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ABSTRACT
Continued CMOS scaling accompanied with a stall in the

voltage scaling has led to high on-chip power densities. High
on-chip power densities elevate the temperatures, substantially
limiting the performance and reliability of computing systems.
The use of Phase Change Materials (PCMs)1 has been explored
as a passive cooling method to manage excessive chip tempera-
tures. The thermal properties of PCMs allow a large amount of
heat to be stored at near-constant temperature during the phase
transition. This heat storage capability of PCM can be leveraged
during periods of intense computation. For systems with PCM,
development of new management strategies is essential to maxi-
mize the benefits of PCM. In order to design and evaluate these
management strategies, it is necessary to have an accurate PCM
thermal model. In our recent work, we proposed a detailed phase
change thermal model, which we integrated into a compact ther-
mal simulation tool, HotSpot. In this paper, we build a hardware
testbed incorporating a PCM unit on top of the chip package. We
then validate the accuracy of our previously proposed thermal
model by comparing the HotSpot simulation results against the
measurements on the testbed. We observe that the error between
the measured and simulated temperatures is less than 4oC with
0.65 probability. Finally, we implement a soft PCM capacity sen-

1PCM has also been used when referring to phase change memory in the
literature. This paper focuses on using phase change materials as thermal buffers,
and not on memories built with PCM.

sor that monitors the remaining PCM latent heat capacity to be
used for development of thermal management policies. We eval-
uate a set of thermal management policies on the testbed. We
compare policies that adjust the sprinting frequency based on
current temperature against the policies that take action based
on the remaining PCM capacity.

NOMENCLATURE
PCM Phase Change Material
V/ f Voltage/frequency
T Temperature
T1 Onset temperature of phase change
T2 End temperature of phase change
cps Specific heat capacity of the PCM in solid phase
ctr Specific heat capacity of the PCM during phase transition
cpl Specific heat capacity of the PCM in liquid phase
TCPU Average temperature of the CPU cores
TPCM PCM temperature
TAMB Ambient temperature
PNET Net power input to the PCM
ESTORED,t Latent heat energy stored in the PCM at time t
RSi to PCM Equivalent thermal resistance from silicon to PCM
RPCM to AIR Equivalent thermal resistance from PCM to air
tsampling Temperature sampling interval
ci Fitting constants for equivalent resistance calculation
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INTRODUCTION
Thermal management of processors is becoming an increas-

ingly difficult challenge, as CMOS scaling trends lead to higher
on-chip power density by allowing more transistors in a smaller
area. High temperatures are especially challenging in the mo-
bile space where devices can typically only accommodate pas-
sive cooling methods (i.e., active cooling methods require ad-
ditional power, area, and cost, and thus are often not feasible).
Elevated temperatures increase leakage power and also degrade
performance, as the built-in mechanisms on the processors turn
off or slow down cores in case of a thermal emergency.

To address the challenge of implementing thermal efficiency
without using active cooling, Phase Change Materials (PCMs)
have been used as a passive cooling solution [1–4]. PCM can
store large amounts of heat, referred to as latent heat, during
phase change at a close-to-constant temperature. Having this
thermal property, PCM acts as a large thermal capacitor, limiting
the rise in temperature during phase transition. Thus, it provides
a smoother chip thermal profile and allows performance boosting
strategies such as computational sprinting [1].

In computational sprinting the system temporarily exceeds
its Thermal Design Power (TDP) to respond to short bursts of in-
tense computation. In this context, PCM has been used to extend
sprinting duration for higher performance gains [1–4]. For the
design and realistic evaluation of management strategies lever-
aging PCM, having an accurate PCM model is essential. Failing
to do so results in inefficient use of the PCM capabilities and
suboptimal management policies. Recent work shows the nega-
tive impact of using inaccurate models on the resulting runtime
management decisions [5].

A significant portion of the existing work on PCM-oriented
thermal management relies on simpler phase change models
[1, 3]. Other work in the area demonstrates the benefits of PCM
on a thermal test chip [4], or on a testbed [2]. Having a testbed
has many advantages in terms of showing the applicability of
the proposed strategies and including the real-life effects that
are hard to capture in a simulation environment. On the other
hand, simulation with an accurate PCM model is necessary to
design policies that target a variety of platforms with different
technology nodes, core counts, power consumption levels and
such. For this purpose, in our prior work we proposed a detailed
PCM thermal model [5], and validated the accuracy of the model
by comparing its results against computational fluid dynamics
(CFD) simulations. However, none of the previously proposed
PCM models has been compared against real-life measurements
on a testbed with PCM.

Our specific contributions in this paper are as follows:

• We build a hardware testbed with a PCM unit installed on
top of the chip package. We create a model of our testbed
using HotSpot [6] thermal simulator with the integrated de-
tailed PCM model from our previous work [5]. We then val-

idate the accuracy of the PCM model by comparing the tem-
perature traces obtained from HotSpot simulations against
the ones measured on the testbed. Transient simulations
show that the error between the measured and simulated
temperatures is less than 4oC with 0.63 probability.

• We design a soft PCM capacity sensor that monitors the
remaining PCM capacity (i.e., the remaining amount of la-
tent heat energy that can be stored in the PCM) to be used as
part of practical PCM-aware runtime management policies.
Having a soft PCM sensor is beneficial as it gives informa-
tion on the PCM state and how much longer the system can
sprint.

• We evaluate a set of thermal management policies on the
testbed. We compare policies that adjust the sprinting fre-
quency based on current temperature against the policies that
take action based on the remaining PCM capacity. Our re-
sults show that proactively monitoring the PCM capacity im-
proves performance by up to 4.5% compared to the baseline
DVFS policy.

RELATED WORK
PCM has been widely used in thermal management of pro-

cessors. The existing work on PCM can be divided into two main
groups: (1) using PCM as a heat spreader or heat sink enhancer,
(2) exploiting PCM as part of performance boosting strategies.

The first group of work focuses on designing more efficient
heat spreader or heat sink units by incorporating PCM in the
cooling package [7–11]. Tan et al. show the benefit of PCM
by performing CFD simulations on a mobile phone with a PCM
filled heat storage unit [8]. Alawadhi et al. study the effective-
ness of a thermal control unit involving PCM and a thermal con-
ductivity enhancer on a portable electronic device using experi-
mental and numerical analysis [7]. Other research aim at saving
energy by designing hybrid heat sinks incorporating PCM [9,10].
Low thermal conductivity of the PCM is a major limiter on its
benefits. Recent work addresses this problem by proposing the
use of metal-PCM composites as heat spreaders in mobile de-
vices [11]. In this work, authors show the tradeoff between ther-
mal conductivity and latent heat capacity by performing a para-
metric analysis on the metal fraction of the composite.

The second group of work centers around designing perfor-
mance boosting policies that exploit the PCM properties [1–4].
Raghavan et al. introduce computational sprinting, exceeding
the TDP of the processor temporarily to respond to short dura-
tions of intense computation. PCM has been proposed to extend
sprinting duration in this context and a simple PCM model has
been used to simulate the benefits of PCM. The follow up of this
work verifies the feasibility of computational sprinting on a hard-
ware/software testbed [2]. The concept of sprint pacing is intro-
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duced in this work, which is switching to lower intensity sprint-
ing mode when half of the PCM has melted. Other research in
the area focuses on developing techniques to sprint periodically
for longer durations [3, 4]. Tilli et al. propose computational
re-sprinting for periodic hard deadline tasks, which adjusts the
voltage/frequency (V/f) settings of the cores to reserve the mini-
mum amount of PCM capacity for the next sprinting period [3].
They evaluate the benefits of their policy using a simple PCM
model and simulations. Shao et al. consider repeated sprints by
alternating between sprint and rest modes based on a predefined
duty cycle [4]. They evaluate the benefits of the technique on a
thermal test chip with an integrated on-chip phase change heat
sink as a proxy for a smart phone processor. Kaplan et al. pro-
pose a detailed PCM thermal model [5], and validate it against a
CFD model.

Some of the prior work on PCM management monitors the
PCM state (i.e., the remaining PCM capacity) as part of the
sprinting strategy [1, 3]. However, they implement the PCM
monitors in simulation environment based on a priori character-
ization of power and temperature. For example, Raghavan et al.
use McPat to estimate the energy consumption of the cores and
assume that all of this energy is stored in the PCM [1]. On the
other hand, Tilli et al. use a simpler PCM thermal model, where
the PCM temperature is assumed to stay constant at all points on
the PCM during melting [3].

Our work is the first to experimentally validate a PCM ther-
mal model on a hardware testbed. Our testbed uses a mobile
development platform and a custom-designed PCM unit on top.
We run real benchmarks on the testbed and show the accuracy
of our PCM thermal model [5]. We also implement and evalu-
ate for the first time a soft PCM capacity sensor that monitors
the remaining PCM capacity at runtime based temperature mea-
surements and equivalent thermal resistances of the package on
a hardware testbed.

METHODOLOGY
Testbed Setup

We design and build the hardware testbed with the following
goals in mind:

• Provide a computing platform that acts as a proxy for a
mobile computing device fitted with a PCM-based thermal
management solution.

• Provide data acquisition setup that measures the CPU
power consumption, CPU core temperatures, and PCM tem-
perature in order to evaluate the performance of the PCM-
based thermal management solution.

Computing Platform. We use an Inforce Computing IFC6410
single-board computer (SBC) as our computing platform. The

platform is powered by a Qualcomm Snapdragon 600 System-
on-Chip (SoC), which includes a quad-core 1.2 GHz mobile pro-
cessor (with a 2 MB shared L2 cache) commonly found in mod-
ern mobile devices. The IFC6410 provides 2.0 GB of RAM,
and runs Android 4.1. The Snapdragon processor does not have
a heat sink, thus, the processor is normally exposed to ambient
air. We build a copper box enclosure that holds the PCM, and
fit the copper box enclosure with a thermocouple that is directly
exposed to the PCM. The physical dimensions of the copper box
are 15mm⇥ 15mm⇥ 5.5mm. We place the PCM enclosure on
top of the Snapdragon processor and hold them together with
compressive force using a custom-designed jig. We use a single
thermocouple to measure the PCM temperature and it is placed
at the bottom surface of the copper PCM container. Thermal
Interface Material (TIM), which is made of Arctic Silver 5 com-
pound, lies in between the processor die and the PCM enclosure.
Figure 1(a) shows the PCM enclosure mounted on the SBC. The
processor is located directly under the copper box. We use paraf-
fin wax as the phase change material. We use 0.175g of PCM,
which corresponds to a 1.02mm thickness. We report the thermal
specifications of the TIM and PCM in Table 2.

Data Acquisition. The data acquisition equipment records the
total power consumption of the SBC and the thermocouple tem-
perature, which is interpreted as the temperature of the PCM
layer. The Snapdragon SoC provides internal temperature sen-
sors which give readings on the individual CPU core tempera-
tures. The SBC runs our custom-built Android application to
read and record the CPU core temperature sensors, provides a
means for running benchmark tests, and employs thermal man-
agement policies.

Figure 1(b) illustrates our measurement setup. Power mea-
surements are sampled at a rate of 70 Hz using the Agilent
34410A multimeter in conjunction with the Agilent 34134A cur-
rent probe. PCM layer temperature is measured via the thermo-
couple and recorded by the Android application at a rate of 1.0
Hz. CPU core temperatures are recorded by the Android appli-
cation at a rate of 1.0 Hz. The CPU utilization incurred by the
Android application while recording these temperatures is less
than 0.1%.

Benchmark Applications. We run a selection of computational
kernels from the SciMark 2.0 Java benchmark [12], with small
problem sizes to focus on exercising CPU-intensive loads on the
testbed, i.e., the dataset used by the application is completely
contained in the cache. The selected applications are (i) Jacobi
Successive Over-Relaxation (sor), (ii) Sparse Matrix Multiply
(smult), and (iii) Dense LU Matrix Factorization (lu). Sor ex-
ercises typical access patterns in finite difference methods, smult
applies matrix multiplication on an unstructured sparse matrix,
lu computes the LU factorization of a dense 100⇥100 matrix.
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(a) (b)

FIGURE 1: (a) IFC6410 SBC with copper box holding PCM, fitted on top of the Qualcomm Snapdragon SoC, (b) Experimental setup
including the computing platform and the data acquisition equipment.

Modeling Phase Change in Thermal Simulators
We use the detailed phase change model proposed in our re-

cent work [5], which was validated against a CFD model and
provided 0.27oC root mean square error. This model was inte-
grated into a compact thermal simulator, HotSpot [6]. The PCM
model uses the basic 3D stacking feature in HotSpot, allowing
the user to define multiple layers of any desired material. Grid-
level simulation granularity provides fine-grained simulation by
dividing the floorplan into small cells and computing the temper-
ature for each grid cell.

Our PCM thermal model uses the apparent heat capacity
method [7] to model phase change behavior from solid to liquid
or vice versa. In this method, a nonlinear temperature-dependent
specific heat capacity is assigned to the PCM. Phase change from
solid to liquid occurs over a temperature interval, during which
the specific heat capacity of the PCM is set to a very high value
compared to the one in solid and liquid phases. A very high
specific heat capacity during phase transition indicates a very
low rate of change of temperature, and thus mimics the close-
to-constant temperature behavior of melting. The integral of the
specific heat capacity over the temperature interval represents the
latent heat of fusion stored in the PCM.

In our recent work [5] we modeled an on-chip PCM that lies
between the silicon die and the heat spreader. To implement the
model in HotSpot, we inserted a layer of PCM that lies on top of
the silicon layer as shown in Figure 2(a). The PCM layer has the
same floorplan as the silicon chip but it does not dissipate any
power. We modified HotSpot to define the melting point and la-
tent heat of fusion of the PCM. Each PCM grid cell is assigned a
temperature-dependent specific heat capacity as in Equation (1).
The specific heat capacity of each PCM grid cell is updated at
every time step following Equation (1):

(a) (b)

FIGURE 2: (a) Example chip package incorporating PCM; (b)
Snapdragon chip package as we modeled in HotSpot.

Cp,pcm(T ) =

8
<

:

cps T < T1
ctr T1  T  T2
cpl T > T2

(1)

where cps, cpl , and ctr are the specific heat capacities of solid,
liquid, and phase transition states, respectively. We use cps = cpl
as in prior work [13]. T1 is the onset temperature and T2 is the
end temperature of the phase transition. In our simulations, we
use a transition temperature interval of 1oC. We use hexacosane
paraffin as our PCM compound [14]. The melting temperature
of the paraffin PCM is 55oC, which corresponds to the center
point of the (T1, T2) interval. We set cps = 1.41 ·106J/m3K, and
ctr = 190.5 ·106J/m3K based on the physical properties of hexa-
cosane.

Modeling the Snapdragon Platform in HotSpot
For experimental validation of the proposed PCM thermal

model, we first need to create a physical model of the Snapdragon
platform in HotSpot. This is a rather challenging process because
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(a) (b)

FIGURE 3: (a) Snapdragon SoC floorplan used in the HotSpot
model; (b) Inferred location of the CPU cores shown on the chip.

we have limited information on the layout, specific locations of
the units and the power consumptions of the CPU cores. Thus, it
is essential to have good estimates on the geometry and the phys-
ical/thermal properties of the platform, as they have a significant
impact on the simulation results. This section describes how we
address this modeling challenge.

Snapdragon Floorplan. A detailed floorplan of the Qualcomm
Snapdragon 600 SoC that shows the locations and the sizes of
the cores and other units is not available. In order to estimate
the area of the individual CPU cores and the shared L2 cache,
we use McPat [15], an architectural modeling tool for multicore
processors. The total estimated area is 1.09mm2 for a CPU core
and 5.36mm2 for the L2 cache. The specific locations of the CPU
cores on the floorplan are estimated based on the position of the
dedicated core power supply (VCC) pads on the underside of the
package as seen in Figure 3(b). We define the rest of the SoC area
(i.e., the un-core area) as rectangular blocks. Figure 3(a) shows
the Snapdragon SoC floorplan we used in the HotSpot model.

Snapdragon Chip Layer Stack. We measure the thickness of
the Snapdragon chip as 900um, which includes the silicon die
and some packaging material. We estimate the silicon thickness
as 100um, which is typical at the 28nm technology node. For the
remaining 800um, we define thin layers (each 200um-thick) of
packaging material (See Figure 2(b)). Information on the pack-
aging material and its properties are not available. The general
approach in electronic packaging today is to use materials that
provide both electrical insulation and good thermal conduction
such as mica, silicon-impregnated cloth, and ceramic materi-
als. Examples include silicon dioxide (SiO2) and silicon nitride
(Si3N4) ceramic. Si3N4 is used as a final passivation layer on
chips. It prevents underlying silicon from being oxidized. Thus,
we assume Si3N4 in this work [16, 17].

As explained in the Testbed Setup section, we place a

Board&

components&

System&PMIC& 27.083&mW&

DDR3&PMIC& 3.0149&mW&

DDR3&(Standby&Power&

ConsumpDon)&
258&mW&

OnHchip&L2&cache&
Standby&power&consumpDon& 344&mW&

Peak&power&consumpDon& 847&mW&

Other&onHchip&components& 1.04W&–&1.31W&

CPU&power&(split&among&acDve&cores)& 0.1&W&–&11.9&W&

TABLE 1: Power values of the components on the board.

15mm ⇥ 15mm copper box on top of the processor to contain
the PCM. We modify the heat spreader properties in HotSpot to
account for the bottom surface of the copper box. As the Snap-
dragon SoC does not have a heat sink while HotSpot software
does not allow the removal of the heat sink, we model the heat
sink as our PCM by integrating the phase change model into the
package. We use a 1.02mm-thick paraffin wax as the PCM and
modify the heat sink parameters accordingly. We assume the
PCM does not vaporize and thus, the thickness of the PCM does
not change over time. A thin TIM layer (made of Arctic Sil-
ver 5 [18]) lies between the copper box and the packaging layers
to provide better contact. Figure 2(b) illustrates the Snapdragon
chip layer stack as we modeled in HotSpot. Table 2 provides a
summary of the material properties used in the HotSpot model.

Snapdragon Core and Un-core Power. On our testbed, we can
measure the system power (i.e., the total power going into the
SBC including CPU, RAM, and other chips on the board) as de-
scribed in Testbed Setup section. However, in HotSpot we focus
on the CPU, thus, we need the power consumption values of the
individual CPU cores and the un-core units defined as SoC units
in Figure 3(a). For this purpose, we first estimate the CPU power
as some portion of the total power, based on the datasheets of the
chips on the board. Note that we turn off wifi, GPS, and blue-
tooth units to isolate the CPU power. We do not use the GPU
unit either. Knowing the CPU power, we find the un-core power
based on the power difference observed when different number
of cores are activated (e.g., difference between the cases when
four cores are activated and zero cores are activated). We repeat
this core power estimation process across different V/f settings
and observe consistent trends. We distribute the un-core power
to individual SoC units proportional to their areas. Table 1 re-
ports the power values of the components on the board.

EXPERIMENTAL VALIDATION OF THE PHASE
CHANGE MODEL

In this section, we explain the details of how we experimen-
tally validate the proposed PCM thermal model on our hardware
testbed. We carry out two main sets of comparisons: steady state
temperature and transient temperature, and we report the errors
for both cases.
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Steady State Temperature Comparison
Steady state temperature is the temperature that the compo-

nents reach after operating at a stable power for longer than the
system’s thermal time constant. For the steady state experiments,
we consider the following configurations:

• We experiment with 4 different CPU frequency settings:
594, 810, 1026, or 1242 MHz.

• We turn on 1, 2, 3, or 4 CPU cores.

• We experiment with 4 different power traces: power traces
of 3 benchmark applications (successive over-relaxation
(sor), sparse matrix multiplication (smult), and lu factor-
ization (lu)) and power at idle state. For the experiments
at idle state, we turn on the cores, but keep them idle (i.e.,
no benchmark is running). For the experiments with bench-
mark applications, we run the applications until the system
reaches a steady temperature. As the original running time
of the applications are much shorter than the thermal time
constant of the processor, we run them in loops to generate
longer application traces.

During the experiments with a higher number of active cores
and higher V/f levels, the temperatures rise to critical levels, thus,
the built-in mechanisms throttle down the cores automatically.
We eliminate those cases from our evaluations as the tempera-
ture never reaches a stable value (i.e., the power and temperature
traces fluctuate continuously). By combining the configurations
listed above and eliminating the unstable cases, we experiment
with a total of 53 cases. For comparison purposes, we focus on
the temperatures of the individual CPU cores and the thermocou-
ple. The HotSpot counterpart of the thermocouple temperature is
the average PCM temperature.

Steady State Calibration. The default thermal parameters in
HotSpot represent an example processor package, which does
not necessarily match the characteristics of our hardware testbed.
Moreover, we do not have exact knowledge on the physi-
cal/thermal properties of each material on the Snapdragon pro-
cessor. Thus, we start off with the material properties that we
know of and we go through a calibration phase to match the ther-
mal behaviors of the model and the testbed. Two main package
parameters affect the steady state temperature: heat sink con-
vection resistance and heat sink thermal conductivity. As the
heat sink corresponds to the PCM, we initially assign the paraf-
fin wax thermal conductivity (0.25 W/mK) to it. However, this is
a pessimistic assumption and results in unreasonably high steady
state temperatures in HotSpot. This is because in reality, the side
surfaces of the copper box provides additional heat conduction
improving the low thermal conductivity of the paraffin wax. We
calibrate the PCM thermal conductivity to account for this ef-
fect and set it to 0.50 W/mK. The details of the package material
properties are presented in Table 2 with calibrated values speci-
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FIGURE 4: HotSpot model steady state error probability his-
togram.

fied in parenthesis.
Next, we compare the steady state temperatures measured

on the testbed against the ones obtained through HotSpot simu-
lations. Figure 4 is a histogram plot that shows the steady state
error probability. The x-axis represents the temperature error in-
tervals in oC and the y-axis shows the probability of having a
temperature error within the corresponding interval. We gener-
ate this plot using the following approach: (1) For each steady
state experiment, we compare the measured and simulated tem-
peratures across all units, and find the absolute steady state tem-
perature error for each unit. (2) To find the probability of hav-
ing a temperature error less than 1oC, for example, we count the
number of times we encounter an error that is less than 1oC. We
then divide this number by the total number of steady state ex-
periments. Error probability represents the degree of matching
between our simulations using the phase change model and the
real-life measurements. According to Figure 4, the steady state
temperature error is less than 4oC with 0.89 probability and less
than 2oC with 0.6 probability. The maximum, average and RMS
error for steady state experiments is 6oC, 1.9oC, and 2.37oC, re-
spectively.

Transient Temperature Comparison
For the transient temperature comparison, we use the same

set of configurations as described in the previous section, but this
time we use the transient benchmark power traces as input. Each
transient temperature experiment starts with an idle period of 10
seconds to let the system reach a stable temperature. We then run
the benchmark for its corresponding number of loops. Finally we
switch the system back to idle mode for a period of time. We ad-
just the duration of the second idle period such that each transient
experiment corresponds to a 60-second time frame. In HotSpot,
we use a 10ms sampling interval and initialize the simulations
with their corresponding steady state temperatures.

Transient Calibration. Both the thermal resistance and the ca-
pacitance play a role in the transient behavior. We have already

6 Copyright c� 2015 by ASME



Chip%Layers% Density%
(g/cm3)%

Thickness%
(mm)%

Length%(mm)%×%%
Width%(mm)%

Thermal%Conduc>vity%
(W/mK)%

Specific%Heat%
Capacitance%(J/m3K)%

Convec>on%
Resistance%(K/W)%

Convec>on%
Capacitance%(J/K)%

Silicon% 2.33$ 0.10$ 9.92$×$8.88$ 100.0$ 1.750$×$106$
$ -$ -$

Packaging%
(Si3N4)%

2.37$ 0.80$ 9.92$×$8.88$ 30.0$ 1.595$×$106$ -$ -$

TIM%
(Arc>c%Silver%5)% -$ 0.05$ 9.92$×$8.88$ 8.7$ 1.750$×$106$ -$ -$

Heat%Spreader%
(Copper%box)% 8.96$ 0.25$ 15.00$×$15.00$ 400.0$ 3.450$×$106$ -$ -$

Heat%Sink%(PCM)%
(Hexacosane)% 0.762$ 1.02$ 15.00$×$15.00$ 0.25$(original)$

0.50$(calibrated)$
cps$=$1.41$×$106$
ctr$=$190.5$×$106$

0.45$
(calibrated)$

20.0$
(calibrated)$

TABLE 2: HotSpot package material properties.

0.000#
0.050#
0.100#
0.150#
0.200#
0.250#
0.300#
0.350#
0.400#

<#
1.
0#

1.
0#
*#2

.0
#

2.
0#
*#3

.0
#

3.
0#
*#4

.0
#

4.
0#
*#5

.0
#

5.
0#
*#6

.0
#

6.
0#
*#7

.0
#

7.
0#
*#8

.0
#

>#
8.
0#

Pr
ob

ab
ili
ty
*

Temperature*Error*Intervals*(°C)*

CORE_0# CORE_1# CORE_2# CORE_3# THERMOCOUPLE#

FIGURE 5: HotSpot model transient error probability histogram.

calibrated the thermal resistances for the steady state. Thus, we
use the heat sink convection capacitance for transient calibration,
which determines how fast the heat sink responds to a change
in temperature. Table 2 shows the convection capacitance cali-
brated for our HotSpot testbed model.

Figure 5 represents the transient temperature error probabil-
ity on a histogram plot. We follow a similar approach to gener-
ate this plot: (1) For each time step of the transient simulation,
we compare the measured and simulated temperatures across all
units, and find the absolute transient error for each unit. (2) To
find the probability of having a temperature error less than 1oC,
for example, we count the number of times we encounter an er-
ror that is less than 1oC. We then divide this number by the
total number of simulation time steps. Figure 5 shows that the
transient temperature error between the measured and simulated
temperature is less than 4oC with 0.63 probability. The temper-
ature range in our experiments is 68oC, where 4oC of error cor-
responds to only 5.8%. On the other hand, the probability of
having a temperature error that is higher than 8oC is as low as
0.005. We also observe average and RMS error of 3.54oC and
3.76oC, respectively, for the transient simulations.

FIGURE 6: Comparison of temperatures for systems with and
without PCM.

IMPACT OF PCM ON THERMAL PROFILES
Before exploring the management strategies leveraging

PCM, we experimentally demonstrate the thermal benefits of us-
ing PCM as opposed to having no PCM.

Figure 6 compares the temperature traces measured on the
testbed with and without PCM. Note that the experiments with-
out PCM include the empty copper box. We run the smult ap-
plication using all 4 cores at 810 MHz for both cases. Figure 6
shows that using PCM reduces the peak temperature by 4.5oC.
We carry out the same comparison for the other benchmarks, V/f
levels and number of active cores. Table 3 reports the peak tem-
perature reduction values and shows that using PCM reduces the
peak temperature by up to 5.26oC, and by 2.75oC on average.

The benefit of PCM is not limited to peak temperature reduc-
tion. In the following sections, we demonstrate the performance
benefits of leveraging PCM in cooperation with computational
sprinting policies.

PCM CAPACITY SENSOR
Monitoring PCM capacity enables estimation of the remain-

ing sprinting capability. We implement a soft PCM capacity sen-
sor that monitors how much of the PCM remains unmelted at
runtime. Our soft sensor targets real life use as part of thermal
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    Experiments with number of active cores: 
 Across all 

experiments  1 core 2 cores 3 cores 4 cores 
 

°C %  °C % °C % °C % °C % 
Average 2.75 4.1  1.03 1.9 2.38 3.8 3.56 5.2 4.03 5.4 

Maximum 5.26 7.6  1.25 2.5 5.25 7.8 4.75 7.2 5.26 7.6 
Minimum 0.50 1.0  0.50 1.0 0.75 1.4 2.25 3.3 2.50 2.8 
Std. Dev. 1.53 2.0  0.26 0.5 1.37 2.0 0.93 1.2 1.05 1.7 

TABLE 3: Peak temperature reduction when using PCM com-
pared to not using PCM. The table provides oC reduction and
corresponding percentage.

management strategies. We then demonstrate a use case for the
soft PCM sensor by utilizing it in cooperation with a PCM-aware
thermal management policy.

Implementation of the PCM Sensor
The PCM capacity sensor is a counter that accumulates the

amount of latent heat energy stored in the PCM at a given time,
during phase change. At the beginning of the phase transition,
the amount of latent energy stored in the PCM is zero. In order
to fully melt, the PCM needs to store energy that is equal to its
latent heat of fusion. The PCM sensor estimates this stored en-
ergy by using the temperature sensor measurements and thermal
resistances of the package as follows: we estimate the heat enter-
ing the PCM from the silicon layer and exiting the PCM to the
ambient air. Using the temperature measurements on the CPU
cores and the PCM, we can estimate the net power entering the
PCM by using the following formula:

PNET =
TCPU �TPCM

RSi to PCM
� TPCM �TAMB

RPCM to AIR
(2)

ESTORED,t = ESTORED,(t�1) +PNET ⇥ tsampling (3)

where TCPU , TPCM and TAMB are the temperatures of the CPU
cores (we use the average of the four CPU cores), the PCM,
and ambient air, respectively. RSi to PCM and RPCM to AIR are the
equivalent thermal resistances seen from the silicon to PCM (in-
cluding the silicon layer, packaging layers, TIM, and the copper
box) and from PCM to air, respectively. In Equation (2), the
first term represents the power entering the PCM and the second
term represents the power exiting the PCM. ESTORED,t is the la-
tent heat energy stored in the PCM at time t and tsampling is the
sampling interval. We use tsampling = 1sec, as the CPU temper-
atures are recorded at a rate of 1.0 Hz. Equation (3) is a simple
accumulation operation, which approximates taking the integral
of the net input power over time.

Equations (2) and (3) incur negligible computation over-
head, since they consist of very few arithmetic operations. We
measure this overhead in terms of CPU utilization on our testbed.
We find that the PCM monitor overhead, including the tempera-
ture sensing and the calculations, is less than 0.4%, where 100%

corresponds to fully utilizing all 4 cores.
We re-compute RSi to PCM and RPCM to AIR dynamically at

runtime based on a model we construct for these thermal resis-
tance values. Based on supporting experimental observations, we
model RSi to PCM as proportional to the natural log of the differ-
ence in temperature between the CPU and PCM layer, as shown
in Equation (4). We model RPCM to AIR similarly, in Equation (5).

RSi to PCM = c0 · ln(TCPU �TPCM)+ c1 (4)
RPCM to AIR = c2 · ln(TPCM �TAMB)+ c3 (5)

To derive the constants c0, c1, c2, and c3, we first record
the CPU, PCM, ambient temperature, and CPU power dissipa-
tion while the system is idle. Using Equation (2), we solve for
RSi to PCM and RPCM to AIR by setting PNET to zero at steady state
(since temperatures are settled and the system is dissipating a
fixed amount of power). We assume that 50% of the heat gener-
ated by the CPU is dissipated to the PCM layer, while the rest is
dissipated to the PCB. Therefore, the first term of Equation (2) is
equal to 50% of the measured CPU power dissipation. We repeat
this experiment at various CPU frequencies to obtain RSi to PCM
and RPCM to AIR values that correspond to each frequency setting.
We plot RSi to PCM as a function of the temperature difference be-
tween CPU and PCM, and use the least squares method to obtain
a logarithmic regression line that best fits the plotted data points.
This yields the constants c0 = 0.7698 and c1 = 1.0726 for Equa-
tion (4). We use the same method to determine c2 =�11.32 and
c3 = 71.81, plotting RPCM to AIR as a function of the temperature
difference between PCM and air.

Evaluation of Runtime Management Policies
In this section, we evaluate various runtime management

policies. The first set of policies, which we denote as PCM-
agnostic policies, take action based on core temperatures only.
The second set of policies are PCM-aware management schemes,
which monitor the remaining PCM capacity and take actions
based on both PCM capacity and core temperatures. We describe
the details of the policies below.

PCM-Agnostic Policies

Basic Sprinting. As our baseline, we implement the computa-
tional sprinting policy from prior work [1]. In this policy, dur-
ing the sprinting mode, all four cores are activated until any of
the cores reach the critical temperature (i.e., 80oC for our case).
Once the critical temperature is reached, the system switches to
the sustained mode by migrating the threads to a single core and
turning off the rest of the cores. The operation continues in sus-
tained mode until the benchmark execution finishes.

Improved Sprinting. We implement this policy, which is not in-
cluded in prior work, as an improved version of the basic sprint-
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FIGURE 7: Benchmark running times for the policies and appli-
cation lengths normalized to basic sprinting.

ing policy. In this policy, when the system switches to sustained
mode, it does not stay in that mode until the benchmark finishes.
Instead, the policy allows switching back to sprinting mode once
the CPU temperature drops to a predefined value (i.e., 70oC).

Temperature Triggered DVFS (tt-dvfs). This is a well known
temperature triggered DVFS policy. This policy decreases the
V/f level in steps if any of the cores reach the critical temper-
ature (i.e., 80oC). When the temperature falls to a predefined
value (i.e., 70oC), the V/f is increased back in steps. We add a
feature to it such that it takes proactive action before hitting the
temperature threshold. Thus, when any of the cores reach 75oC
tt-dvfs decreases the V/f level by N steps. We test cases for N =
1, 2 (i.e., N = 1 means switching from 1242 MHz to 1026 MHz,
whereas N = 2 means switching from 1242 MHz to 810 MHz).

PCM-Aware Policy

A PCM-aware policy was proposed in prior work [2]. In this
policy, when the remaining PCM latent heat capacity falls to
50%, the system switches to a lower-intensity sprinting mode by
changing the V/f to a lower level. The aim is to use the PCM ca-
pacity at a lower rate, thus, extend the sprinting duration. In that
sense, this policy also has a proactive nature. This PCM-aware
policy uses a single PCM capacity threshold (i.e., 50%) mech-
anism. Depending on the application characteristics (i.e., appli-
cation length, power consumption level, V/f level versus perfor-
mance relationship), using different PCM capacity thresholds or
different sprinting intensities may provide higher performance.
We investigate this by experimenting with 3 parameters: (i) ap-
plication length (i.e., short, medium, long), (ii) the number of
steps N (i.e., N = 1, 2) to use when stepping down the V/f, (ii)
threshold for the remaining PCM capacity (i.e., 25%, 50%, 75%)
to analyze how they affect the resulting application performance.

RESULTS

Impact of Application Length. We first compare the sprinting,
improved sprinting, and PCM-aware policies to show the impact
of application length on the performance of each policy. For this

purpose, we run the sor benchmark application with 3 differ-
ent durations (short, medium, long). For the PCM-aware policy,
we examine three cases with varying remaining PCM capacity
thresholds: 25%, 50%, and 75%. For example, 25% thresh-
old means that the policy switches to lower-intensity sprinting
mode when the remaining PCM latent heat capacity falls to 25%.
For all policies, we set the CPU frequency to 1242 MHz during
sprinting mode. During the lower-intensity sprinting mode of
the PCM-aware policy, we step down the CPU frequency by one
step to 1026 MHz.

Figure 7 plots the benchmark application running time for
each policy, as compared to the running time of the basic sprint-
ing policy for each application duration. Smaller bars represent
faster running times. For short applications, the basic sprinting
performs the best, as it runs fast and finishes early without hitting
the temperature threshold in that short amount of run time. On
the other hand, PCM-aware 75% steps down the frequency and
operates at a lower-intensity sprinting mode even though ther-
mally it was not needed, which poses a performance penalty. For
medium and long duration applications, the basic sprinting pol-
icy starts to perform poorly, since it consumes the PCM capacity
to exhaustion fast and application is mostly executed with only
one active core. PCM-aware policies offer better performance
than the baseline policies by delaying temperature violation and
thus, avoiding single core operation for most of the execution.

tt-dvfs versus PCM-aware. Taking proactive actions before ex-
hausting the thermal headroom provides performance benefits.
This is because operating in high intensity modes uses up the
PCM capacity sooner, after which the cores spend significant
amount of time in the lowest V/f level. The next set of ex-
periments investigate the two policies, where the proactive de-
cisions are made based on core temperatures (i.e., when cores
reach 75oC for tt-dvfs) versus the remaining PCM capacity (i.e.,
PCM-aware). Figure 8 compares the running time resulting from
both policies. From the Figure, we see that PCM-aware 75%
gives 4.5% (N = 1) and 3.6% (N = 2) higher performance com-
pared to tt-dvfs, as it takes action earlier than the tt-dvfs. Average
CPU temperatures for the tt-dvfs and PCM-aware 75% cases are
75.4oC and 73.5oC, respectively. Moreover, with the tt-dvfs pol-
icy, cores spend 64% of the running time above 75oC, compared
to 20% when using the PCM-aware 75% policy.

One may adjust the 75oC temperature setting for the tt-dvfs
policy to match the behavior of PCM-aware 75%. However,
for applications with different power characteristics, PCM-aware
policies would take action at different temperatures as opposed to
tt-dvfs. For example, for a low power application, having a 75%
PCM capacity may correspond to a different CPU temperature
compared to a high power application.
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CONCLUSION
In this paper, we have implemented a hardware testbed with

a PCM container installed on top of the processor package. We
experimentally validate our previously proposed phase change
thermal model using the measurements on the testbed. Our tran-
sient simulations show that the error between the measured and
simulated temperatures is less than 4

o

C with 0.63 probability.
We then implement a soft PCM capacity sensor to monitor the re-
maining unmelted PCM at runtime. We evaluate a set of manage-
ment policies and show an example use of the PCM sensor. Ex-
perimental evaluation shows that using PCM-aware policy with
75% capacity threshold gives up to 4.5% higher performance
compared to tt-dvfs policy.
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