp.pdf.

VMware. 2015. vSphere SDK for Perl Documentation. Retrieved from https://www.vmware.com/support/
developer/viperltoolkit/.

G. von Laszewski, Lizhe Wang, A. J. Younge, and Xi He. 2009. Power-aware scheduling of virtual machines
in DVFS-enabled clusters. In Cluster Computing and Workshops (CLUSTER). 1–10.

Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao, Zhen Jia,
Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, K. Zhan, Xiaona Li, and Bizhu Qiu. 2014. Big-
DataBench: A big data benchmark suite from internet services. In High Performance Computer Archi-
tecture (HPCA). 488–499.

Wei Wang, Tanima Dey, Ryan W. Moore, Mahmut Aktasoglu, Bruce R. Childers, Jack W. Davidson, Mary
Jane Irwin, Mahmut Kandemir, and Mary Lou Soffa. 2012. REEact: A customizable virtual execution
manager for multicore platforms. In Virtual Execution Environments. 27–38.

Xen. 2011. Xen Management Tools. Retrieved from http://wiki.xen.org/wiki/Xen_Management_Tools.
Yunqi Zhang, M. A. Laurenzano, Jason Mars, and Lingjia Tang. 2014. SMiTe: Precise QoS prediction on

real-system SMT processors to improve utilization in warehouse scale computers. In International
Symposium on Microarchitecture (MICRO). 406–418.

Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato Santos, and Yoshio Turner. 2009. Jus-
tRunIt: Experiment-based management of virtualized data centers. In USENIX Annual Technical Con-
ference. 18–18.

Received July 2015; revised May 2016; accepted August 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 30, Pub. date: January 2017.

http://www.vmware.com/pdf/vmwaredrswp.pdf
http://www.vmware.com/pdf/vmwaredrswp.pdf
https://www.vmware.com/support/developer/viperltoolkit/
https://www.vmware.com/support/developer/viperltoolkit/
http://wiki.xen.org/wiki/Xen_Management_Tools

