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ABSTRACT
Single-ISA heterogeneous mobile processors integrate low-
power and power-hungry CPU cores together to combine
energy efficiency with high performance. While running
computationally demanding applications, current power man-
agement and scheduling techniques greedily maximize quality-
of-service (QoS) within thermal constraints using power-
hungry cores. We show that such an approach delivers short
bursts of high QoS, but also causes severe QoS loss over
time due to thermal throttling. To provide mobile users
with sustainable QoS over extended durations, this paper
proposes QScale. QScale is a novel thermally-efficient QoS
management framework for mobile devices with heteroge-
neous multi-core CPUs. QScale leverages two novel obser-
vations to provide thermally-efficient QoS: (1) threads of a
mobile application exhibit significant heterogeneity, which
can be exploited during scheduling; (2) thermal efficiency of
core allocation decisions is significantly altered by thermal
interactions across system-on-a-chip (SoC) components and
application characteristics. QScale coordinates closed-loop
frequency control with thermally-efficient scheduling to de-
liver the desired QoS with minimal exhaustion of processor
thermal headroom. Our experiments on a state-of-the-art
heterogeneous mobile platform show that QScale meets tar-
get QoS levels while minimizing heating, achieving up to 8x
longer durations of sustainable QoS.

1. INTRODUCTION
Single-ISA heterogeneous multi-core processors [22] (e.g.,

ARM big.LITTLE [3]) have been commonly adopted in re-
cent mobile SoCs. Such designs offer large dynamic power
and performance ranges, and achieve significant energy sav-
ings in mobile applications with widely varying performance
demands [25, 28, 32]. Current heterogeneous CPU designs
incorporate multiple aggressive power-hungry cores (i.e., out-
of-order and speculative multi-issue pipelines [23]) to han-
dle performance demanding tasks. Power consumption of
modern mobile SoCs with such high-power big cores can
reach well above the thermal design power (TDP) (e.g., 8W
peak power in Samsung Exynos 7 despite a TDP of 3.5W
[13]) and the maximum chip temperature can quickly ele-
vate to critical levels [30]. The problem accelerates further
due to inherent limitations in cooling capabilities of mobile
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Figure 1: Performance degradation over time due to thermal
throttling on a Odroid-XU3 platform (left) and a case for
QoS-temperature tradeoff for longer sustainable QoS (right).

devices. Built-in thermal throttling policies in smartphones
mitigate thermal violations by slowing down the CPU (i.e.,
via dynamic voltage/frequency scaling (DVFS), power gat-
ing etc.), and thus, they sacrifice QoS experienced by the
user [6, 27]. As a result, temperature plays a critical role
in current mobile devices’ capability to sustainably deliver
satisfactory performance levels to the end-user.

Motivational Example: Consider the case in Figure 1.
The left plot demonstrates the throttling-induced QoS degra-
dation over time for 6 applications running on a Odroid-XU3
development platform powered with a big.LITTLE proces-
sor when using the default DVFS and scheduling scheme.
Throttling1 incurs up to 22%-48% QoS degradation as the
applications are continuously run over extended durations.
Figure 1b shows the FPS2 and the maximum chip temper-
ature for an 8-minute run of Real Racing game, illustrating
the benefits of QoS-temperature tradeoff for achieving longer
sustainable QoS. The default Interactive governor [1] pro-
vides the highest QoS initially, but quickly exhausts the pro-
cessor thermal headroom and exhibits significant QoS degra-
dation over time due to thermal throttling. On the other
hand, the Powersave governor [1], which always uses the
lowest available frequency, sustains the QoS above 45FPS for
almost twice as long since heating is slowed down and throt-
tling is mitigated. The challenge here lies in determining
the best scheduling and DVFS combination that maximizes
the sustained QoS duration under dynamically varying lev-
els of QoS requirements for a wide range of applications, and
achieving this in face of both hardware and application-level
(e.g., varying CPU demands of threads) heterogeneity. Ad-
dressing this challenge requires a QoS management strategy
that minimizes heating without violating QoS requirements.

1
Thermal throttling is incurred via a reactive DVFS and thread migration policy

with a 80◦C maximum temperature limit as explained in Section 2.
2
We use frames-per-second (FPS) as the measure of quality-of-service (QoS)

experienced by the user.



This strategy should also be aware of the asymmetric heat-
ing behavior and inter-component thermal couplings in the
SoC to make thermally-aware decisions and achieve mini-
mum temperature.

This paper proposes QScale, a thermally-efficient QoS man-
agement framework for mobile platforms with heterogeneous
CPUs. QScale uses both CPU DVFS and thread schedul-
ing as control knobs. The goal behind QScale is to mini-
mize heat generation while precisely delivering the desired
QoS levels so as to provide a consistent user experience for
the maximum durations. QScale leverages two key observa-
tions. (1) Application threads have significant heterogeneity
in terms of their criticality to user-experience and such infor-
mation can guide runtime DVFS and scheduling decisions to
achieve lower temperatures. While recent work [11, 28] has
studied multi-threading in mobile applications at a coarser
granularity to point to the low inherent thread-level par-
allelism (TLP), leveraging user-experience critical threads
in scheduling and DVFS decisions at runtime to optimize
temperature is a novel aspect of our work. (2) Significant
thermal interactions occur between the GPU and CPU cores
and thermal efficiency of thread-to-core mappings widely
changes depending on the CPU-GPU thermal coupling and
application characteristics. Prior work [19, 25] has proposed
integrated CPU-GPU DVFS policies for energy minimiza-
tion but primarily focused on the performance interactions
between CPU and GPU. QScale focuses on an orthogonal
problem and monitors the thermal interactions between the
CPU and GPU to identify thermally-efficient CPU cores for
execution and, in this way, minimize heating.

In summary, we make the following specific contributions:

• To the best of our knowledge, our work is the first to
identify the throttling-induced QoS degradation over
extended durations in the state-of-the-art heteroge-
neous mobile CPUs. Using real-life experiments, we
demonstrate that greedily exhausting the thermal head-
room for boosting instant QoS, without considering
the future impacts, can lead to significant QoS loss
when applications run longer.

• We demonstrate that CPU-GPU thermal coupling is
application dependent, and propose a mechanism for
thermally-efficient, application-aware selection of big
cores for execution (Section 3.1). We show that, com-
bined with the thermally-efficient core allocation, iden-
tifying the relatively few number of QoS-critical threads
(Section 3.2) in mobile applications that exhibit low
TLP and scheduling those threads on thermally-efficient
CPU cores substantially slows down heating.

• We propose QScale, which combines offline thermal
coupling and thread criticality information with a run-
time thermally-efficient scheduling and control-theoretic
DVFS controller (Section 3.3). QScale is able to meet
target QoS requirements for a set of real-life mobile ap-
plications. We implement QScale on a state-of-the-art
heterogeneous mobile platform and demonstrate up to
8x longer durations of sustainable QoS (Section 4).

2. EXPERIMENTAL METHODOLOGY
This section presents our experimental testbed, data mon-

itoring/collection methodology and application set.

Experimental Platform: All of our measurements and
evaluations are based on real-life experiments on a contem-

Table 1: Summary of applications and QoS metrics.
Application Category QoS Metric
Bodytrack Computer Vision Heartbeats/sec
Real Racing Gaming FPS

Edge of Tomorrow Gaming FPS
Aquarium Graphics/WebGL FPS

Rain Graphics/WebGL FPS
Rock Player Video Playback FPS

porary mobile system. We use an Odroid-XU3 mobile devel-
opment board that comprises of the Samsung Exynos 5422
SoC (which is included in the Samsung Galaxy S5 smart-
phone). The board runs Android 4.4 KitKat as the OS. The
Exynos 5422 SoC implements a big.LITTLE heterogeneous
CPU architecture [3] with quad-core big (A15) and little
(A7) CPU clusters. The A15 is a high performance/power
multi-issue out-of-order processor while A7 is a low perfor-
mance/power core with simple 8-stage in-order pipeline [3].
The A15 core supports 9 frequency levels from 1.2 GHz to 2
GHz. The A7 core operates on 5 frequency levels between 1
GHz and 1.4 GHz. The frequency scaling decisions occur at
a cluster-level as the cores within a cluster share the same
voltage/frequency domain. The Exynos 5422 SoC also in-
tegrates Mali-T628 GPU, which supports 6 frequency levels
ranging from 177 MHz to 543 MHz. A default mechanism
scales the GPU frequency based on utilization.

Measurement Methodology: The board is equipped with
a Texas Instruments INA231 power monitoring unit and al-
lows measuring power consumptions of the A15 and A7 clus-
ters, the GPU, and the memory individually. The platform
provides temperature sensors for each of the 4 big cores as
well as for the GPU. We measure FPS by querying the logs
generated by the SurfaceFlinger Android system service.

Applications: Table 1 provides a list of applications that
we use in our experiments. We run the bodytrack com-
puter vision application from the PARSEC suite [8] where
the frame-rate (or heartbeats/sec) is dynamically monitored
by instrumenting the application with the Heartbeats frame-
work [15]. Two gaming applications, Edge of Tomorrow and
Real Racing, are chosen as representatives of modern gam-
ing applications. We use Rock Player video player applica-
tion to display a 1 minute HD video and loop the video
to experiment with longer durations. We use a timing-
based record/replay tool, RERAN [12], to automate the
execution by injecting a pre-recorded set of GUI events.
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Figure 2: #Threads.

Rain [5] and Aquarium [2]
are web-based online anima-
tions that we execute within
the Chrome web browser. All
of our applications are multi-
threaded. Figure 2 shows
the large number of software
threads in mobile applications.
Number of threads in body-
track is configured to 8, which
equals to the total number of CPU cores.

In addition, we write two custom microbenchmark appli-
cations for use during the offline thermal coupling charac-
terization process. As a GPU microbenchmark, we write an
OpenCL program that repeatedly offloads a matrix multipli-
cation kernel to GPU. CPU portion of this microbenchmark
is lightweight (<1.5% CPU utilization) and is always pinned
to a low-power little core. CPU microbenchmark continu-
ously performs floating-point multiplications.



Figure 3: An overview of the proposed framework.

Runtime Management: Our platform uses an external
fan for cooling. As fans are not available in commercial de-
vices, we disable the fan control and implement a baseline
reactive DVFS throttling policy. This policy reactively in-
crements/decrements the maximum DVFS state of big cores
every second if the maximum temperature is lower/higher
than 80◦C. By modifying the maximum DVFS level, the
throttling policy forces the CPU DVFS governors to use
lower frequencies without disabling their operation. If a
thermal emergency still exists at the lowest big core fre-
quency, the workload is migrated to little cores using the
sched setaffinity interface in the Linux scheduler. Baseline
CPU DVFS policy is the Interactive governor [1], which is
default in most Android devices. This governor scales the
CPU frequency to the maximum if the utilization is higher
than a threshold. Once scaled to the highest, CPU frequency
is not scaled down for at least 20ms to maximize responsive-
ness. The baseline HMP scheduler [4] determines thread-to-
core mappings. HMP migrates an active task to a big core
if its weighted average CPU load exceeds an up threshold.
Migration to little cores occurs similarly when the load is
less than a down threshold. QScale operates every second
and uses cpufreq and sched setaffinity interfaces to control
the frequency and the thread mappings for an application.

3. QSCALE DESIGN
This section describes QScale, a novel thermally-efficient

QoS management framework for heterogeneous mobile plat-
forms. Figure 3 presents a high level flow of our framework.
During the offline phase, we use a set of CPU/GPU micro-
benchmarks to identify the thermal coupling between the
big cores and the GPU, and derive lightweight heuristics for
runtime thermally-efficient core allocation (Section 3.1). We
also identify the threads of an application that are critical to
user-experience during the offline phase (Section 3.2). Run-
time management (Section 3.3) monitors the application’s
CPU and GPU usage and leverages the offline-generated
heuristics to identify the most thermally-efficient big cores
for executing the QoS-critical threads of an application. The
runtime management policy also performs closed-loop DVFS
control to precisely deliver the desired QoS.

3.1 Thermally-Efficient Core Allocation
GPU-CPU Thermal Coupling: First, we demonstrate
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Figure 4: GPU thermal
coupling in Exynos 5422.

the thermal coupling effect
between the GPU and the big
cores by running our GPU
microbenchmark. In this
experiment, the GPU oper-
ates at peak utilization and
at the highest frequency for
1 minute. Figure 4 shows
the resulting temperature in-
crease (from an initially cold
system) and the maximum
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Figure 5: Power breakdown (left), temperature traces (mid-
dle) and QoS (right) for aquarium and bodytrack applica-
tions under different big core assignments ({0,3} and {2,3})

temperatures of the GPU and CPU cores. As the GPU tem-
perature increases from 46◦C to 71◦C by 25◦C, we measure
significant heating on all idle big cores. Core0 suffers the
most from thermal coupling and its temperature increases
by 23◦C. Cores heat up at different rates due to their differ-
ent locations on chip and varying proximities to the GPU.

Need for Coupling-aware Core Allocation: Next, we
demonstrate that the impact of GPU-CPU thermal coupling
is application-dependent. Figure 5 shows the temperature
profiles of two real-life applications with distinct CPU and
GPU usage when the two highest utilization threads are
pinned to two different set of big cores3 ({0, 3} and {2, 3}).
We do not show the other allocation cases for clarity. Throt-
tling is disabled to avoid interference with measurements.
{0, 3} allocation results in the quickest increase in temper-
ature among all possible allocation scenarios for aquarium,
while the same allocation achieves the lowest temperature
for bodytrack. {2, 3} results in the highest temperature for
bodytrack, while achieving a lower temperature than {0, 3}
for aquarium. We observe that Core0 provides thermally-
efficient operation when the GPU is ‘cool’, but its temper-
ature can quickly elevate otherwise. Note that both alloca-
tions achieve the same QoS. We propose an offline character-
ization step to capture this interplay between the thermal-
efficiency of CPU cores and the GPU-CPU thermal coupling.

Offline Characterization: The aims of this offline step are
to characterize how the GPU-CPU thermal coupling affects
the thermal efficiency of each big core and to derive a strat-
egy for thermally-efficient core allocation. In order to con-
trol CPU and GPU independently and obtain an accurate
characterization, we use the microbenchmarks described in
Section 2. We sweep the GPU power level up to 2W in
0.1W increments by tuning the input size of our GPU mi-
crobenchmark. For each GPU power level, we run the CPU
microbenchmark on each big core for 1 minute and record
the ordering of cores from the lowest to the highest peak
temperature. We identify that this ordering changes at two
GPU power levels (Thr1 = 0.25W and Thr2 = 1.2W ). We
convert this characterization into a runtime heuristic shown
in Table 2. For a given runtime GPU power level, the policy

3
Core0 to Core3 correspond to cpu4 to cpu7 under the /sys/devices/system/cpu/

file path within the Linux file system on the Odroid-XU3 platform.



(a) Aquarium (b) Bodytrack (c) EoT (d) Rain (e) Racing (f) RP

Figure 6: QoS scaling achieved by moving individual application threads from the little to the big cluster.

(a) Aquarium (b) Bodytrack (c) EoT (d) Rain (e) Racing (f) RP

Figure 7: Increase in big cluster usage as individual application threads are moved from the little to the big cluster.

Table 2: Thermal coupling aware core allocation policy.
Condition Order of Big Core Allocation

Thr2 ≤ PGPU Core3, Core1, Core2, Core0
Thr1 ≤ PGPU < Thr2 Core3, Core1, Core0, Core2

PGPU < Thr1 Core3, Core0, Core1, Core2

uses the core orderings from the characterization step to de-
termine which CPU cores to allocate first. Core3 provides
the lowest temperature across all GPU power levels and,
thus, is always allocated first. Thermal efficiency of Core0,
however, strongly depends on the GPU usage. Due to close
proximity to GPU, this core results in the worst peak tem-
perature when the GPU power is high. GPU acts as a heat
spreader when its power is low and Core0 achieves the low-
est temperature in this case. Between the two GPU power
thresholds, thermal efficiency of Core0 falls between Core1
and Core2.This empirical methodology allows to identify
the thermally-efficient big cores on a GPU-CPU thermally
coupled system without requiring any packaging or floorplan
details, which are not usually provided by vendors.

3.2 Thread Criticality in Mobile Applications
We propose to guide scheduling decisions on big.LITTLE

by identifying the threads that are critical to user-experience,
as opposed to leveraging the coarse-grained utilization met-
rics used in current schedulers [4]. Our novel observation
behind this approach is that the overall QoS of mobile ap-
plications is dominated by a relatively few number of QoS-
critical threads (compared to number of available cores).
This observation is in line with the recent work [11, 28],
which has identified that majority of mobile applications do
not benefit from increased number of cores. We identify the
QoS-critical threads of an application via a simple offline
characterization process. Our approach is to prevent the
big cores from quickly exhausting the thermal headroom by
reserving them only for QoS-critical threads, which require
higher performance. We use the low-power little cores at the
highest frequency (1.4GHz) for other non-critical threads.

Offline Characterization: The aim of this offline charac-
terization step is to identify the QoS-critical threads of an
application that provide the highest QoS gains when allo-
cated on a big core. We perform this characterization on
each of our 6 applications. First, we allocate all the appli-
cation threads to little cluster. We increment the number
of application threads allocated to the big cluster by one

thread at a time, and for each case, we record the average
QoS and big cluster utilization. We run every scheduling
configuration for 30 seconds. Figure 6 shows the QoS scal-
ing and Figure 7 shows the increase in big cluster utilization
recorded during this characterization step. This offline char-
acterization reveals that QoS is dictated by a small number
of critical threads for most applications. For instance, mov-
ing a single critical thread to the big cluster achieves close
to peak QoS for the Edge of Tomorrow, Real Racing, Rock
Player and Rain applications. A more balanced criticality
is observed for bodytrack from the PARSEC suite [8], for
which aggressively moving threads to big cluster for per-
formance leads to QoS degradation. For bodytrack, despite
its low CPU utilization, assigning the initial helper thread
(first thread) to big cluster along with 4 worker threads sig-
nificantly improves performance. To explore whether thread
criticality changes upon different application inputs or at dif-
ferent frequencies, we perform the same characterization at
high (1.8GHz) and low (1.2GHz) frequencies, run the gaming
applications with different set of recorded GUI interactions
and play Rock Player with different inputs (HD video files).
Our results have shown that QoS is still dictated by the same
critical threads. Overall, the number of critical threads per
application are identified as 5 for bodytrack, 2 for aquarium
and rain and, 1 for the others.

The output of the offline characterization process, which is
communicated to the runtime management, is a set of <Ap-
plication, Thread Name, ThreadId Offset, Average CPU

Utilization> tuples. ThreadId Offset corresponds to the
offset from the ID of the first thread launched by the par-
ent process, and is used when thread names conflict. Sim-
ilarly, in case the offsets change during application launch,
we record the per-thread CPU usage as another proxy for
uniquely identifying the QoS-critical threads.

While our approach requires offline thread profiling for
every application, we argue that such approach is profitable
specifically for mobile applications for various reasons: (1)
Users will likely run the same application many times in the
device life-cycle; (2) such offline profiling of applications can
be automatically performed on a device without user inter-
ference (e.g., while device is left in charging) using Android
record/replay tools [12, 18] as we have done in this work
using RERAN [12].



1 QoStarget : Target QoS level
2 Threads[A] : List of threads for application A
3 Max State : Max. state allowed by the throttling policy.

4 At beginning:

5 LittleCluster ← {Threads[A]}
6 Every second:

7 Perform thread-to-core mappings (Algorithm 2)
8 target state = PIController()
9 Clip(target state, Min State, Max State)

10 Actuator(target state)

Algorithm 1: QScale’s top-level runtime policy.

3.3 Runtime Control Policy
Overview: The goal of QScale’s runtime policy is to deliver
desired QoS levels while minimizing temperature by coor-
dinating thermally-efficient scheduling with DVFS. It moni-
tors the GPU power dissipation to select the most thermally-
efficient set of big cores for executing the QoS-critical threads
of an application. The policy also performs control-theoretic
DVFS to precisely meet QoS targets. Target QoS can be dy-
namically adjusted upon user request, autonomously set by
the system-level policies (e.g., based on battery level or ther-
mal status), or statically fixed to bare minimum levels based
on the limitations of user perception [10, 31].

Algorithm 1 provides an overview of our top-level runtime
control algorithm. The policy initially assigns the threads to
the little cluster and, at every second, invokes our mapping
policy (Algorithm 2) to partition the application threads
among the big and little clusters in a thermally-efficient
manner. DVFS level for the next control interval is cal-
culated by the closed-loop controller (Figure 8). The policy
avoids thermal violations by clipping the controller output
(e.g., next DVFS state) to a range below the maximum level,
which is determined by the thermal throttling policy.

P(z)

System
+

-

C(z)

Controller

e[k] u[k]
QoS

q[k]
QoStarget

Figure 8: Feedback-based performance state control.

Algorithm 2 illustrates the thread-to-core mapping flow.
If the number of critical threads is less than 4, there ex-
ists opportunity to lower temperature by making thermally-
aware mapping. In this case, we sequentially bind the crit-
ical thread with the highest CPU usage to the next most
thermally-efficient core. Otherwise, the policy allocates the
critical threads to the big cluster and uses default Linux load
balancer for task mappings within the cluster. The order of
core allocations is determined based on the GPU power.

Performance States in QScale: QScale’s feedback con-
troller uses DVFS on big cores as a control knob. In addi-
tion to DVFS, to bridge the performance gap between little
and big cores, we implement 4 migration-based (M) states
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Figure 9: M-States.

(Figure 9). We collectively re-
fer to DVFS and M-states as
performance states. Migration
states perform frequent (every
100ms) switching between the
Little1.4GHz and Big1.2GHz oper-
ation at 20%, 40%, 60%, 80%
duty-cycles within the con-
trol interval. The number of
switchings is maximized to pro-
vide the minimum possible du-
ration of continuous little core
operation. This minimizes user

1 CriticalThreads[A] : QoS critical threads for application A
2 PGPU : Current GPU Power

3 N = length(CriticalThreads[A])
4 if N >= 4 then
5 Assign {CriticalThreads[A]} to big cluster.
6 Use default Linux task mapping.
7 return

8 else
9 Sort CriticalThreads[A] in descending order of utilization.

for i = 1 to N do
10 TargetCore = CoreAllocation(PGPU , i) (Table 2)
11 TargetCore← CriticalThreads[A][i]

12 end

13 end

Algorithm 2: Thread-to-core mapping policy.

perceived latency. We do not migrate more frequently than
every 100ms to avoid migration overhead [20, 24]. On the
little cluster, only the highest DVFS operation (1.4GHz) is
considered as it provides thermally-safe operation and no
lower states are needed to improve QoS sustainability.

Closed-loop controller design: The closed-loop controller
estimates the performance state for the next interval that
will meet the target QoS. The error term (e[k]) (Figure
8) simply corresponds to the current offset from the target
QoS. The transfer function of the system is represented as
P (z) = QoSmax/z which implies that, depending on the con-
troller output, the QoS for the next control interval is some
fraction of the maximum QoS. The global transfer function
of the control system is G(z) =

C(z)P (z)
1+C(z)P (z)

which, we enforce

to be 1−p
z−p . We substitute the controller function C(z) as

z(1−p)
Qmax(z−1)

. Applying inverse z-transform on C(z), we com-
pute the discrete-time controller function, which quantifies
the correspondence between the error term and the con-
troller output (i.e., the next performance state). The re-
sult is the proportional integral (PI) controller representa-
tion shown in Equation 1. The pole (p) of global transfer
function should be in range [0, 1) to ensure stability and
avoid oscillatory behaviour [14]. The value of p also allows
to tradeoff robustness for responsiveness [14] and smaller
values increase the controller’s response to workload varia-
tions. We manually tune the value of p to be 0.4 on our
system. The controller ensures convergence to target QoS
as the steady state gain equals 1 (G(z = 1) = 1).

u[k] = u[k − 1] +
e[k](1− p)

Qmax

(1)

4. EXPERIMENTAL RESULTS
This section evaluates QScale for its effectiveness in max-

imizing durations of target QoS levels. In addition to the
default Interactive governor [1] and HMP scheduler [4] pair,
we also compare QScale to a DVFS-only policy. DVFS-only
policy performs only closed-loop DVFS to deliver target QoS
levels and uses the default HMP scheduling framework as op-
posed to the proposed thermally-efficient thread mapping.

Evaluation methodology: We evaluate policies under 3
target QoS levels for each application, corresponding to high,
medium and low performance, determined based on how
much QoS degradation is observed (Figure 1a). For instance,
we omit the 70% target QoS case if throttling does not in-
cur degradation below 70% of the maximum QoS when using
the default management. We run each application up to 13
minutes. This duration provides long enough execution to
cause thermal throttling in all QoS levels and allows us to
determine the exact sustainable duration before the thermal
headroom is fully exhausted. For QScale and DVFS-only
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Figure 10: Average and standard deviation of QoS when
using QScale under different target QoS levels.

policies, sustained QoS duration is the same as the overall
duration before reaching thermal threshold where policies
are able to maintain target QoS levels. For the default man-
agement, we report the time QoS was above each target
level throughout the execution. We measured the maximum
temperature as 59◦C when idle. To achieve consistent tem-
perature measurements, before each experiment, we cool the
system below to 59◦C using the fan and leave the platform
idle for 15 minutes in order for temperature to stabilize.

Meeting QoS targets: Figure 10 demonstrates QScale’s
ability to meet the target QoS levels for each application.
The figure plots average QoS and standard deviation for dif-
ferent QoS targets. While QScale meets the target QoS lev-
els with only 3.8% deviation on average, we observe higher
variation in specific applications. Gaming workloads (Edge
of Tomorrow, Real Racing) and video player (Rock Player)
incur higher deviation (6.6% in the worst case) as such ap-
plications have high dynamism due to scene changes and
respective sudden variation in the processing requirements.

Extending sustainable QoS with QScale: Figure 12
demonstrates the sustained QoS durations. Sustained QoS
durations increase as we lower the QoS requirements (left to
right). This is intuitive as DVFS-only and QScale policies
can lower the frequency and operate for longer durations
without causing thermal throttling. The default policy also
provides longer durations above the target QoS levels as it
takes longer time for QoS to degrade to lower levels. QS-
cale consistently provides the highest durations compared to
both default management and DVFS-only policy.

For aquarium, we observe the shortest sustained dura-
tions. For instance, even using QScale at 60% target QoS,
we are able to sustain this level only for 200 seconds. This
application has the highest power consumption (1.18W CPU
and 1.2W GPU average power at 60% QoS) and quickly ex-
hausts the thermal headroom, leading to aggressive thermal
throttling and QoS loss. bodytrack provides higher gains in
sustained durations for the higher two QoS targets. For in-
stance, while the default management and the DVFS-only
policies cannot sustain 100% and 90% QoS levels for more
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Figure 11: QoS/power
scaling for bodytrack.

than 15 and 130 seconds
respectively, QScale delivers
these QoS targets for 125 and
330 seconds (more than 8x and
2.5x longer). To illustrate the
insight behind this result, in
Figure 11, we show QoS and
power at different big cluster
DVFS levels when HMP sched-
uler or criticality-aware map-
ping is enabled. By moving the
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Figure 12: Sustained QoS durations with default manage-
ment (Interactive Governor + HMP scheduler), DVFS-only
and QScale policies under different QoS targets.

threads that bring the most QoS gains onto big cluster, QS-
cale delivers the maximum QoS levels achieved using the
HMP scheduler at much lower big core frequencies. For the
two gaming applications, Edge of Tomorrow and Real Rac-
ing, QoS is dominated by a single thread with a relatively
high CPU usage as shown in Figure 6 and Figure 7. QScale
and HMP scheduler only schedules this thread to the big
cluster, which is indicated by the similar usage of big clus-
ter (22%-25% for both games). Therefore, the benefits of
QScale are primarily due to thermally-efficient selection of
core for execution. QScale achieves distinctively higher im-
provements across all QoS configurations for Rain and Rock
Player. In these cases, QScale leverages the thread critical-
ity information generated via offline thread characterization
and reserves the big cores only for the QoS-critical threads,
thus preventing the power-hungry big cores from quickly ex-
hausting the thermal headroom.

Figure 13 illustrates QoS and maximum chip tempera-
ture traces for the Rain application when target QoS level
is set to 90% of the maximum. While the default policy
initially provides slightly (5%) higher QoS, it reaches the
thermal limit immediately and leads to QoS degradation
due to thermal throttling. For the DVFS-only policy, QoS
starts to degrade after 95 seconds as the baseline scheduler
greedily moves the non-critical application threads with high
CPU usage onto big cluster. QScale schedules only the QoS-
critical threads on the big cores in addition to controlling
the DVFS, and extends the sustainability of the target 90%
QoS level up to 440 seconds. In addition, QScale monitors
the GPU power and assigns the threads onto the thermally-
efficient big cores. In this example, Core-0 and Core-3 are
prioritized for execution as seen by their higher utilization
in the bottom left plot in Figure 13.

Figure 14 shows the QoS and temperature traces for Rock
Player under a desired QoS level of 100%. While the DVFS-
only policy starts throttling shortly after the 100% QoS re-
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Figure 13: QoS and temperature traces of Rain application
for the default management, DVFS-only and QScale policies
for a target QoS level of 90%. Bottom figures show the aver-
age per-core utilization for QScale and DVFS-only policies.

quirement is met, QScale can deliver this maximum QoS
target for two minutes by preventing non-critical applica-
tion threads from greedily executing on the power-hungry
cores and quickly elevating temperature. For this case, QS-
cale achieves a 19% lower average big cluster utilization, as
compared to the 47% utilization of the DVFS-only policy.

Adapting to dynamic QoS targets: QoS requirements
may be altered during the application execution due to vari-
ous reasons such as changes in user preferences, low battery,
or low thermal headroom. We demonstrate QScale’s ability
to dynamically respond to changes in QoS requirements by
modulating the target QoS level during the execution of the
Edge of Tomorrow game. Figure 15 presents the QoS trace
from this experiment and shows that QScale closely tracks
dynamically altered target QoS levels.

5. RELATED WORK
Energy and Thermal Management: The idea of trad-
ing off accuracy or QoS with power appears in several prior
energy management methods. PowerDial [16] elastically per-
forms accuracy tradeoffs by dynamically tuning the applica-
tion parameters under power caps. Zhu et al. [31] propose a
runtime framework that trades off response time in latency-
sensitive mobile web applications for energy savings.

Most prior work has focused on energy and reliability op-
timization on systems with homogeneous CPU cores. Kadjo
et al. [19] propose a joint CPU-GPU control policy that
minimizes DVFS levels during frequency insensitive phases
of mobile games while delivering the maximum QoS. Das et
al. [9] propose a reinforcement learning algorithm that con-
trols CPU affinity and DVFS levels to simultaneously opti-
mize peak, average temperature and thermal cycling. Sahin
et al. [27] propose a closed-loop DVFS policy to minimize

0 100 200 300 400 500
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

Q
o
S

QScale DVFS-only

0 100 200 300 400 500

Time (secs)

60

65

70

75

80

85

M
a
x
 T

e
m

p
. 
(◦

C
)

Figure 14: QoS and temperature traces of the Rock Player
multimedia player application with DVFS-only and QScale
policies for maximum target QoS level (100%).

temperature while meeting a given QoS constraint. To the
best of our knowledge, there is no prior work that addresses
the QoS-temperature tradeoffs achieved via scheduling and
DVFS decisions on a real-life heterogeneous mobile CPU.

Some earlier work has conducted thread criticality analy-
sis to guide DVFS on homogeneous multi-core systems (e.g.,
[7]). Our work, in contrast, determines critical threads in
terms of their potential benefits when running on big cores.

Scheduling and Energy Management on Heteroge-
neous CPUs: Some of the prior scheduling techniques
maximize overall throughput on heterogeneous multi-cores
running multi-program workloads. Koufaty et al. [21] dy-
namically monitor several hardware events to guide load
balancing decisions in the Linux scheduler. Other work
[22] relies on application profiling on all core types to guide
scheduling. On a big.LITTLE mobile platform, Hsiu et al.
[17] achieve energy savings by providing more CPU resources
to foreground applications while leveraging the little core
cluster for background applications. Our work focuses on
single foreground application scenario but identifies the het-
erogeneity within the application threads, which we use to
perform thermally-efficient scheduling.

Pricopi et al. [24] propose a real-life power budgeting
framework on a big.LITTLE system where target QoS of
multiple single-threaded self-adaptive applications [15] are
adjusted reactively. Various application-specific energy man-
agement policies have been proposed for heterogeneous mo-
bile CPUs. Zhu et al. [32] analyze web-page features to
determine DVFS settings while meeting latency constraints.
Pathania et al. [25] derive offline performance estimation
heuristics to guide big/LITTLE core allocation for multi-
threaded mobile games and achieve energy savings without
impacting the peak user experience.
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Figure 15: Adapting to dynamic QoS targets with QScale
while running the Edge of Tomorrow gaming application.



Thermal Management on Heterogeneous CPUs: The-
re has been relatively limited prior work that study the
single-ISA heterogeneous CPUs from a temperature per-
spective. Sharifi et al. [29] propose a job allocation strat-
egy for temperature balancing on a heterogeneous SoC to
mitigate negative effects of thermal variations. Kim et al.
[20] propose mDTM, which alternates between the peak per-
formance and little core operation to allow for longer time
spent at the highest performance state. Their technique
shortens the overall execution time for CPU-bound appli-
cations with high frequency scalability. Singla et al. [30]
provide a thermal modeling methodology using a real-life
big.LITTLE platform and present a proactive DTM pol-
icy to prevent thermal violations. Our paper maximizes
the duration before a thermal violation occurs by provid-
ing thermally-efficient QoS management. In a study which
points to CPU-GPU thermal coupling effects in AMD’s fused
architectures, Paul et al. [26] limit the maximum CPU fre-
quency to leave larger thermal headroom for boosting GPU
power. In contrast, QScale recognizes such coupling effects
to make thermally-efficient CPU core allocation decisions in
low-TLP mobile applications.

This paper differentiates from the prior work as follows:
(1) We show that greedily utilizing power-hungry cores sig-
nificantly degrades user experience over extended durations
due to thermal throttling; (2) we demonstrate the depen-
dence of thermally-efficient core allocation decisions on dy-
namic CPU-GPU thermal couplings; (3) we show that QoS
is dominated by a few QoS-critical threads and leverage this
observation for thermally-efficient scheduling; (4) we pro-
pose a coordinated DVFS and thread allocation policy that
simultaneously caters to both hardware and application het-
erogeneity.

6. CONCLUSION
This paper identifies the throttling-induced performance

drawbacks of current DVFS and scheduling policies in mo-
bile platforms with heterogeneous CPUs. We show that
greedily maximizing performance under thermal restrictions
using big cores can provide short bursts of high QoS, but
at the expense of significant QoS degradations over extended
durations. The proposed QScale policy provides thermally-
efficient QoS management for mobile applications. By re-
stricting the use of high-performance cores to a relatively low
number of QoS-critical threads and monitoring the CPU-
GPU thermal coupling for thermally-efficient core alloca-
tion, QScale slows down heating and provides users with up
to 8x longer durations of sustainable QoS.
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