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Dynamic Cache Pooling in 3D Multicore Processors

TIANSHENG ZHANG, JIE MENG, and AYSE K. COSKUN, Boston University

Resource pooling, where multiple architectural components are shared among cores, is a promising technique
for improving system energy efficiency and reducing total chip area. 3D stacked multicore processors enable
efficient pooling of cache resources owing to the short interconnect latency between vertically stacked layers.
This article first introduces a 3D multicore architecture that provides poolable cache resources. We then
propose a runtime management policy to improve energy efficiency in 3D systems by utilizing the flexible
heterogeneity of cache resources. Our policy dynamically allocates jobs to cores on the 3D system while
partitioning cache resources based on cache hungriness of the jobs. We investigate the impact of the proposed
cache resource pooling architecture and management policy in 3D systems, both with and without on-chip
DRAM. We evaluate the performance, energy efficiency, and thermal behavior for a wide range of workloads
running on 3D systems. Experimental results demonstrate that the proposed architecture and policy reduce
system energy-delay product (EDP) and energy-delay-area product (EDAP) by 18.8% and 36.1% on average,
respectively, in comparison to 3D processors with static cache sizes.

Categories and Subject Descriptors: C.4 [Performance of Systems]

General Terms: Design

Additional Key Words and Phrases: Policy, energy efficiency, cache resource pooling, 3D stacking, runtime
policy

ACM Reference Format:
Tiansheng Zhang, Jie Meng, and Ayse K. Coskun. 2015. Dynamic cache pooling in 3D multicore processors.
ACM J. Emerg. Technol. Comput. Syst. 12, 2, Article 14 (August 2015), 21 pages.
DOI: http://dx.doi.org/10.1145/2700247

1. INTRODUCTION

3D integration technology is a promising design technique for integrating different
technologies into a single system, increasing transistor density, and improving system
performance [Black et al. 2006; Loh 2008]. Most prior work exploits the performance
or energy efficiency benefits of 3D processors by considering fixed, homogeneous com-
putational and memory resources (e.g., Black et al. [2006] and Loh [2008]). Fixed
homogeneous resources, however, cannot always meet potentially diverse resource re-
quirements (e.g., different cache and memory usage) for applications running on a
system. Heterogeneous multicore design is proposed as a solution to this challenge by
including cores with different architectural resources in one chip. Nevertheless, hetero-
geneous design is traditionally more challenging compared to homogeneous design, and
also does not necessarily provide the desired flexibility to adapt to dynamic resource
requirements.

Resource pooling, where components of a core are shared by other cores, enables
flexible heterogeneity (each core can adjust its hardware resources flexibly) in a multi-
core processor, and thus is an alternative design technique. The flexible heterogeneity
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provided by resource pooling can address various resource requirements from
applications by reconfiguring the resources among cores with the same architecture
[Ipek et al. 2007; Ponomarev et al. 2006]. Due to substantial benefits in reducing total
chip area and improving system energy efficiency, resource pooling has drawn atten-
tion in multicore processor design. Several resource pooling designs and scheduling
strategies have been proposed for multicore processors (e.g., Zhuravlev et al. [2010]
and Martinez and Ipek [2009]). However, in conventional 2D processors, resource shar-
ing is limited by the long access latency of remote shared resources in the horizontal
dimension. Sharing resources across the chip becomes particularly inefficient for a
large number of cores and large chip sizes.

3D stacked processors include through-silicon vias (TSVs) to connect the layers. TSVs
can be used for pooling resources among different layers, owing to their short length
and low latency. A resource pooling technique for 3D systems with identical layers was
recently proposed to allow vertically pooling performance-critical microarchitectural
components such as register files and load/store buffers [Homayoun et al. 2012] us-
ing TSVs. This work, however, does not consider pooling cache or memory resources.
Considering the significance of the memory resources to application performance, we
believe that cache resource pooling can provide additional heterogeneity of resources
among the cores at low cost and can bring substantial energy efficiency improvements.

In this article, we first propose a cache resource pooling architecture for 3D systems
with identical layers. Then, we design a runtime policy for the proposed architecture
to manage poolable cache resources according to the characteristics of workloads on
the system (e.g., instructions retired and cache access behavior), while considering the
trade-offs between performance and energy. Our contributions are as follows.

—We introduce a 3D cache resource pooling architecture where the 3D system consists
of homogeneous logic layers. This architecture requires minimal additional circuitry
and architectural modifications in comparison to using static cache resources.

—We propose a novel application-aware job allocation and cache pooling policy. Our
policy predicts the cache resource requirements of different applications by collecting
performance counter data at runtime and determines the most energy-efficient cache
size for each application. The job allocation policy places jobs with complementary
cache characteristics on adjacent layers in the stack to improve efficiency.

—We evaluate the proposed method on 3D systems both with and without DRAM
stacking. We provide a memory latency computation model that uses an M/D/1 queu-
ing model for accurate performance characterization of 3D systems with stacked
DRAM.

—We evaluate the proposed dynamic cache resource pooling technique for both high-
performance and low-power 3D multicore processors, explore its scalability to a 3D
processor with a larger number of cores, and also investigate the corresponding
thermal behavior. Our experimental results show that, for a 4-core 3D system, cache
resource pooling reduces system energy-delay product (EDP) by 18.8% and system
energy-delay-area product (EDAP) by 36.1% on average compared to using fixed cache
sizes. For a 16-core 3D processor, our technique reduces EDP by up to 40.4%.

The rest of the article starts with an overview of related work. In Section 3, we discuss
the motivation for runtime cache and DRAM management. Section 4 introduces the
proposed 3D cache resource pooling architecture. Section 5 presents our application-
aware workload allocation and cache resource pooling policy. Section 6 provides the
experimental methodology. Section 7 quantifies the benefits of the proposed architec-
ture and runtime policy, and Section 8 concludes.
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2. RELATED WORK

Resource pooling and the corresponding runtime management in traditional 2D mul-
ticore systems have been studied extensively, while for 3D systems, resource pooling
architectures and well-designed management policies remain as open problems.

2.1. Resource Pooling

Prior work on resource pooling has mainly focused on 2D multicore systems. Ipek
et al. [2007] propose a reconfigurable architecture to combine the resources of simple
cores into more powerful processors. Ponomarev et al. [2006] introduce a technique to
dynamically adjust the sizes of performance-critical microarchitectural components,
such as reorder buffer or instruction queue. However, as the number of on-chip cores
increases, the long access latency between resources on 2D chips makes it difficult to
get fast response from the pooled resources. In 3D architectures, stacking the layers
vertically and using TSVs for communication enable short access latency among on-chip
resources. Homayoun et al. [2012] were the first to explore microarchitectural resource
pooling in 3D stacked processors for sharing resources at a fine granularity. Their
work, however, does not investigate the potential of pooling cache resources. Since the
cache is also a performance-critical component in computer systems, an architecture
with cache resource pooling in 3D systems can bring performance improvements to
the system. However, none of the prior work investigates cache resource pooling in 3D
systems.

2.2. Cache Partitioning and Reconfiguration

Cache sharing and partitioning have been well studied in 2D multicore systems.
Varadarajan et al. [2006] propose molecular caches that create dynamic heterogeneous
cache regions. Qureshi and Patt [2006] introduce a low-overhead runtime mechanism
to partition caches between multiple applications based on the cache miss rates. Chiou
et al. [2000] propose a dynamic cache partitioning method via columnization. However,
the benefits of cache sharing in 2D systems are highly limited by the on-chip intercon-
nect latency. Kumar et al. [2005] demonstrate that sharing the L2 cache among multiple
cores is significantly less attractive when the interconnect overheads are taken into
account.

Cache design and management in 3D stacked systems have been investigated re-
cently. Sun et al. [2009] explore the energy efficiency benefits of 3D stacked MRAM L2
caches. Prior work on 3D caches and memories either considers integrating heteroge-
neous SRAM or DRAM layers into 3D architectures (e.g., Meng et al. [2012] and Jung
et al. [2011]) or involves major modifications to conventional cache design (e.g., Sun
et al. [2009]). Compared to such heterogeneous 3D systems, a 3D system with homoge-
neous layers and resource pooling features is more scalable to a larger number of cores
and a wider range of workloads.

2.3. Runtime Management of Multicore Systems

To manage on-chip resource pooling among cores, an intelligent runtime policy is re-
quired. Recent research on runtime policies in 2D systems generally focuses on improv-
ing performance and reducing the communication, power, or cooling cost through job
allocation. For example, Snavely and Tullsen [2000] present a mechanism that allows
the scheduler to exploit workload characteristics for improving processor performance.
Das et al. [2012] propose an application-to-core mapping algorithm to maximize sys-
tem performance. Bogdan et al. [2012] propose a novel dynamic power management
approach based on the dynamics of queue utilization and fractional differential equa-
tions to avoid inefficient communication and high power density in networks-on-chip.
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Fig. 1. IPC of SPEC CPU 2006 benchmarks for increasing L2 cache size. The IPC values are normalized
with respect to using a 256KB L2 cache.

Dynamic job allocation on 3D systems mostly addresses the power density and ther-
mal challenges induced by vertical stacking. For example, dynamic thermally aware
job scheduling techniques use the thermal history of the cores to balance temperature
and reduce hotspots [Coskun et al. 2009a; Zhu et al. 2008]. Hameed et al. [2011] pro-
pose a technique to dynamically adapt core resources based on application needs, and
thermal behavior to boost performance while maintaining thermal safety. Prior work
has not considered cache resource pooling among cores at runtime.

2.4. Distinguishing Aspects from Prior Work

To the best of our knowledge, our work is the first to propose a cache resource pooling
architecture complemented with a novel dynamic job allocation and cache pooling
policy in 3D multicore systems, which requires minimal hardware modifications. Our
dynamic job allocation and cache pooling policy differentiates itself from prior work as it
partitions the available cache resources from adjacent layers in the 3D stacked system
in an application-aware manner and utilizes the existing cache resources to maximum
extent. Compared to our earlier work on cache resource pooling [Meng et al. 2013],
we evaluate the performance, energy efficiency, and thermal behavior of multicore 3D
systems both with and without DRAM stacking. We also compare our research with
the most related previous work: selective way cache architecture [Albonesi 1999]. In
addition, this article improves the performance model of the 3D system with stacked
DRAM by introducing a detailed, accurate memory access latency model for on-chip
memory controllers.

3. MOTIVATION

Modern processors get significant performance improvement from caches. Generally
speaking, CPU performance is increasing along with cache size. However, larger caches
consume higher power and bring varying performance improvements for different ap-
plications due to their varying cache usage. Thus, depending on the applications, the
optimal cache size to achieve the best energy-delay product (EDP) may differ. In homo-
geneous 3D stacked systems, each core on each layer has a fixed-size L2 cache which
potentially restrains the system’s performance and energy efficiency. In this section,
we investigate the impact of L2 cache size on performance and energy efficiency of
various applications. Although we focus on the L2 cache in this article, our work can
also be applied to other levels of cache in computer systems.

To quantify the impact of L2 cache, we simulate a single core with varying L2
cache size (from 0KB to 2048KB with a step of 256KB) and compare performance
and power results for applications in the SPEC CPU 2006 benchmark suite. We use
Gem5 [Binkert et al. 2006] for performance simulation, and McPAT [Li et al. 2009] and
CACTI 5.3 [Thoziyoor et al. 2008] for computing the core and cache power, respectively
(details of our simulation methodology are presented in Section 6). Figure 1 shows the
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Fig. 2. Power consumption of SPEC CPU 2006 benchmarks under cache size from 256KB to 2048KB.

Fig. 3. IPC improvement of SPEC CPU 2006 benchmarks for changing to stacked DRAM.

normalized IPC of all applications under different L2 cache configurations. As shown
in Figure 1, among all applications, soplex, omnetpp, and bzip2 have significant per-
formance improvement at large L2 cache size of up to 1.8x. We call such applications
cache-hungry applications. On the other hand, applications such as bwaves barely ben-
efit from an L2 cache larger than 256KB. Figure 2 shows the total power consumption
for all applications under the same cache configurations. For all applications, power
consumption increases as the L2 cache size goes up. Figure 1 and Figure 2 indicate
that, while some applications’ EDP strongly benefit from large caches, others have
marginal or no benefits. Such variance of IPC and power motivates tuning the cache
size used by applications to optimize system EDP.

Furthermore, the memory access behavior also differs among applications, thus the
memory architecture is another factor affecting performance and energy efficiency. Due
to the small area of TSVs, an on-chip 3D stacked DRAM architecture [Loh 2009] enables
multiple on-chip memory controllers, which allows for parallel memory accesses. As a
result, the average queuing latency in memory controllers is shortened and system
performance is significantly improved. Figure 3 shows the performance improvement
for applications when changing the memory access latency from off-chip memory to
on-chip stacked memory, and Figure 4 shows the L2 miss per kilo-instruction (MPKI)
of applications under different cache configurations with off-chip memory. The figures
demonstrate that the performance improvement of using on-chip memory is highly
dependent on the L2 MPKI of the application. Applications such as astar, calculix, and
hmmer do not gain obvious performance improvement by changing from off-chip DRAM
to stacked DRAM, while some other applications’ performance is quite sensitive to the
memory architecture (e.g., bwaves, gcc, libquantum). As for bzip2, omnetpp, and soplex,
they benefit more from stacked DRAM when they have less cache resources. Memory
access rate directly influences the queuing delay in memory controllers. Hence, if all
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Fig. 4. L2 MPKI of SPEC CPU 2006 benchmarks under cache size from 256KB to 2048KB.

Fig. 5. Proposed 3D system with cache resource pooling versus 3D systems with static 1MB caches. In (a),
cores are able to access caches on adjacent layers through the TSVs.

cores have a high memory access rate, the memory controller queuing delay increases
dramatically. Therefore, in the 3D stacked systems we also need to consider the memory
access intensity for each memory controller.

4. PROPOSED 3D STACKED ARCHITECTURE WITH CACHE RESOURCE POOLING

In this section, we propose a homogeneous 3D architecture that enables vertical cache
resource pooling (CRP). The proposed architecture is demonstrated using a four-layer
3D system that has one core with a private 1MB L2 cache on each layer. Vertically
adjacent caches are connected via TSVs for cache pooling, as shown in Figure 5(a). On-
chip communication is performed through shared memory. Thus, all private L2 caches
are connected to a shared memory controller. Figure 5(b) shows an example case of
the differences in cache resource allocation between the systems with static L2 caches
and CRP. In this case, Applications 1 and 3 require larger caches than the other two
applications, and thus acquire extra cache resources from their adjacent layers in the
CRP architecture. In contrast, in a system with static L2 caches, an application can
only work with a fixed amount of cache.

4.1. 3D-CRP Design Overview

Enabling cache resource pooling in 3D systems requires some modifications to the
conventional cache architecture. The modified cache architecture allows cores in the
homogeneous 3D stacked system to increase their private L2 cache sizes by pooling
the cache resources from the other layers at negligible access latency penalty. The
objective of our design is to improve the system energy efficiency, which can be divided
into two aspects: (1) to improve the performance by increasing cache size for cache-
hungry applications, and (2) to save power by turning off unused cache partitions for
noncache-hungry applications. We focus on pooling L2 caches because L2 cache usage
varies significantly across applications, as shown in Section 3. It is possible to extend
the strategy to other levels of data cache.
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Fig. 6. Cache resource pooling implementation.

Cache size is determined by cache-line size, number of sets, and level of associa-
tivity. In this design we adjust cache size by changing the cache associativity. We
base our architecture on the selective way cache architecture proposed in prior work
[Albonesi 1999], which aims at turning off unnecessary cache ways for saving power in
2D systems. We call each cache way a cache partition in our design. Each partition is
independently poolable to one of its adjacent layers. In order to maintain scalability of
the design and provide equivalent access time to different partitions, we do not allow
cores in non-adjacent layers to share cache resources. We also do not allow a core to
pool cache partitions from both upper and lower layers at the same time, to limit design
complexity. In fact, we observe that, for most of the applications in our experiments,
pooling cache resources from two adjacent layers at the same time would not bring
considerable performance improvement.

4.2. 3D Cache Partition Management Implementation

In order to implement cache resource pooling in 3D systems, we introduce additional
hardware components to the conventional cache architecture. As shown in Figure 6,
we make modifications to both cache status registers and cache control logic.

For 3D CRP, the cores need to be able to interact with cache partitions from the local
layer and remote layers. First, we introduce a local cache status register (LCSR) for each
local L2 cache partition (e.g., there are four partitions in a 1MB cache in our design)
to record the status of local cache partitions. There are four possible statuses for each
local cache partition: used by local layer, used by upper layer, used by lower layer, and
turned off. Each LCSR keeps two bits to indicate the current status of the corresponding
partition as listed in the table in Figure 6(d). The status of local cache partitions is
used for deciding the output location of the output data and hit signals. Second, we
introduce remote cache status registers (RCSRs) for the L1 cache so that the L1 cache
is aware of its remote L2 cache partitions when sending L2 requests. We maintain two
1-bit RCSRs in L1 caches for each core. L1 I- and D-caches can use the same RCSR
bits, as both caches’ misses are directed to the L2 cache. If both RCSRs of an L1 cache
are set to 0, it means there is no remote cache partition in use. In contrast, an RCSR
bit is set to 1 if the core is using cache partitions from the corresponding adjacent layer
in addition to those in the local layer. RCSR 0 denotes the upper layer and RCSR 1 the
lower. The values of the registers are set by the runtime management policy, which we
discuss in Section 5.

Using the information from LCSRs and RCSRs, the cores are able to communicate
with cache partitions from multiple layers. When there is an L1 miss, the core sends
this request and the requested address based on the values of RCSRs, as shown in
Figure 6(b). Once the requests and addresses arrive at the cache controller, the tag
from the requested address is compared with the tag array. At the same time, the
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Fig. 7. (a) A cross-section view of large 3D-CRP system; (b) an example showing cache resource pooling
within a column.

entries of each way are chosen according to the index. The output destinations of data
and hit signals are determined by the LCSR value of the corresponding cache partition
after a cache hit. We add a multiplexer to select the output destination, as shown in
Figure 6(c). When there is an L2 cache hit, the hit signal is sent back to the cache at
the output destination according to the value in LCSR. When both the local and remote
hit signals are 0, this indicates an L2 miss.

As cache partitions can be dynamically re-assigned by the runtime policy, we need to
maintain the data integrity of all caches. In case of a cache partition reallocation (e.g.,
a partition servicing a remote layer is selected to service the local core), we write back
all the dirty blocks from a cache way before it is re-allocated. We use the same cache
coherence protocol in our design as in conventional 2D caches. When a cache line is
invalidated, both LCSRs and RCSRs are reset to 0 to disable access from remote layers.

4.3. Larger 3D-CRP Systems with On-Chip DRAM

We call all the cores vertically stacked in the 3D architecture a column. In the single-
column system, we apply off-chip DRAM because the chip area is not big enough to
hold sufficient memory (e.g., 1GB). For a larger system with more cores organized
in columns, the memory access rate increases as the number of cores increases, which
results in longer memory access latency. Since stacked DRAM enables multiple memory
controllers in the system, it helps reduce the average memory access latency for larger
3D systems. Figure 7 shows a cross-section of a large 3D-CRP system and an example
of cache resource pooling within a column, respectively, in (a) and (b), using a 16-core
system as an example. Stacked DRAM layers are located at the bottom of the 3D-CRP
system and there are four memory controllers on the bottom logic layer, one for each
column. However, the workload of each column may have a different memory access
rate depending on the applications running on it. In this situation, the memory access
latency of different columns differs. The column with jobs that all have a high memory
access rate suffers long memory access latency while the column with non-memory-
intensive jobs does not. Through job allocation, we can migrate a number of memory-
intensive jobs to the column with low memory access rate so as to decrease the memory
access latency and thus improve performance. Therefore, a policy for monitoring and
adjusting job allocation in the aspect of memory accesses is necessary for such designs.

4.4. Implementation Overhead Evaluation

To evaluate the area overhead of our proposed design, we assume each 1-bit register
requires 12 transistors, each 1-bit 4-to-1 multiplexer requires 28 transistors, and each
1-bit 2-to-1 multiplexer has 12 transistors. We need 10 1-bit transistors for LCSRs and
RCSRs, one 64-bit 1-to-4 demux and one 64-bit 4-to-1 mux for data transfers, one 30-bit
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1-to-4 demux and one 30-bit 4-to-1 mux for address transfers (for 4GB memory, we need
32-bit demux and mux), one 2-bit 4-to-1 mux for output location selection, one 1-to-2
demux for sending back hit signals to remote layers, and 2 AND gates for generating
L2 cache requests. Thus, the total number of transistors needed by the extra registers
and logic in our design is limited to 5460 (10×1-bit register+ 2×64-bit 1-to-4 demux
+ 2×30-bit 4-to-1 mux + 1×2-bit 4-to-1 mux + 1×1-bit 1-to-2 demux + 2×AND gate).
We assume there are 128 TSVs for two-way data transfer between caches, 60 TSVs
for the memory address bits, and 4 additional TSVs for transferring L2 requests and
hit bits between the caches on adjacent layers. To connect to a memory controller, we
assume there are 30 TSVs for memory address bits, and 512 TSVs for receiving data
from the memory controller. TSV power has been reported much lower compared to
the overall power consumption of the chip [Zhao et al. 2011], thus we do not take TSV
power into account in our simulations. We assume that TSVs have 10μmdiameters and
a center-to-center pitch of 20μm. The total area overhead of TSVs is less than 0.1mm2,
which is negligible compared to the total chip area of 10.9mm2. Prior work [Homayoun
et al. 2012] shows that the layer-to-layer delay caused by TSVs is 1.26ps, which has
no impact on system performance as it is much smaller than the CPU clock period at
1 GHz. If there is on-chip DRAM, the memory controller is also connected to DRAM
through TSVs, which brings an extra 512 TSVs for data transmission and 32 TSVs for
sending commands to the memory module.

5. RUNTIME CACHE RESOURCE POOLING POLICY

To effectively manage the cache resources and improve the energy efficiency of 3D sys-
tems with CRP architecture, we introduce a runtime job allocation and cache resource
pooling policy. We first explain the details of the proposed policy for the 3D CRP system
shown in Figure 5, where each layer has a single core and a 1MB L2 cache. Then we
introduce the extended policy for larger 3D CRP systems.

5.1. Overview of Cache Pooling

Based on the fact that different applications have various requirements on cache re-
sources to achieve their optimal energy efficiency, as stated in Section 3, we propose
a two-stage runtime policy to allocate the cache resources within a single-column 3D
CRP system. The flowchart is shown in Figure 8. The policy contains two stages: (1) job
allocation, which decides the core each job should run on, and (2) cache resource pooling,
which distributes the cache resources among a pair of jobs.

Stage 1: Job Allocation across the Stack

In this stage, we allocate the jobs to the 3D system with both energy efficiency and
thermal considerations. The allocation is based on an estimation of the jobs’ IPC im-
provement (pi) when running with 4 partitions compared to running with 1 partition.
The estimation of pi is conducted using an offline linear regression model that takes
runtime performance counter data as input. As a first step, we assign n jobs to n cores
in the 3D system in a random manner, and start running the jobs for an interval
(e.g., 10ms) using the default reserved cache partition (each core has a reserved L2
cache partition of 256KB that cannot be pooled). The performance counters that we
use in estimation are L2 cache replacements, L2 cache write accesses, L2 cache read
misses, L2 cache instruction misses, and number of cycles. The linear regression model
is constructed by their linear and cross-items. We train the regression model with
performance statistics from simulations across 15 of our applications and validate the
model using another 4 applications. The prediction error is less than 5% of the ac-
tual performance improvement on average. When implemented in a real system, this
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Fig. 8. A flowchart illustrating our runtime job allocation and cache resource pooling policy. (*) pi represents
the predicted IPC improvement for each job when running with 4 cache partitions compared to running with
1 partition. (**) Condition is checked only if Ji and Jj are competing for the same partition.

Fig. 9. The 2-stage intra-column runtime job allocation and cache resource pooling policy.

predictor can be integrated with the OS. The OS needs to periodically read the hard-
ware performance counters to collect data and provide feedback to the predictor.

We then sort the jobs with respect to their predicted performance improvements and
group them in pairs by selecting the highest and lowest ones from the remaining sorted
as (J1 ≥ J2 ≥ J3 ≥ J4) according to their pi. In this case, we group four jobs into two
pairs (J1, J4 and J2, J3). For the sake of temperature consideration, we allocate that job
pair with higher average IPC to the available cores closest to the heat sink as shown
in Figure 9(a). The reason is that those cores on layers closer to the heat sink can be
cooled faster in comparison to cores farther from the heat sink [Coskun et al. 2009a].

Stage 2: Cache Resource Pooling among Job Pairs
In the second stage of the policy, we propose a method to manage the cache resources
within each job pair. In order to determine whether a job needs more cache partitions,
we first introduce a performance improvement threshold (t). This threshold represents
the minimum IPC improvement a job should get from an extra cache partition to
achieve a lower EDP. The key to derive t is based on the following assumption: The EDP
of cache-hungry jobs decreases when the number of cache partitions of the job increases
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due to great performance improvement. On the contrary, for noncache-hungry jobs, the
EDP increases when the acquired cache partitions increase because the performance
is only slightly improved while the energy consumption increases. To obtain a lower
EDP, the following inequality should be satisfied.

Power

IPC2 >
Power + �Power
(IPC + �IPC)2 (1)

Here IPC and Power refer to performance and power values before we increase the
number of cache partitions, while �IPC and �Power are the variations in IPC and
power when the job uses an additional partition. From this inequality, we obtain

�IPC
IPC

>

√
1 + �Power

Power
− 1 = t. (2)

When performance improvement is larger than t, increasing the number of partitions
reduces the EDP of the job. We compute t as 3% on average based on our experiments
with 19 SPEC benchmarks. We compute the amount of cache partitions to assign
to each job by utilizing the threshold and pi. If pi of one job is greater than 9.3%
((1 + 3%)3 − 1), we assign 4 cache partitions to it; otherwise, we keep 1 partition for the
job. The 9% is obtained from the threshold of increasing the partition from 1 to 4. Then,
we iteratively increase the number of cache partitions for each job if three conditions are
satisfied: (1) pi > t, (2) the job has not reached the maximum number of partitions, and
(3) pi > pj . The maximum number of partitions is 7 for jobs that are assigned with
4 partitions, while 4 for jobs that are assigned with 1 partition. If pi < t, we revert
the job to previous partitions. We keep the job with current partitions once it reaches
the maximum number of partitions. The last condition is only checked if jobs Ji and Jj
are competing for the same cache partition.

We illustrate an example cache assignment where one job in a job pair is assigned
1 partition and the other job is assigned 4 partitions in Figure 9(b). In step i, the
performance improvements of both jobs are greater than the threshold, so we increase
one cache partition for both Core3 and Core4, as shown in step ii. Then, since they are
completing the last available cache partition, we assign the cache partition to the job
with higher performance improvement (Core3 in this case).

5.2. Inter-Column Job Allocation on Larger 3D CRP Systems

For larger 3D CRP systems with multiple columns, the cache requirements and per-
formance of cores might be different across the columns. To balance cache hungriness
among the columns, we perform inter-column job allocation after sorting the jobs as a
load balancing policy in such systems.

We first assign weights to each core according to the corresponding cache require-
ments. Then we average the weights for each column (WAVGi) and the whole 3D system
(WAVGT ) and compare each WAVGi with WAVGT to see the difference. A threshold is set
up to check whether the difference between WAVGi and WAVGT is large. If the threshold
is exceeded, the highest-weight task in the column with the largest WAVGi and the
lowest-weight task in the column with the smallest WAVGi are swapped to balance the
cache hungriness. This process is iterated until the difference between each WAVGi and
WAVGT is under the threshold. We conduct job migration if needed after the iteration
converges. The algorithm is shown in Figure 10. After the inter-column job allocation,
the system pairs the jobs and decides the cache resource allocation inside each column,
as stated in previous sections. Furthermore, from the memory access perspective, since
jobs within one column could have higher average memory access than those in the
other columns, the memory access latency of this particular column may be potentially
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Fig. 10. Illustration of inter-column job allocation algorithm.

Fig. 11. An example of job allocation in a 16-core 3D system.

higher than the latency of the other columns. Therefore, when doing the inter-column
job allocation, we also take the L2 miss per cycle (MPC) values into consideration.
We balance the L2 MPC values as well as the cache hungriness so as to balance the
memory accesses among all columns.

Figure 11 shows a simple example of job allocation in a 16-core 3D system with
a cache resource pooling architecture. In this system, we have 4 columns and each
column has 4 cores; the columns are named C1, C2, C3, and C4. Columns C1 and C4
initially have 4 and 3 cache-hungry jobs, respectively, while columns C2 and C3 only
have 1 cache-hungry job each. We assume that, in this case, WAVG1 > WAVG4 > WAVG3 >
WAVG2. The job with the highest weight in C1 is swapped with the job with the lowest
weight in C2 and we get WAVG1 > WAVG4 > WAVG2 > WAVG3. Similarly, we swap the
new highest-weight job in C1 with the lowest-weight job in C3 this time, and get the
difference between each WAVGi and WAVGT under the threshold. After the inter-column
job reallocation, the cache hungriness is balanced across the columns. Then we perform
the proposed intra-column job pairing and allocation to finalize the location of each job.
In a larger 3D system, using this inter-column job allocation, the cache needs are
balanced and the cache resources can be utilized more efficiently.

5.3. Performance Overhead Evaluation

In order to improve the energy efficiency of the 3D system in presence of workload
changes, we repeat our runtime policy every 100ms. We re-allocate the cache partitions
among job pairs and flush the cache partitions whenever there is a re-allocation. In
the worst case, we decrease the number of cache partitions for a job from 4 to 1, or
increase the cache partitions from 4 to 7, which both result in the cache partitions
flushed 3 times. Following a new cache configuration, there is no relevant data in the
L2 cache. Thus the applications begin to execute with cold caches. The performance
is degraded due to the cold-start effect in caches. Prior work estimates the cold-start
effect of a similar SPEC benchmark suite as less than 1ms [Coskun et al. 2009b].
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Fig. 12. Time overhead (μs) of cache cold-start effect for all applications under cache size from 256KB to
2048KB.

We also evaluate the cold-start effect overhead by comparing the performance of the
benchmark suite both with and without cache warmup, as shown in Figure 12. We can
see from this figure that almost all applications suffer cache cold-start effects, but in
different amounts. For example, mcf suffers most from cold caches because it is much
more cache intensive compared to the other applications. On the contrary, lbm almost
has no cold-start overhead because it does not use much cache. The highest overhead is
around 500μs from mcf. For most of the applications, the overhead is lower than 150μs.
For multicore systems, the memory access rate is higher than for single-core systems,
which increases memory access latency. Thus, we also perform similar experiments for
various memory access latencies and the results demonstrate that the cache warmup
overhead is still under 1ms. Other than the cache cold-start effect, when job migration
happens, context switch also introduces performance degradation. However, the context
switch overhead is no more than 10μs [Constantinou et al. 2005; Kamruzzaman et al.
2011], and techniques such as fast trap can further reduce time spent on it [Gomaa
et al. 2004]. Thus the performance overhead of our policy is negligible for SPEC-type
workloads.

6. EXPERIMENTAL METHODOLOGY

6.1. Target System

We apply the proposed cache resource pooling technique on both low-power and high-
performance 3D multicore systems with 4 and 16 cores, respectively. The core archi-
tecture for the low-power system is based on the core in Intel SCC [Howard et al.
2010]. As for the high-performance system, we use the core architecture applied in the
AMD Magny-Cours processor [Conway et al. 2009]. The architecture parameters for
both systems are listed in Table I. The core areas are from the published data. For the
4-core 3D-CRP system, all 4 cores are stacked in one column using off-chip DRAM.
In the 16-core system, there are 4 layers and each layer has 4 cores. Thus, there are
4 columns in the system and cores can pool cache resources within each column. Each
column in the 3D system has a memory controller which is located on the layer far-
thest from the heat sink, as shown in Figure 7. The stacked DRAM layers are placed
at the bottom of the 3D system, as described in Section 4. Due to the area restric-
tion, the low-power 3D system needs 2 DRAM layers to have 1GB DRAM while the
high-performance system only needs one.

6.2. Simulation Framework

For our performance simulation infrastructure, we use the system-call emulation mode
in the Gem5 simulator [Binkert et al. 2006] with X86 instruction set architecture. For
the single-core simulations shown in Section 3, we fast-forward 2 billion instructions
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Table I. Core Architecture Parameters

Parameter High-Perf Low-Power
CPU Clock 2.1GHz 1.0 GHz
Issue Width out-of-order 3-way out-of-order 2-way
Reorder Buffer 84 entries 40 entries
BTB/RAS size 2048/24 entries 512/16 entries
Integer/FP ALU 3/3 2/1
Integer/FP MultDiv 1/1 1/1
Load/Store Queue 32/32 entries 16/12 entries
L1 I/DCache 64KB, 2-way, 2ns 16KB, 2-way, 2ns
L2 Cache 1MB, 4-way, 5ns 1MB, 4-way, 5ns
Core Area 15.75 mm2 3.88 mm2

Table II. Main Memory Access Latency for the 3D CRP System

LLC-to-MC 0ns (due to the short latency provided by TSVs)
Memory Controller Queuing delay, computed by M/D/1 queuing model
Main Memory On-chip 1 GB DRAM: tRAS = 36ns, tRP = 15ns
Total Delay Queuing delay + tRAS + tRP

Memory Bus On-chip memory bus, 2GHz, 64-byte bus width

and then execute 100 million instructions in detailed mode for all applications under
L2 cache sizes from 0 to 2MB. For 4- and 16-core simulations with the proposed CRP
technique, we also collect performance metrics from the same segment of instructions.
We run McPAT 0.7 [Li et al. 2009] under 45nm process for cores’ dynamic power
consumption and then calibrate the results using the published power values. We use
CACTI 5.3 [Thoziyoor et al. 2008] to compute the L2 cache’s power and area, and
scale the dynamic L2 cache power based on L2 cache access rate. We use HotSpot
5.02 [Skadron et al. 2003] for thermal simulation.

In this work we apply the M/D/1 queuing model for each memory controller to model
the queuing delay rather than using a unified memory latency for all multiprogram
workload sets. In the M/D/1 model, arrival rate (λ) and service rate (μ) are required to
compute the queuing delay tqueuing, as shown next.

tqueuing = λ

2μ(μ − λ)
(3)

In the proposed 3D-CRP system, there is one memory controller in each column, thus
for multiprogram workloads we sum up the memory access rate of each core in the
column as the arrival rate to the corresponding memory controller. We use the DRAM
response time (tRAS + tRP) as the memory system service rate. For each multiprogram
workload, we first assign a sufficiently large value as the memory access latency to
ensure that the arrival rate will not exceed the memory system service rate. Then we
run performance simulations and collect the memory access rate of the workload. Based
on this arrival rate (λ1) we compute the queuing delay (t1) of the memory controller.
The new memory access latency is the sum of LLC-to-MC delay, DRAM module access
time, and the queuing delay (t1 + tRAS + tRP), as shown in Table II. Then we feed
back this new latency to Gem5 and collect the arrival rate (λ2) from the second-round
simulations. If λ1 and λ2 converge (e.g., within 10% difference), the new queuing delay
(t2) is similar to t1, and t1 + tRAS + tRP is the correct memory access latency in turn.
Otherwise, we need to keep doing the iteration until two consecutive arrival rates
converge. Based on our experience, the arrival rates always converge to a small range
after 3 iterations. By doing this we assign a memory access latency value according
to the various workloads’ memory intensiveness, which improves the accuracy of the
results. In Figure 13 we show the relationship between the memory access arrival rate
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Fig. 13. The relationship between memory access arrival rate and memory controller queuing delay. The
data points from left to right represent the memory access arrival rate of one bzip2, two instances of bzip2,
and four instances of bzip2, respectively.

Table III. Benchmark Classification according to Memory Intensiveness and Cache Hungriness

Memory-intensive Non-memory-intensive
Cache-hungry bzip2, omnetpp (1–3), omnetpp (4–7),

soplex (1–6) soplex (7)
Non-cache-hungry bwaves, gcc, gobmk(1), mcf, astar, calculix, cactusADM, milc, namd,

libquantum, lbm, leslie3d, gobmk (2–7), gromacs, h264ref, hmmer

and queuing delay as computed by Eq. (3). Here we take bzip2 as an example. When
running bzip2 with a 4-way 1MB L2 cache, the memory access rate is 0.0041/ns and
the corresponding queuing latency is 6.75ns. If there are two instances of bzip2 in
the system, the memory access rate doubles and the queuing delay becomes 18.3ns.
When there are four of them, the queuing delay increases to 130.7ns. Figure 13 shows
this relationship. As the memory access rate increases, the queuing delay increases
exponentially. When there are multiple memory controllers in the system, the memory
accesses get distributed, thus the memory access latency is lower.

7. EXPERIMENTAL RESULTS

7.1. Multiprogram Workload Sets

To test the proposed technique and cache resource pooling policy, we select 19 appli-
cations from the SPEC CPU 2006 benchmark suite as listed in Figure 1. According to
the applications’ memory intensiveness and cache hungriness, we categorize the appli-
cations into four classes as shown in Table III. The numbers following the application
refer to the corresponding cache configurations. For example, omnetpp (1–3) means
that, when running with 1 to 3 cache partitions, omnetpp is memory intensive. For
4-core 3D systems, we compose 10 multiprogram workload sets with 4 threads each, by
combining cache- and noncache-hungry applications as shown in Table IV. We use nch#
to represent noncache-hungry# workload composition. Similarly, we apply lch#, mch#,
hch#, and ach# to represent the other workload compositions. Among these workloads,
nch# contains only noncache-hungry applications, lch#, mch#, and hch# include 1, 2,
and 3 cache-hungry applications, respectively, while ach# includes only cache-hungry
applications. As for the 16-core 3D system, we group four 4-core workload sets for each
16-core workload set based on their cache needs, as shown in Table V. From top to
bottom, the number of cache-hungry applications in the workload set increases. When
presenting the results, we compare IPC and EDP for each workload set under different
3D systems. Since area is a very important metric for evaluating 3D systems because
die costs are proportional to the 4th power of the area [Rabaey et al. 2003], we also use
energy-delay-area product (EDAP) as a metric to evaluate the cumulative energy and
area efficiency [Li et al. 2009] for the 3D systems.
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Table IV. 4-Core System Workload Sets

Workload Benchmarks
non-cache-hungry1 bwaves, gromacs, gobmk, milc
non-cache-hungry2 calculix, leslie3d, milc, namd
low-cache-hungry1 gamess, leslie3d, libquantum, omnetpp
low-cache-hungry2 bwaves, hmmer, namd, bzip2
med-cache-hungry1 astar, bzip2, soplex, mcf
med-cache-hungry2 bzip2, cactusADM, hmmer, omnetpp
high-cache-hungry1 gromacs, bzip2, omnetpp, soplex
high-cache-hungry2 h264ref, bzip2, omnetpp, soplex
all-cache-hungry1 soplex, soplex, omnetpp, bzip2
all-cache-hungry2 soplex, bzip2, soplex, bzip2

Table V. 16-Core System Workload Sets

Workload Single column workload sets
nch + nch nch1 nch2 nch1 nch2
nch + lch nch1 nch2 lch1 lch2
nch + mch nch1 nch2 mch1 mch2
nch + hch nch1 nch2 hch1 hch2
nch + ach nch1 nch2 ach1 ach2
lch + ach lch1 lch2 ach1 ach2
mch + ach mch1 mch2 ach1 ach2
hch + ach hch1 hch2 ach1 ach2
ach + ach ach1 ach2 ach1 ach2

nch, lch, mch, hch, ach represent non-cache hungry, low-cache
hungry, medium-cache hungry, high-cache hungry and all-cache
hungry, respectively.

7.2. Performance and Energy Efficiency Evaluation

For both low-power and high-performance 3D systems, we provide three baseline sys-
tems where each core has a: (1) static 1MB private L2 cache; (2) static 2MB private
L2 cache; and (3) 1MB private cache with selective cache ways (SCW) [Albonesi 1999].
For the SCW baseline system, we also use the proposed policy to decide the best cache
partitions for each job, but jobs can only require a maximum of 4 cache partitions since
SCW does not allow pooling cache partitions from the other layers.

4-core 3D System. Figure 14 shows the IPC, EDP, and EDAP comparison between
the 3D-CRP system and the other 3 baselines for the 4-core low-power system. All
of the values for each metric are normalized to 2MB baseline. As expected, the 2MB
baseline always has the best performance among all systems. Among the 1MB baseline,
SCW baseline, and 3D-CRP, SCW’s performance is always slightly lower than the 1MB
baseline while 3D-CRP outperforms the 1MB baseline as long as there are cache-
hungry jobs in the workloads. The performance improvement of 3D-CRP over the 1MB
baseline is up to 11.2% among all workloads. The reason is that 3D-CRP always turns
off unnecessary cache partitions and pools them to cache-hungry jobs, which boosts
the system performance. In Figure 14(b) it is obvious that, for all workloads, 3D-
CRP provides lower EDP than 1MB and SCW baselines. On average, 3D-CRP reduces
EDP by 18.8% and 8.9% compared to 1MB and SCW baselines, respectively. For SCW,
the nonsharing feature limits its improvement in EDP for workload sets with high
cache hungriness (e.g., hch and ach workloads). For the workloads that contain both
cache- and noncache-hungry jobs, 3D-CRP improves energy efficiency by up to 38.9%
compared to the 2MB baseline. Although the 2MB baseline always provides the best
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Fig. 14. Normalized IPC, EDP, and EDAP of low-power 3D-CRP system and 3D baseline systems with 1MB
static caches, 2MB static caches, and 1MB caches with selective cache way.

Fig. 15. Normalized IPC, EDP, and EDAP of high-performance 3D-CRP system and 3D baseline systems
with 1MB static caches, 2MB static caches, and 1MB caches with selective cache way.

performance, it cannot offer optimal system energy efficiency. For EDAP, as shown in
Figure 14(c), 3D-CRP outperforms all baselines for all workloads. The improvements
brought by CRP over 1MB and SCW cases are the same as that of EDP because they
have the same area, and the average EDAP improvement of CRP over the 2MB baseline
is 36.1%.

Moreover, we also evaluate performance and energy efficiency for the high-
performance system using the proposed 3D-CRP design and runtime policy, as shown
in Figure 15. The same as the low-power 3D system, 3D-CRP achieves lower energy
efficiency than 1MB and SCW baselines, and the average EDP reduction is 14.8% and
13.9%, respectively. When compared to the 2MB baseline, the EDP results are differ-
ent because the high-performance core consumes much more power than the low-power
core and 1MB L2 cache. Thus, the percentage of extra power consumption introduced
by larger L2 caches is smaller than the percentage of extra performance improvement
when it comes to cache-hungry jobs, which can be expressed as

�IPC
IPC

>
�Power
Power

⇒ Power

IPC2 <
Power + �Power
(IPC + �IPC)2 . (4)

Thus it ends up with lower energy efficiency. Nevertheless, for the workloads mixed
with cache-hungry and noncache-hungry jobs, 3D-CRP performs similarly to the 2MB
baseline on EDP while, from an EDAP perspective, 3D-CRP still improves over the
2MB baseline by up to 24.7% for nch and by 12.7% on average for mixed workloads.

We also integrate 3D systems with microarchitectural resource pooling (MRP) as
proposed in Homayoun et al. [2012]. To evaluate the performance improvement with
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Fig. 16. Normalized IPC, EDP, and EDAP of 16-core low-power 3D-CRP system and 3D baseline systems
with 1MB static caches, 2MB static caches, and 1MB caches with selective cache way. ICA refers to inter-
column job allocation.

MRP, we run applications with 4× of the default sizes of the performance-critical
components (reorder buffer, instruction queue, register file, and load/store queue), and
compare the IPC results with those of the default settings. For applications running on a
single low-power core, our experiments show that MRP improves system performance
by 10.4% on average, and combining MRP and CRP provides an extra performance
improvement of 8.7% on average in comparison to applying MRP alone.

16-core 3D System. We also evaluate our runtime policy on the 16-core low-power 3D-
CRP system with stacked DRAM to investigate the policy’s scalability. As introduced
in Section 6, the 16-core system has 4 layers with 4 cores on each layer, and each core
has a private L2 cache. The DRAM layers are located at the bottom of the chip. The
workloads for the 16-core low-power system are listed in Table V. Figure 16 shows the
performance and energy efficiency results of 3D systems with different cache architec-
tures. In this figure, from left to right, the cache hungriness of the workloads increases.
For all 9 workloads, 3D-CRP outperforms 1MB and SCW baselines in IPC, EDP, and
EDAP. 3D-CRP is always better than the 2MB baseline on EDAP. Moreover, with inter-
column job allocation (ICA), there are further IPC and EDP improvements for 3D-CRP.
For example, for the nch-ach workload, 3D CRP + ICA further improves performance
by 12.3% and energy efficiency by 7.8% compared to 3D CRP only. When consider-
ing memory accesses among the columns and adjusting the workload accordingly, the
system performance improvement is around 5% for all workload sets.

7.3. Thermal Evaluation

We conduct steady-state temperature simulations to evaluate the impact of the pro-
posed runtime policy on the on-chip temperature in 3D-CRP systems. For a 4-core low-
power 3D system, since the cores have quite low power consumption, the temperature
benefits are slight. By contrast, for a 4-core high-performance 3D system, we observe
up to a 6.2oC reduction in peak on-chip temperature compared to the temperature-wise
worst possible job allocation for 4-core workloads. Across all workloads there is an aver-
age of 3.4oC reduction in peak on-chip temperature. Such observations prove that our
policy can effectively decrease the system peak temperature and prevent cores from
exceeding the temperature threshold. In the 16-core 3D system, our results show that,
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without temperature-aware job allocation, only mch-ach and ach-ach operate under the
system temperature threshold 85oC, while applying temperature-aware job allocation
keeps all 16-core workloads operating under 85oC.

8. CONCLUSION

This article has proposed a novel design for 3D cache resource pooling that requires
minimal additional circuitry and architectural modification. We have first quantified
the impact of cache size and memory access latency on application performance. We
have then presented an application-aware job allocation and cache pooling policy to im-
prove the energy efficiency and thermal behavior of 3D systems. Our policy dynamically
allocates the jobs to cores on the 3D stacked system and distributes the cache resources
based on the cache hungriness of the applications. Moreover, we have designed a mem-
ory controller delay model to adjust the memory access latency for different workloads
and leveraged this model for all the 3D multicore system evaluations. Experimental
results show that, by utilizing cache resource pooling, we are able to improve system
EDP and EDAP by 18.8% and 36.1% on average compared to 3D systems with static
cache size. The proposed inter-column job allocation manages to additionally improve
performance by up to 12.3% and energy efficiency by up to 7.8% for larger 3D sys-
tems with on-chip DRAM. On the thermal side, our policy reduces the peak on-chip
temperature of high-performance systems by up to 6.2oC.
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