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Abstract—The growing amount of intermittent renewables in
power generation creates challenges for real-time matching of
supply and demand in the power grid. Emerging ancillary power
markets provide new incentives to consumers (e.g., electrical
vehicles, data centers, and others) to perform demand response
to help stabilize the electricity grid. A promising class of potential
demand response providers includes energy storage systems
(ESSs). This paper evaluates the benefits of using various types
of novel ESS technologies for a variety of emerging smart grid
demand response programs, such as regulation services reserves
(RSRs), contingency reserves, and peak shaving. We model,
formulate and solve optimization problems to maximize the net
profit of ESSs in providing each demand response. Our solution
selects the optimal power and energy capacities of the ESS,
determines the optimal reserve value to provide as well as the
ESS real-time operational policy for program participation. Our
results highlight that applying ultra-capacitors and flywheels in
RSR has the potential to be up to 30 times more profitable than
using common battery technologies such as LI and LA batteries
for peak shaving.

I. INTRODUCTION

A sustainable energy future mandates integrating a larger
portion of renewable generation into the grid. Most states in the
US and several European countries already have aggressive tar-
gets to increase the share of renewables in their portfolios [1],
[2]. The fact that many forms of renewable generation are
intermittent by nature (e.g., wind and solar) creates significant
challenges for grid operators, who need to match supply and
demand in real-time. In response to this challenge, emerging
ancillary power markets provide sizable monetary incentives
for the consumers to perform demand response, which refers
to a consumer adjusting its own electricity use following a set
of constraints or directives given by the grid operator.

Among potential demand response program participants,
data centers, electrical vehicles (EVs), and smart buildings are
especially promising, and have received recent attention from
the research community [3], [4], [5], [6], [7]. This attention
is due to their significant flexibility in energy consumption, as
well as the large cumulative power consumption levels and/or
fast growth these entities provide.

One of the most promising participation opportunities for
demand response comes from using energy storage systems
(ESSs), which can potentially charge/discharge depending on
the demand response program requirements reliably. There are
a variety of energy storage startup companies [8], [9] that
use ESSs to participate directly in energy market programs
this way. Additionally, entities such as data centers and smart
buildings, which have on-site ESSs to manage power out-
ages, can make use of ESSs to receive monetary incentives
without having to alter their internal performance. ESSs have
been studied for participation in well-known power programs

such as real-time pricing [10], [11] and peak shaving [12],
[13], but the potential of ESS participation in many of the
emerging promising demand response programs has yet to be
understood, such as regulation service reserves (RSR) and con-
tingency reserves in emerging ancillary service markets [14],
[15], [16]. Some recent work has begun to survey potential
market chances and evaluate maturity of ESS participation
in these programs [17], [18], [19], [20]; however, in most
cases, these papers use simplified participation models, e.g.,
an RSR model that ignores regulation accuracy constraints
and penalties [21]. Besides, few work studies the decisions of
reserve value and the ESS capacity planning. Furthermore, dif-
ferent ESS technologies (e.g., lead-acid (LA) batteries, lithium-
ion (LI) batteries, ultra/super-capacitors (UC), flywheels (FW),
and compressed air energy storage (CAES)) have contrasting
properties [22], [23], [24], which can dramatically impact
profits of participation in such programs. Systematic evaluation
and comparison of the benefits of using these ESS technologies
in a variety of demand response opportunities do not exist in
current literature.

This paper’s goal is to thoroughly evaluate, optimize, and
contrast a range of ESS technologies for participation in a
variety of promising demand response programs. Our method
seeks to provide a strategy for the selection and management of
ESSs for a broad range of consumers (data centers, EVs, smart
buildings) to maximize the incentives received from ancillary
power markets, and hence, to minimize the electricity cost
while helping stabilize the grid. To the best of our knowledge,
ours is the first paper to provide detailed models, evaluate and
optimize the profits of various ESS technologies in not only
traditional power market programs such as peak shaving, but
also in emerging smart grid demand response such as RSR and
contingency reserves, by proposing detailed reserve value and
capacity planning, as well as online ESS operational policies.
Our specific contributions are:

First, we provide detailed models and optimization solu-
tions for participation of ESSs in multiple smart grid pro-
grams, including RSR, contingency reserves and peak shaving
(Section III-A to Section III-C). In each model, the cost of
ESS equipment, the revenue received for demand response,
and constraints required by the demand response program
are formulated. The net profits are optimized based on these
models, and the corresponding optimal decisions of reserve
value, ESS capacity planning and the operational policies are
derived. The generality and wide applicability of the models
and solutions distinguish this paper from previous work.

Second, the proposed models and optimal solutions enable,
for the first time in the literature, a thorough comparison of the
benefits of different ESSs for participation in demand response
opportunities (Section III-D). We highlight the ESS technology
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that is the most appropriate for each power program (and vice-
versa). Results show that UC is the most profitable ESS for
RSR, while LI battery is the best choice for peak shaving.
Also, we show that none of today’s typical ESSs can earn
positive net profits from providing contingency reserves.

Finally, in addition to evaluation with offline optimization
solutions, this paper proposes heuristic practical online policies
for provisioning with different types of ESSs in RSR program
(Section III-A4), which is the most profitable program among
those studied. As opposed to the offline solution, our online
solution does not require information of RSR signal in ad-
vance, and thus, is applicable for real-life use. The solution
adaptively leverages the tolerable RSR signal tracking errors
for pursing larger profits. Our solution is able to satisfy all
constraints and thus guarantee the feasibility of the provision,
while still achieving significant profits.

II. ENERGY STORAGE SYSTEMS

Storage technologies are becoming more cost-effective and
wide spread and, at the same time, more lucrative market
participation opportunities are emerging. In this paper, we
focus on five popular ESSs, namely, lead-acid (LA) bat-
teries, lithium-ion (LI) batteries, ultra/super-capacitors (UC),
flywheels (FW), and compressed air energy storage (CAES).
In the following, we briefly highlight important characteristics
of each. The interested reader can refer to prior work [12],
[22], [24] for more information.

Lead-Acid (LA) batteries are widely used in daily life,
e.g., in car batteries. They have very low self-discharge loss
rates, which makes them suitable for the demand response
programs with long durations, e.g., hours. Additionally, they
have moderate energy cost and power cost, and therefore are
robust under different market scenarios. However, the key
disadvantage of LA batteries is the relatively small number
of charge/discharge cycles and shorter float life. LA batteries
can only be used for several thousand circles.

Lithium-Ion (LI) batteries are also widely used in our
daily life, and have similar characteristics to LA batteries. The
key difference is that LI batteries have relatively higher costs,
longer lifetimes, more cycles, and higher efficiency.

Ultra/super-Capacitors (UCs) differ dramatically from LI
and LA batteries. UCs have an extremely high tolerance for
frequent charging/discharging. Additionally, UCs have high
efficiency and power density. However, they have a high energy
cost (around $10,000/kWh) and high self-discharge rate.

Flywheels (FWs) represent a middle ground between
LI/LA batteries and UCs. Like UCs, they have high efficiency
and power density, but also high energy cost and a high self-
discharge rate.

Compressed Air Energy Storage (CAES) has a very low
energy cost and self-discharge rate. However, it has a very slow
ramping time (10 min vs. 1ms in the other four ESSs). This
means that it cannot adapt quickly, which limits participation
of CAES in some market programs. Additionally, it has a very
low energy density (large space needed) and a high power cost.

III. MARKET OPPORTUNITIES FOR
ENERGY STORAGE SYSTEMS

In this section, we propose detailed models of ESS partic-
ipation in various electricity market programs, including RSR,
contingency reserves, and peak shaving. Then we compute
optimal solutions and evaluate the potential benefits of each
type of ESS in participating these energy market opportunities.
We derive the optimal selections of ESS energy and power
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Fig. 1. (a), (b) and (c) are ESSs in RSR, and (d) is ESSs in CR.

capacities, as well as the optimal ESS operational policy
(including the amount of reserves to provide, and the solution
of how to dynamically charge and discharge over time, etc.)
for maximizing profit. After that, we evaluate applying these
ESSs with today’s typical capacities, and conduct sensitivity
analysis of the maximal net profit on the price of reserves. We
also propose online heuristic policies for ESSs participating
in RSR. Finally, we compare the benefits of these ESSs
participating in each program.

A. Regulation Service Reserves (RSR)
Historically, RSRs were mainly provided by centralized

generators, but market rules are changing to encourage
demand-side participation. This emerging demand response
opportunity is quite attractive due to the high payments com-
parable to the real-time market price [25], [14]. RSR programs
are typically quite demanding for participants. Each RSR
provider is obligated to modulate its power to track an RSR
signal βt broadcast every 4 seconds (this defines the length of
one time slot) by the independent system operator (ISO) [25].
The signal is between [−1, 1], with an average of zero over
long time intervals. It is updated every 4 seconds in increments
that do not exceed ±4/τ , where τ is in 100-300 seconds [15].

1) Problem Formulation: A provider receives ΠRS · R
revenue for providing R (kW) amount of reserves, where ΠRS

is the price of reserves. The revenue is reduced based on the
tracking error of the RSR signal, i.e., |ut −Rβt|, where ut is
the power rate. The overall daily revenue received from RSR
participation (T = 1 day) is:

RevenueRS = ΠRSR− θ ·ΠRS(
1

T

T∑
t=1

|ut −Rβt|), (1)

where θ is the penalty coefficient on the tracking error.
The provider may lose the RSR contract if the constraint

on signal tracking performance is violated. We formulate this
using a probabilistic constraint:

T∑
t=1

I{| ut
Rβt
−1|≤ρ1} ≥ ρ2T (2)

where ρ1 and ρ2 are parameters set by the ISO. This equation
shows that the probability of tracking error at each time t, (i.e.,
|ut−Rβt|) that is smaller than ρ1R|βt| should be greater than
or equal to ρ2. The overall optimization formulation of ESSs
in RSR is:



max
Ecap,Pcap,R,r,d,u,e

ΠRSR− θ ·ΠRS 1

T

T∑
t=1

|ut −Rβt|

−(ΠP,dPcap + ΠE,dEcap),

s.t.
T∑
t=1

I{| ut
Rβt
−1|≤ρ1} ≥ ρ2T,

et = et−1 − µet−1 + rt − dt, ∀t ∈ [1, T ],

ut = rt/η − dt, ∀t ∈ [1, T ],

0 ≤ rt ≤
Pcap
γ

, 0 ≤ dt ≤ Pcap, ∀t ∈ [1, T ],

(1−DoD)Ecap ≤ et ≤ Ecap, ∀t ∈ [0, T ],

dt+1 − dt ≤
Pcap
T ramp

, ∀t ∈ [1, T − 1],

Pcap ≥ 0, Ecap ≥ 0, R ≥ 0.

(3)

In the formulation, Pcap (in kW) and Ecap (in kWh)
represent the power capacity and energy capacity of the ESS,
ΠP,d (in $/kW) and ΠE,d (in $/kWh) are the corresponding
daily prices amortized by the lifetime of ESSs1. The life-
time is determined by the face-plate lifetime, the maximal
charge/discharge cycles and the real charge/discharge frequen-
cies when the ESS is in use. rt, dt, ut and et are the charge,
discharge, overall power rate and the total energy stored in
the ESS at time t. We use r, d, u and e to denote the
vectors of rt, dt, ut and et, respectively. µ is the self-discharge
rate, η is the energy charging efficiency, γ is the ratio of
discharge rate to charge rate, DoD is the Depth of Discharge,
which helps guarantee the lifetime of the equipment. T ramp

is the time for ESS to ramp up the discharge rate from 0 to
Pcap. The objective function is to maximize the net profit of
the participation, which equals to the revenue for providing
reserves (reduced by the tracking error) minus the amortized
cost of ESS equipment. The constraints are imposed by both
the demand response program (RSR here) and the ESS tech-
nology (including the charge/discharge rates and the amount
of energy stored, constrained by power/energy capacities, DoD
and ramp up rate, etc). Due to the space limitation, interested
readers can refer to an extended version of this text [26] for
details in problem formulation. The decision variables of this
optimization problem are:
• Power and energy capacities of ESS, i.e., (Pcap, Ecap);
• The amount of reserve to provide, i.e., R;
• r, d, u and e, which represent how the ESS is operated

dynamically, i.e., the operational policy.
2) Case Study: To evaluate the potential value from RSR

program, we solve the above optimization formulation for the
types of ESSs introduced before. We use parameters defined
by prior work [12]. The RSR signal βt that we use is a real
24-hour signal from PJM [25]. Additionally, ρ1 = 0.2, θ = 1
and ΠRS = $0.1/kWh based on today’s markets [14].

The probabilistic constraint makes Eq.(3) not straightfor-
ward to solve. To simplify the problem, we first study the case
of ρ2 = 1, in which the probabilistic constraint in Eq.(2) can
be transformed to a deterministic constraint:∣∣∣∣ utRβt

− 1

∣∣∣∣ ≤ ρ1,∀t ∈ [1, T ]. (4)

Heuristic solutions of ρ2 < 1 are discussed in Section III-A3.
At the current reserve prices (ΠRS = $0.1/kWh), the

optimal solution of Eq.(3) for LA, LI batteries and CAES are

1The life span of an ESS is normally years with one-time upfront pur-
chase/installation cost, yet participation in a demand response program can
span a year, a month, or even a day. In order to handle the mismatch in time
granularity, we amortize the upfront cost evenly over the lifespan of the ESS.

TABLE I. A SELECTION OF TODAY’S TYPICAL CAPACITIES OF ESSS,
BASED ON SPACE CONSTRAINTS.

LA LI UC FW CAES

Pcap (kW) 1,000 1,000 20,000 10,000 20

Ecap (kWh) 250 250 250 250 250

all P ∗
cap = E∗

cap = R∗ = 0, which demonstrates that there
is no net profit of LA, LI batteries or CAES to participate
in RSR program, i.e., the ESS cost of them is always larger
than the revenue received from the program, no matter what
the power and energy capacities are used or how they are
operated dynamically. On the other hand, there is no feasible
optimal solution of Eq.(3) for UC and FW: the net profit keeps
increasing as Pcap, Ecap and R increase, which demonstrates
that the maximal net profit is large for UC and FW, as long as
sufficiently large power and energy capacities can be offered.
This highlights that the revenue earned by UC and FW from
RSR is always larger than the amortized cost of the ESS.

We then study the sensitivity of net profit to energy, power
capacities. Fig.1(a) and Fig.1(b) present the optimal net profit
(the negative value represents that the cost of ESS is larger
than the revenue, hence the net profit is less than 0) for varying
energy and power capacities (Ecap, Pcap), and for LI batteries
and UC respectively, in contour plots. LA batteries have similar
results to LI batteries, and FW is similar to UC. From the
figures, we see that for LA/LI batteries, the net profits of
participating RSR are always negative, and the larger capacities
of them are used, the higher cost there would be. On contrary,
for UC and FW, a larger (Ecap, Pcap) creates larger net profit.

The main factors that lead to such differences among ESSs
are related to the characteristics of the ESSs. Since the RSR
signal changes rapidly (every 4 seconds) and bidirectionally, in
order to track it, RSR providers must have a large power capac-
ity and large charge/discharge cycles. A large energy capacity,
however, is not necessary, as the RSR signal has an average of
zero over longer time intervals. UC and FW perfectly match
these RSR characteristics: they have extremely high tolerance
for frequent charging/discharging, high efficiency and power
density, and relatively low power capacity cost, whereas under
the high charge/discharge frequency in RSR, the lifetime of
LA or LI batteries is shortened to less than 10 days due to
the limited life cycle, which results in great cost and thus they
no longer gain any net profit from RSR participation. CAES
is even more limited due to the very large ramp up delay in
discharge and the extremely small power density.

Next we focus on the RSR participation of different ESS
technologies with today’s typical capacities. In practice, the
power and energy capacities of ESSs usually have upper bound
limitations due to the restrictions of manufacturing techniques,
unit prices and space constraints. Table I lists a selection of
today’s typical capacities of different types of ESSs referring
to recent work [12], [22], [23], [24], estimated mainly based on
space constraints2. The power capacity of CAES is small due
to its extremely small power density. The optimal net profit
and the corresponding optimal R∗ of these typical ESSs in
RSR are listed in the 3rd row of Table III3. From the table,
today’s typical UC or FW can provide around 6MW RSR, and
gain more than $10,000 net profit a day, which are close to the

2Since we have taken the cost and unit price information into account in the
problem formulation, we no longer consider it as a problem in determining
typical capacities of ESSs here.

3All results listed in Table III are the optimization solutions of Eq.(3) when
Ecap and Pcap are given as in Table I.
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Fig. 2. The revenue of providing RSR via varying ρ2, for LI batteries
(in 2(a)) and UC (in 2(b)), with three heuristic offline solutions, respectively.
The revenue is normalized to the value of ρ2 = 1.

power consumption and the cost of a data center with 10,000-
20,000 servers. The cost of this typical UC or FW is around
$4 million, which can be paid back in less than one year by
receiving RSR credit.

Fig.1(c) shows the optimal net profit via varying reserve
price ΠRS , for different types of ESSs with their capacities
fixed and given in Table I. The black dashed line represents
where the current market reserve price is around. From the
figure, LI, LA batteries and CAES start to gain net profit (the
value of the net profit is larger than 0) when the reserve price
ΠRS is beyond $1/kWh.

3) Heuristic Solutions for the Probabilistic Constraint:
We propose three heuristic offline solutions to deal with the
probabilistic constraint in Eq.(2) when ρ2 < 1. The key idea
behind these solutions is to determine when the signal should
be tracked within the tolerance ρ1 (i.e., satisfying Eq.(4)), and
when the tolerance can be violated. Three solutions are:

RandSelect: Randomly select ρ2T time intervals in [1, T ]
to satisfy Eq. (4).

MinCapSelect: Select ρ2T time intervals in [1, T ] with
smallest |βt| to satisfy Eq.(4). This design is based on the fact
that tracking RSR signal at the time interval t with larger |βt|
requires larger power capacity.

FixIntSelect: Equally distribute T − ρ2T time intervals
that are allowed to violate the Eq.(4) in [1, T ]. This is for
the purpose of enabling the policy to adjust amount of energy
stored in ESSs without closely tracking once a while.

Fig.2 shows the optimal RSR revenue solved based on
Eq.(3) with these three solutions via varying ρ2, for LI batteries
and UC with typical capacities listed in Table I, respectively.
ρ1 is fixed at 0.2. Note that since we use the typical capacities
in all cases, the cost of ESS is fixed. Thus, it is equivalent
to make comparisons of these three methods based on either
the RSR revenue, i.e., RevenueRS or the net profit originally
used in the objective function of Eq.(3). In the figure, all the
revenues are normalized by the revenue at ρ2 = 1.

From Fig.2(a), MinCapSelect always achieves largest rev-
enue for LI batteries when ρ2 varies. The charge/discharge
capacities, i.e., the power capacity are the main bottleneck
for LI batteries to offer more reserves, while MinCapSelect
can help reduce the requirement on power capacity by only
tracking small |βt| and giving up tracking large |βt|, hence
enabling LI batteries to provide additional reserves. The results
for UC, however, are different. The power capacity is no
longer the bottleneck, as today’s typical UC has a much
stronger power capacity compared to its energy capacity. As a
consequence, energy capacity turns out to be the bottleneck. In
that case, MinCapSelect does not help, and is even worse than
the random algorithm RandSelect. A solution that is able to
utilize the limited energy capacity in a more efficient way can

provide more reserves and earn higher revenue. FixIntSelect
becomes a better solution shown in Fig.2(b), because it equally
distributes time points where constraint violations are allowed
across the whole time frame, so that the energy amount stored
in ESS can be adjusted periodically and uniformly. Fig.2 also
shows that the optimal revenue increases when ρ2 decreases.
Relaxing the signal tracking constraints by decreasing ρ2 in
general offers more flexibilities for ESSs to participate the RSR
program, and therefore, enables them to gain larger profits.

4) Online policies for RSR: Prior offline solutions are based
on the fact that RSR signal is known a priori, which is not
the real case in practice. RSR signal is broadcast to demand
side every few second in real time. We propose heuristic
online ESS operational policies for RSR participation, where
no information on the RSR signal is required in advance.
The online policies handle the following problems: given the
types and capacities of the ESS (i.e., assuming the ESS has
been setup), how much reserve should be provided and how
the ESS should be operated so that higher revenue from
RSR participation can be gained and the feasibility of the
participation is guaranteed.

As discussed before, MinCapSelect provides the highest
revenue for LI and LA batteries in the offline solution, and
FixIntSelect is the best for UC and FW. We design the online
operational policies for LI and LA batteries based on the
MinCapSelect solution and the policies for UC and FW based
on the FixIntSelect. Due to the space limitation, the detailed
operational policies are provided in the extended version [26].

Unlike the offline solution, in which the RSR signal is
known ahead, thus an optimal R can be calculated directly
from the optimization formulation, the Ronl for the online
policies is required to be carefully estimated. We propose an
approach to learn Ronl from historical offline solutions, as
Ronl = λRmin, where Rmin is the minimum of the offline
optimal R in the past 12 hours (the signal has been known in
those hours, so offline optimal R can be calculated), λ is a
discount value. We use Rmin and select λ to avoid aggressive
estimation of Ronl, and to guarantee feasibility of our policies.
We select λ = 90% for LI batteries and λ = 75% for UC,
because LI batteries have more stable results, much smaller
provision and are less sensitive to variations of ρ2 than UC
shown in offline solutions.

We evaluate both the feasibility and the efficiency of
our online policies. Detailed experiments are in the extended
version [26]. Experimental results show that these safely
estimated Ronl together with our operational policies satisfy
all constraints and, thus, are feasible solutions in all test cases,
for both LI batteries and UC, which shows that the feasibility
of such online policies is guaranteed with high confidence.
In addition, these policies still receive promising revenues,
though there is (as expected) a noticeable gap compared to
offline solutions, due to the lack of RSR signal information,
and the safe estimation of the reserve value Ronl. There is the
following tradeoff: an aggressive online policy may bring the
revenue close to optimal offline solutions, while the real-time
feasibility of such solution decreases at the same time.

B. Contingency Reserves
In ancillary markets, contingency reserves are used to

respond to loss of power supplies during generation or line
failures. They are typically called by the market less than
once a day, and some of them are called even less than
once a year. A call typically lasts from several minutes to
a few hours. Reserves that are able to respond immediately



are known as spinning reserves, whereas reserves that require
more time to respond are called non-spinning reserves. For
example, NYISO provides 10-minute spinning and 10-minute
non-spinning reserves. Another type of reserves, the operating
reserves, are also provided by NYISO, as supplements of other
reserves. Operating reserves have longer reaction time but
also last longer, e.g., more than 30 minutes [14]. 10-minute
spinning reserves have the highest price while the price of
30-minute operating reserves is the lowest. All these prices
are significantly lower than that of RSR. Overall, due to the
much lower frequency of calls as well as the lower price of
the reserves, the revenue received from contingency reserve
provision is much lower than revenue from RSR provision.

1) Problem Formulation: The revenue of contingency re-
serves can be modeled as:

RevenueCR = ΠCRR, (5)

where R is the amount of contingency reserves provided and
ΠCR is the price of the reserve. Unlike RSR, the contingency
reserve provision is single directional with:

rt = 0, dt = R, ∀t ∈ [TS , TE ], (6)

where [TS , TE ] is a subset of [1, T ], representing that only at
some t during a day, an ESS is used to provide contingency
reserves. For the rest of the day, the ESS is not used. When
providing contingency reserve, the ESS keeps discharging at
the fixed rate as the reserve value R. In order to provide the
maximal amount of reserves, an ESS is charged to its full
energy capacity before response, i.e.,

eTS = Ecap. (7)
The rest of equations in the optimization problem for ESS in
contingency reserves are similar to those in RSR in Eq.(3).

2) Case Study: We focus on the 10-minute spinning reserve
as an example of contingency reserves, as it is expected
to have the highest revenue. ΠCR = $0.025/kW is selected
for the 10-minute spinning reserve based on today’s market
information [14]. We assume the 10-minute spinning reserve
is called once a day in our case, and TE − TS = 10min.

The optimal solution for all five ESSs in contingency
reserve are: P ∗

cap = E∗
cap = R∗ = 0, which shows that none

of five ESSs gain net profit by only providing contingency
reserves at today’s market reserve price, no matter what the
power and energy capacities are used, and how they are
operated. The larger the capacities (Ecap, Pcap) are used, the
more reserves R that an ESS can provide, however, as well as
the higher the cost of ESS would be, and the cost is always
larger than the revenue from providing R.

The 4th row in Table III shows results of maximal net
profit of contingency reserve and corresponding amount of
reserve for today’s typical ESS capacities, i.e., (Ecap, Pcap)
given from Table I. It highlights that none of today’s typical
ESSs earn profit from contingency reserves at today’s reserve
prices. Contingency reserves are demanding in terms of energy
capacity (as opposed to power capacity), though the power
capacity cannot be too low either. From the table, LA and
LI batteries perform better than UC and FW, because of
their lower price on energy capacity and relatively low self-
discharge rate, but still not well enough to be profitable.
Fig.1(d) presents the optimal net profit via varying reserve
prices ΠCR for different ESSs. LI and LA batteries start to
gain profit when the price is close to $1/kWh, whereas the
critical points of CAES, UC and FW are around $5-8/kWh.

TABLE II. OPTIMAL SOLUTIONS FOR PEAK SHAVING.

LA LI UC FW CAES

P ∗cap (kW) 1.30 ∗ 103 769.19 148.39 147.85 645.36

E∗cap (kWh) 2.15 ∗ 103 2.40 ∗ 103 29.82 29.93 1.83 ∗ 103

Profit ($/day) 607.40 592.57 326.68 354.08 933.94

R∗(kW) 377.75 399.04 148.39 147.85 388.80

C. Peak Shaving
The electricity bill charged monthly by utilities to large

commercial and industrial power consumers, i.e., the oper-
ational expenditure (op-ex), typically consists of two parts:
(i) the energy charge and (ii) the charge for the peak power
during the month. The peak power is the maximum in the
month of average power over each 15-30 minute duration. The
price of the peak power (i.e., the op-ex peak power price) is
around $12/kW/Month currently. In addition, the one-time cost
of building power infrastructure to provide capacities to satisfy
the peak power requirements, i.e., the capital expenditure (cap-
ex), is around $10-20/W on peak power based on current
estimates [12]. Thus, cutting peak power is an important way to
reduce costs. This approach, termed peak shaving, is common
and ESS provides a key method for implementation.

1) Problem Formulation: When participating in peak shav-
ing, an ESS that shaves R amount of power from the peak
power can gain revenue:

RevenuePS = ΠPSR, (8)

where ΠPS is the overall price on shaved power, i.e., the sum-
mation of the amortized capital (cap-ex) price and operational
(op-ex) peak power price. The peak shaving constraints in
formulation, i.e., ConstraintPS are:

0 ≤ pt + ut ≤ max(pt)−R, ∀t ∈ [1, T ],

e0 = eT ,
(9)

where pt is the power curve before peak shaving, and max(pt)
is the original peak power. ut is the power change rate from the
view of system level. pt+ut is the new power curve after peak
shaving, and max(pt) − R is the new peak power. e0 = eT
represents that energy stored in ESS is kept the same at the
beginning and in the end of the time frame (in our study T =
1 day). The rest of equations in the optimization problem for
ESS in peak shaving are similar to those in RSR in Eq.(3).

2) Case Study: We generate pt from a real HP workload
trace collected from a data center that consists of 5,000 servers.
The peak power of this trace is 1MW, commonly seen in
today’s mid-size data center, and matches with the typical
capacities of ESSs. Unlike the optimal solution of RSR or
contingency reserves that is either 0 or maximal capacity
allowed (i.e., no feasible optimal solution), the optimal solution
of peak shaving can be in between. Table II lists the optimal
solutions of different ESSs for peak shaving. All these optimal
solutions lead to positive net profit. CAES has the maximal
optimal net profit, though the corresponding capacities in the
optimal solution is unrealistic due to its extremely small power
and energy densities. LA and LI batteries have larger optimal
net profit than UC and FW, though UC and FW can gain
promising profit with very small capacities.

Fig.3(a) and 3(b) show the optimal net profit for varying
energy and power capacities (Ecap, Pcap) in peak shaving, for
LI and UC, respectively. These contour plots present where
the optimal solution for each ESS is located. Fig.3(a) also
shows that LI batteries can gain profit from peak shaving in
most cases, except when the power capacity is very small. In
Fig.3(b), the profit of UC is larger than 0 only when both
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Fig. 3. ESSs in peak shaving.

TABLE III. COMPARING THE OPTIMAL NET PROFIT OF MULTIPLE
TYPES OF ESSS (WITH Ecap , Pcap LISTED IN TABLE I) IN PARTICIPATING

DIFFERENT PROGRAMS.

LA LI UC FW CAES

Profit R∗ Profit R∗ Profit R∗ Profit R∗ Profit R∗

RSR -16.4k 0.17 -11.1k 0.29 13.0k 5.95 10.3k 5.94 -0.3k 0.004

CR -0.12k 1.00 -0.10k 1.00 -1.02k 1.50 -0.85k 1.49 -0.006k 0.02

PS 0.41k 0.20 0.44k 0.20 - 0.46k 0.21 -0.31k 0.20 0.31k 0.13
athe unit of profit and R∗ in table are $/day and MW.

bCR: contingency reserve; PS: peak shaving.

power and energy capacities are small, which shows that the
marginal increase of the credit received from peak shaving by
enlarging UC capacities is smaller than the increase in UC
capacity cost. In addition, results show that CAES is always
able to gain profit in peak shaving though large profit is not
practical due to the limitations of power and energy densities.

Next, considering today’s typical ESS capacities in peak
shaving, the last row in Table III shows the optimal net profit
and the corresponding optimal shaved power R∗ of ESSs with
typical capacities in Table I, and under today’s cap-ex and
op-ex market prices. From the table, UC and FW fail to gain
net profit, whereas LA, LI and CAES earn net profit around
$300-400 per day.

D. Discussion
We provide the optimal net profit of each ESS technology

across the programs in Table III for today’s typical capacities
and market reserve prices. From the table, LA, LI batteries and
CAES gain profit from peak shaving, whereas UC and FW gain
profit from RSR. None of them gain profit from contingency
reserve, due to its low price and low calling frequency. The
maximal profit earned from emerging RSR (by today’s typical
UC or FW) is up to 30 times of the maximal profit that can be
earned from traditional peak shaving program (by LA or LI
batteries), which shows that there is a great opportunity for an
ESS to gain significant profit from RSR provision in today’s
ancillary market. For providing RSR, UC and FW are the
best choices due to their extremely high tolerance for frequent
charging/discharging, high efficiency and power density, and
relatively low power capacity cost, while LA, LI batteries and
CAES are better choices for peak shaving, or contingency
reserves (though are not profitable), because of their relatively
lower cost on energy capacity and lower self-discharge rate.

IV. CONCLUSION

In this paper, we have modeled and studied the optimization
solutions that maximize the net profit of various ESSs in
different demand response programs. Our results show that
typical UC and FW are the most profitable selections for RSR,
while common battery techniques such as LI and LA batteries
are the best choices for peak shaving. None of today’s ESS
technologies can earn positive net profits from merely provid-

ing contingency reserves. More importantly, applying UC/FW
in RSR has the potential to be up to 30 times more profitable
than LI/LA batteries for peak shaving. Additionally, we have
proposed online policies for managing ESS participation in
RSR program, the novel but most profitable option according
to our studies. Our online policies guarantee the feasibility of
RSR provisions, while also achieving significant profits.
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