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Emerging cloud service platforms are hosting hundreds of thousands of virtual machine 
instances, each of which evolves differently from the time they are provisioned. As a 
result, cloud service operators are facing great challenges in continuously managing, 
monitoring and maintaining a large number of diversely evolving systems, and 
discovering potential resilience and vulnerability issues in a timely manner. This paper 
introduces an automated cloud analytics solution that is based on using machine learning 
for system change discovery and management. The learning-based approaches we 
introduce are widely used in multimedia and Web content analysis, but application of 
these to the cloud management context is a novel aspect of our work. We first propose 
multiple feature extraction methods to generate condensed “fingerprints” from the 
comprehensive system metadata recorded during the system changes. We then build up 
an adaptive knowledge base using all known fingerprint samples. We evaluate different 
machine learning algorithms as part of the proposed discovery and identification 
framework. Experimental results that are gathered from several real-life systems 
demonstrate that our approach is fast and accurate for system change discovery and 
management in emerging cloud services. 

Introduction 
Cloud computing promises the delivery of on-demand computing resources as a utility 
that can be used as needed. This promise has led to a revolution in IT technologies 
causing a rapid transfer of services to the cloud [1]. Regardless of whether a cloud 
operator uses bare metal computers, virtual machines, or containers to create computing 
facilities, basic questions remain the same: are these facilities free of any vulnerabilities, 
configured correctly, and can they avoid drifting from acceptable configuration states? 
New service automation and DevOps workflows have attempted to address the system 
drift problems by proposing the use of immutable architectures and tightly structuring 
software lifecycle into development, build, deployment and operations phases. However, 
current agile iteration principles that promote continuous development and improvement, 
and the fast pace of changes in underlying systems and software, counteract some of 
these benefits. Variability across systems in cloud environments remains a persistent 
problem. Therefore, discovering potential misconfiguration and vulnerability issues in a 
timely manner is elusive. 

An effective solution to figure out system vulnerabilities and drifts is to monitor, check 
and analyze each change made to a system since it is booted. To understand what the 
system changes are about, one can dig out information from historical user or system 
logs. However, log data is usually too massive to be mined fast and accurately. It is also 
very inefficient to always keep a huge chunk of logs in storage. On the other hand, to 
determine if a system change includes software with known vulnerabilities, one can 
consult the package repository in the system and cross-check that information against, for 
example, National Vulnerability Database (NVD) [2]. However, a vendor could issue a 
fix pack that fixes a known vulnerability without changing package version. Sometimes 
vendors could back-port fixes into packages that have reached end of their life cycle. In 
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both cases, a single package name links to several different versions of packages: some of 
them are vulnerable while others are not. Further, users could install software from 
sources without using package managers. Simply using logs, package managers and 
repositories fails to discover vulnerabilities in all these scenarios.  

Manually written rules that check for the existence of certain indicative features such as 
the existence of certain files, configuration parameters are used in addition to consulting 
package repositories in the system [3-5]. While these rules are sufficient to detect the 
presence of software for license purposes, they are not capable of discriminating between 
a vulnerable package, and one that includes a fix for it. Furthermore, approaches based on 
such rules are fragile and require constant maintenance, indicating a substantial amount 
of manual effort. A great amount of today’s software gets released multiple times a week, 
and most of systems change everyday. Rule-based approaches have difficulties in 
keeping up with the pace of software and system changes. 

Alternative methodologies that build inverted indexes of file tree structures to enable 
keyword-based searching for software discovery are mostly useful in scenarios where 
users have a deep understanding of the underlying file/process structures associated with 
the software they are searching for and can produce specific keywords to query [6]. 
However, as file names can be repetitive, uninformative, and misleading, the results of 
such systems are useful in narrowing down the search space but are not conclusive or 
comprehensive.  

In this paper, we introduce an automated cloud analytics solution that generates 
fingerprints of changes in system state, and utilizes these fingerprints in a machine 
learning platform to perform system change discovery and management. We first propose 
multiple novel feature extraction methods to generate condensed fingerprints from the 
comprehensive metadata associated with the system change events. Our fingerprinting 
methodologies mostly focus on the file system features, and tend to represent changes in 
system state in a compact form. They can learn the hidden context behind filenames, and 
represent them with vectors utilizing the file tree structure and/or file co-location 
information to capture the semantic relationships of files. Using these fingerprints, we 
build an adaptive knowledge base that enables fast comparison of system state changes 
with previously labeled changes. More specifically, we learn the discovery model from 
the knowledge base with learning algorithms and then predict the new-coming system 
changes by the model. We then conduct experiments mainly based on system changes 
caused by software installation in this paper. Typical system changes include: software 
installations, updates, system reconfigurations and process executions. Among them, 
software installation is one of the most significant factors causing system changes [7]. 
Note that, our approach, however, is applicable for discovery of system changes caused 
by any of the above listed factors, as the procedure of the discovery remains essentially 
the same and is independent of the reasons of the changes. We evaluate several machine 
learning algorithms as part of the proposed discovery and identification framework on 
our knowledge base. We show that our mechanism can be utilized for fast (in a few 
milliseconds or seconds) and accurate (up to 98.75%) software and system change 
discovery. 
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Overview of System Change Discovery Framework 
Our system change discovery framework is composed of three phases: (I) change set 
creation, (II) training, and (III) discovery. A change set, which contains all changes that 
happened to the system during a system event (e.g., a software installation), is crawled 
and recorded in the change set creation phase. Figure 1 shows the change set creation 
flowchart. The training phase is composed of two stages: the fingerprint extraction and 
the model-learning. A fingerprint, a compact representation of each change set, is created 
in fingerprint extraction phase. In the model-learning phase, a knowledge base is first 
built up by change sets with known labels, and their corresponding fingerprints. The 
“label” here represents the name of the event that leads to the system changes. It can be a 
software package installation, e.g., “Apache Tomcat™ installation”, update, e.g., 
“Tomcat update”, or system configuration, e.g., “Tomcat configuration”, etc. All 
fingerprints along with their labels in the knowledge base are then supplied to the 
learning algorithms to generate a machine learning model. Finally in the discovery phase, 
the learned model is utilized in the task of label prediction for new unidentified changes. 
Newly labeled change sets and their corresponding fingerprints are then stored into the 
knowledge base for future learning, which makes the knowledge base iteratively updated. 
In this way, the whole discovery system is automated and requires little to no human 
intervention in the long-term. Manually labeled training samples are only required at the 
beginning of the initialization of the knowledge base. After the initialization, human 
operators only need to verify or clarify samples that are labeled with low confidence, 
which only constitute a small set of whole samples. Figure 2 provides an overall view of 
the training and discovery phases.    

In the following sections, we first discuss the change set creation phase, in which we 
define what a change set is and how it is created. We then study the training phase. We 
discuss multiple fingerprinting methodologies to capture the extensive information stored 
in change sets in a compact form, followed by presenting various learning algorithms that 
we utilize for training the model. We then briefly discuss the system change discovery 
phase. Finally, we introduce the experimental methodology followed by an analysis of 
the performance of our discovery framework and discussions.   

Phase I. Change Set Creation  
A change set is the record of all changes that happened to the system during a system 
event, such as a software installation. It contains all entities that are created, modified or 
deleted during the event, e.g., files, packages, processes and configurations [8].  

Change set creation process and an example change set is shown in Figure 1 and Listing 
1 respectively. We create the change set by utilizing IBM’s Origami service [9, 10]. As 
an example to change set creation, consider the installation of an application such as 
Apache Tomcat™, an open source Java Servlet software. A “snapshot” S1 of the system is 
taken at T1, followed by the installation of the subject software, in this scenario Tomcat, 
followed by a second “snapshot” S2 of the system at T2. The difference of two snapshots, 
i.e., D = S2 – S1, is a change set and we label it with the “Tomcat Installation” label to 
mark that this change set represents the system state changes observed due to an Apache 
Tomcat installation. Technically, a “snapshot” is taken as a text file consisted of metadata 
of the system, and the difference D is the output of a “text diff” applied on two snapshots.  
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Phase II. Training  
Training has two stages, namely fingerprint creation and learning stages. In training, 
fingerprints are extracted from raw change set data, stored in a knowledge base, and a 
discovery model is then learned from data in knowledge base. Training process and its 
relationship with the discovery process is shown in the upper part of Figure 2.  

Fingerprint Creation 
Condensed key information is required to be extracted, either explicitly or implicitly, 
from change sets before they can be used to train the prediction models. The process of 
key information extraction is called “fingerprinting”, and the extracted key information is 
defined as the “fingerprint”, for each change set. In this section, we introduce multiple 
fingerprinting methodologies. 

All fingerprinting techniques introduced here use file features in the change set, such as 
filenames and file paths. An example of file features can be seen in Listing 1. File 
features constitute the most significant part of change sets, and in most cases using only 
file features is sufficient in discovery and identifying system changes caused by software 
installation. It is also sufficient for other causes of system changes such as software 
updates and system configurations unless these operations do not cause a significant 
change in file features.  

The most intuitive, straightforward, but storage-wise inefficient fingerprint is the 
filename fingerprint. A filename fingerprint is a list of filenames of all recorded files 
(added, modified, or deleted during the system change event) in a change set. Filename 
fingerprints are distinguishable because the combination of filenames of all changed files 
is mostly unique to system change.  

A filename fingerprint can be quite inefficient especially when a change set contains 
thousands of file features. Hence, we propose a condensed numerical representation of 
these filenames, the histogram fingerprint [8]. The process of creating a histogram 
fingerprint from a filename fingerprint is as follows: (1) transform each filename in the 
filename fingerprint into a numerical value using some hash function, e.g., calculating the 
ASCII sum of all characters that the filename contains; (2) calculate histogram by 
grouping all the numerical values into a few bins, i.e., 𝑁!"#$, and count the number of 
values in each bin as 𝐶! , 𝑖 = 1, 2, 3…𝑁!"#$ ; (3) normalize histogram by:   𝐶!!"#$ =

!!
!!

!!"#$
!!!

   , 𝑖 = 1, 2, 3…𝑁!"#$, such that  𝐶!!"#$ = 1.!!"#$
!!!  The histogram fingerprint is 

normalized so as to be independent of the total number of filenames in the change set. 
The length of histogram fingerprint is fixed at 𝑁!"#$. 

Both filename and histogram fingerprints utilize the file features as is, without trying to 
understand the “meaning” of the names of these files. However, it is now possible to 
capture the syntactic and semantic similarities and relationships between words in natural 
languages with no human supervision by providing significant amount of textual content 
to neural networks [11, 12]. Word2vec (w2v) is one such open source machine learning 
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(neural network) toolkit developed at Google for this specific purpose [11]. It has been 
shown to successfully capture the similarities among concepts in natural languages.  

We propose that w2v can also be used for gleaning the meaning behind filenames. Just as 
concepts that tend to appear in the same sentence in a specific order have a special 
relationship, we argue that filenames that appear in the same file tree branch or in the 
same folder (hence neighbors in locality) have a special relationship, and we propose two 
fingerprinting methodologies that utilize these two separate sources of information. We 
feed the file features and their “neighbors” - the set of files that reside in the same folder - 
as sentences to v2w and create a vector representation for each filename that we call 
"neighbor vector” of a filename. For each change set, we sum the “neighbor vectors” of 
the changed files in the change set by performing a simple vector addition. Then we 
normalize the summation vector to a unit vector to obtain a neighbor fingerprint. 

Similarly, by feeding the filename of a changed file in the change set together with the 
folder names that are in the same file tree branch as a sentence to v2w, we create another 
vector representation for each filename, called as the “file-tree vector” of a filename. For 
each change set, by adding the file-tree vector representations of the changed files and 
then normalizing the summation vector to a unit vector, we obtain a file-tree fingerprint.  

When provided with sufficient amount of folder and file tree information, we observe that 
w2v can easily identify the semantic relationship between files. In Figure 3 we display 
two-dimensional vectors created by w2v for a set of filenames when file tree information 
is supplied to it. As shown via dashed circles in the figure, even when the vector 
dimensions are as low as two, w2v manages to retain a sense of the semantic relationship 
among the software objects represented by filenames and it is even possible to roughly 
group the filename vectors based on these semantic relationships. As an example, it is 
possible to observe from the figure that the 2D vectors for Emacs – the popular Linux 
editor – and Lisp – the programming language used for implementing most of the editing 
functionality built into Emacs – are very close. Please recall that these vectors are not 
fingerprints themselves but they are informative inputs to the fingerprinting algorithm. 
However, using w2v supplied vectors of changed filenames for fingerprinting enables the 
fingerprinting algorithm to retain a semantic sense of the installed program. When vector 
dimensions are increased to 200 or more, w2v starts to display much more accurate 
results. We should also note that w2v supplied vectors also retain a sense of relative 
relationship between files. As an example, when using neighbor vectors, we observed in 
our data that the relationship between “apache-commons-dbutils.jar” and “apache-
commons-dbutils.xml” is akin to the relationship between “ivy.jar” and “ivy.xml”.  

Learning Using Fingerprints 
Having defined our proposed fingerprinting methodologies to represent the change sets 
observed after system change events in a compact form, we now describe how we use 
these fingerprints in various learning frameworks to train models that can perform system 
change discovery. The set of machine learning algorithms we consider for system change 
discovery include nearest neighbor, logistic regression, support vector machines (SVM), 
decision trees and random forests. Below we briefly introduce these widely used machine 
learning algorithms.  
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Nearest Neighbor (NN) [13, 14] is a classification technique that labels a given sample 
using the closest (or most similar) samples within a given previously labeled dataset. 
Closeness is defined by a similarity or distance function, e.g., Euclidean distance, 
Manhattan distance, cosine similarity, etc. A generalization of this is the k-nearest-
neighbor (kNN) algorithm, which utilizes the “k” closest samples. In this paper, we 
consider the one-nearest-neighbor algorithm with the Euclidean distance. For a pair of 
fingerprints (𝑓!,  𝑓!) introduced before (they are both vectors, no matter what type), the 
Euclidean distance is calculated as 𝑓! − 𝑓! , i.e., the L2-norm. The smaller the distance 
is, the more similar two fingerprints are.  

Unlike other learning algorithms that have to go over a training phase to provide a 
learning model of coefficients, support vectors, or decision rules, the NN algorithm 
requires no training. It simply keeps the set of all training samples, and operates on these 
samples during the discovery phase to find the nearest neighbor (or k nearest neighbors) 
of the new-coming samples based on the given distance or similarity function, and reports 
the corresponding label(s) and their distances as the discovery result.   

Logistic Regression (LR) [15] is a classification algorithm that typically deals with binary 
outputs. The basic idea of the logistic regression is to train a coefficient vector of the 
feature from a training data set by minimizing a defined cost function using programming 
methods. It is a generalization from linear regression by applying a logistic function. 
Logistic regression method can be further generalized to predict the probabilities of more 
than two possible outputs, i.e., the multi-class logistic regression, with applying the one-
vs-all algorithm. In this work, we apply multi-class logistic regression with the L2-
regularization in our problem to avoid over-fitting. The weights on the cost of regression 
error and the regularization are trained through cross-validation on the training dataset.   

Support Vector Machine (SVM) [16] attempts to find an optimal set of hyper-planes in 
high-dimensional space that divides the samples into classes with largest margins. An 
SVM model is learned from training samples, which maps the samples as points in space, 
and divides classes by clear gaps (hyper-planes). Samples are then predicted to classes 
based on the side of the gap that they fall on. Samples on the margins are called support 
vectors. We apply one-vs-one algorithm to extend a binary SVM to a multi-class SVM, 
i.e., N(N-1)/2 classifiers are constructed if we have N classes.  

SVM applies kernel functions to map the original space to a higher-dimensional space. 
The most widely used kernel functions are the linear kernel and the radial basis function 
(RBF) kernel [17], which are both tested in our experiment. In SVM, a soft margin is 
typically applied, which chooses a hyper-plane that splits examples as cleanly as possible, 
though makes a more complex decision hype-plane. The trade-off parameter and other 
parameters related to different kernels are learned by cross-validation on the training 
dataset in our experiment.     

Decision Tree (DT) [13] is a tree-like graph in which each (non-leaf) node and each 
branch represents a test on an attribute and the outcome of the test, respectively. Leaf 
nodes represent classes, into which samples are finally classified after passing through 



	   7	  

tests on all attributes. A decision tree is most commonly learned in a top-down induction 
method, i.e., repeatedly splitting training sets into subsets in a recursive manner based on 
tests of attributes until splitting no longer improves the prediction performance. 
Comparing with other learning algorithms, an additional benefit of a decision tree is that 
the decision rules that are learned from a training data set can be usually visualized in a 
human-readable manner.   

Random	  Forests	   (RF)	   [18]	   is an ensemble learning method based on decision tree. It 
constructs multiple decision trees in training and uses the mean or mode of the prediction 
of individual trees as the final output. Random forest is mainly used to solve the “over-
fitting” issue of decision tree. 
 
Phase III. Discovery  
In the discovery phase, the models trained on the knowledge base that contains 
application labels and corresponding fingerprints are utilized for performing prediction 
over new fingerprints extracted from unobserved change sets. More specifically, the 
fingerprint of a new coming unobserved change set is generated, input into the model, 
and the identification (i.e., the label) of the change set is returned. Discovery process and 
its relationship with training are displayed in the lower part of Figure 2.  

Experimental Methodology 
The datasets used in experimentation are generated as follows: We randomly select 160 
software packages from the Linux yum repository and install these packages on two 
different operating systems in two different cloud environments, namely the Fedora-19 
on Amazon Web Service (AWS) EC2 micro instances, and the Fedora-21 on 
Massachusetts Open Cloud (MOC) [19] medium instances. Note that the approach also 
applies to other software systems, such as APT-like repositories, manual installation from 
binaries, etc. We have briefly tested them and observed similar results. In addition, the 
approach is independent to the location of installation, as we either only use the relative 
path or not use the path information at all in fingerprint design. In that way, we make sure 
that the same software installed in different folders can still be discovered. We record the 
system change set for each installation. We select software package installations as the 
system change trigger events because software installations are one of the most 
significant events that can lead to notable system changes. However, the proposed 
discovery technique is not limited to application installations and can be applied to a 
variety of system change events, such as security patches, system configurations and 
process execution, etc.     
 
A change set not only includes records of changes caused by the software installation, but 
also contains other “background noise”, such as temporary files created automatically by 
the system and changes made by other user operations or unrelated running activities in 
parallel, etc. Therefore, change sets consist of variations and vary from installation to 
installation. Even installing the same software on the same instance multiple times leads 
to different change sets. Moreover, dependency packages are resolved and installed 
during software installation. Some popular dependencies are shared by multiple software 
packages, and as a result, during the batch installation of 160 packages, dependencies of 
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some later installed software packages may have already been installed during 
installations of prior software. Hence different orders of installations in the batch 
installation among these 160 software packages lead to differences in change sets. Thus, 
in order to capture variations in change sets, we batch install 160 software packages 
multiple times in random order. We install each software package 3 times on different 
AWS instances and 4 times on different MOC instances to create a training knowledge 
base. Overall, the training dataset consists of 160 software installation classes with each 
class containing 7 change set samples. This dataset is also used to generate the w2v 
dictionaries for neighbor and file-tree fingerprints.  
 
Our testing dataset is generated as follows: we randomly select 80 software packages out 
of the 160 classes, and install each of them once on a separate AWS instance with 
Fedora-19. Then we randomly select another 80 software packages and install each of 
them once on a separate MOC instance with Fedora-21. The change set samples obtained 
from these installations are used as our discovery test cases. Therefore, our test dataset 
contains 160 tests in total, with 80 from AWS Fedora-19 installation and 80 from MOC 
Fedora-21 installations. The test data set is generated in this way so as to capture the 
experimental varieties of different OSs and platforms. The accuracy of discovery is 
defined as the number of cases that are correctly identified among these 160 test cases, 
divided by 160. We test discovery accuracy of all combinations of different fingerprints 
methodologies and learning algorithms discussed previously.   
 
Experimental Results 
Figure 4 shows the discovery accuracy of various combinations of the fingerprinting 
methodologies and the learning algorithms. We test the performance of the one nearest 
neighbor (NN), logistic regression with regularization (LR), SVM with linear and RBF 
kernel (SVM-linear and SVM-RBF), decision tree (DT), and the random forest (RF) 
machine learning algorithms. In LR, SVM-linear and SVM-RBF, parameters are tuned 
with cross-validation on the training data set. Either one-vs-one or one-vs-all method is 
used in each learning algorithm for multiclass discovery, as discussed previously. Since 
there exist some variations in model generation in DT and RF, the discovery results vary 
corresponding to different models. We calculate average performance of DT and RF 
across 20 test runs.  

The fingerprints in our experiment include: the histogram fingerprint with different 
number of bins (𝑁!"#$ = 20 and 𝑁!"#$ = 200), the neighbor fingerprint, and the file-tree 
fingerprint. The lengths of both the neighbor and the file-tree fingerprints are 200. We 
also test the accuracy of utilizing combinations of histogram (𝑁!"#$ = 200), neighbor and 
file-tree fingerprints as feature sets. As an example, the histogram + neighbor fingerprint 
has 400 dimensions, with first 200 dimensions coming from the histogram fingerprint and 
the last 200 dimensions coming from the neighbor fingerprint. Similarly, the length of the 
histogram + file-tree fingerprint is 400, and the length of the histogram + file-tree + 
neighbor fingerprint is 600. 

As seen in Figure 4, the highest discovery accuracy is as high as 98.75%, and is achieved 
by using logistic regression on the combination of histogram, neighbor and file-tree 
fingerprints. All learning algorithms with the exception of the decision tree algorithm, 
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which may suffer from over-fitting, achieve the best performance when some 
combinations of fingerprints are used. Histogram fingerprint with 200 bins has 
consistently better performance than with 20 bins for all algorithms. In our experimental 
tests we also observed that further increasing the number of bins of the histogram to 1000 
or larger counts in fact decreases accuracy, as it leads to highly sparse fingerprints.  

We observe from Figure 4 that utilizing the file neighborhood and file-tree information 
in fingerprint creation process causes notable improvements in performance. In some 
algorithms (i.e., NN and DT), simply using the neighbor information leads to the highest 
accuracy. Involving other information such as histogram or file-tree may blur the model 
and predication boundary. Considering that the file-tree fingerprint depends on the paths 
of installation that are sometimes modified by users, neighbor information can be more 
reliable and general in broader use cases.   

In addition to the discovery accuracy, the time for model training and testing are other 
significant aspects that should be taken into account, especially in some real-time 
monitoring scenarios, in which discovery results must be returned as soon as possible. 
From our results, all the combinations of learning algorithms and fingerprint 
methodologies can finish all 160 tests in less than 0.1s. Notice that this number is almost 
independent with size of knowledge base in all studied algorithms except for NN. We 
should note that the test time of NN could increase with increasing labeled sample sizes.  

For training on a knowledge base containing 160 classes with 7 samples each, logistic 
regression has the longest training time, which is around 10-20 seconds depending on the 
types of fingerprints used. Decision tree with combined fingerprints has training time 
around 5 seconds. All the other combinations finish training in less than 1 second. Notice 
that there is no training time issue in nearest neighbor algorithm, as there is no model to 
be trained. In practice, a discovery system can be designed as a combination of an online 
training phase and an offline training phase. Algorithms that are able to train and update 
the model fast, though with slightly lower accuracy can be applied in the online training 
phase to update the prediction model frequently, while algorithms with longer training 
time but higher accuracy can be applied as an offline training method, to update the 
model less frequently with some fixed periods, e.g., once a week.  

Related Work  
Standard system management and system change discovery mechanisms employed 
industrially today are mainly rule-based solutions that utilize large sets of manually 
written rules to check the existence of certain indicative properties, such as the existence 
of certain files. OpenIOC [5] is one such open framework that uses rules to examine 
registry, file content and metadata information to determine security vulnerabilities. 
BigFix [3] is a commercial offering that uses rules to scan systems and applies fixes 
automatically based on scan results. Rule-based approaches, however, are labor intensive 
as each new system and software requires a new set of rules, require frequent edits and 
updates due to updates on systems and/or software packages, and require domain 
expertise over a variety of systems and applications to prepare the rules, which is hard to 
come by. 
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As a complementary solution to manually written rules, a few studies investigate 
automated learning methods in system performance diagnosis [20, 21]. These studies 
mainly rely on system performance metrics to detect the performance drift on either 
hardware or firmware layer, and mostly do not deal with problems in software and 
system layer. EnCore [22] is a tool developed that learns configuration rules from a given 
set of sample configurations, and automatically detects software misconfigurations. 
Though it effectively solves types of misconfiguration problems, it does not target to 
general software and system changes. 

Recently, some work studies the opportunities and challenges to interactively search 
across virtual machine (VM) images at a high semantic level, and sketches the outline of 
an implementation by a discard-based search [23, 24]. Alternative system change and 
software discovery methodologies based on indexing methodologies and information 
retrieval techniques are proposed. Minersoft [6] indexes file system information to build 
a keyword-based query processing systems that enables searching for software existence 
on indexed systems. Similarly, Mirage [25] is an image library that stores cloud images 
such that their file system structure is indexed in a way that enables scanning, searching 
and comparison of VM instances. However, indexing-based approaches require 
maintenance of large indexes per target VM that get constantly updated as the VM 
evolves. Besides, indexed file names and processes can have repetitive string 
representations, which can be uninformative and misleading thus results in inconclusive 
or incomprehensive result sets.  

In contrast, our approach (1) is fully automated requiring little to no human intervention; 
(2) can adapt to changes and updates by learning from the new examples and updating 
models; (3) significantly reduces the amount of maintenance required due to changes on 
instances by creating compact representations of changes occurring in system states, and 
(4) can provide highly accurate and comprehensive results to system change discovery 
queries.  

Furthermore, we note that due to fast development cycles observed in state-of-the-art 
system implementation practices, many system change discovery use cases require the 
capability of querying with examples, such as “listing the set of VMs that have made a 
given type of an installation/configuration”, perhaps to identify systems that pertain a 
certain type of misconfiguration or bug observed in one VM. We should note that, unlike 
rule-based or indexing-based approaches, our proposed framework performs nicely in 
these kinds of “query by example” scenarios as well. 

Conclusion and Future Work 
As cloud computing technologies continue to mature and keep gaining attractions in 
many industries, the demand for intelligent analytics solutions that ease the management 
of cloud environments increases. In this study we have introduced an automated cloud 
analytics solution that caters to one of such demand, namely system change discovery 
and management. Our solution achieves efficient discovery by recording system changes 
in change sets, generating compact fingerprints of system state changes and utilizing 
these fingerprints in a machine learning platform. We have shown that with 
understanding the hidden context and the semantic relationships among filenames in 
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change sets, automated, fast (in a few milliseconds or seconds) and accurate (up to 
98.75%) system change discovery is achievable by our technique. 

As an immediate follow-up of this work, we plan to test the accuracy and efficiency of 
proposed system on more additional cloud environments such as the Google Cloud 
Engine and Microsoft Azure as well as other popular operating systems such as CentOS, 
Ubuntu, and RHEL, and prove the scalability of our solution. Besides, investigation of 
configuration discovery in popular cloud applications such as Hadoop, Spark, RabbitMQ, 
Cassandra, etc. is a natural extension of the proposed work.  

Since most of the machine learning algorithms we investigate can provide a prediction 
confidence level along with their predictions, confidence threshold setting mechanisms 
can be investigated in future work to discover new applications that are not in the current 
knowledge base, as well as reduce the error of miss labeling by filtering out low 
confidence predictions. Another related possible research avenue is the investigation of 
prediction accuracy on highly noisy and/or insufficient/partial data. This task can be 
achieved by applying the confidence threshold setting mechanisms to determine when to 
make a prediction and when to wait for more input.  
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Figure 1 Flowchart of change set creation. Snapshots of the system are captured before 
and after the system change event. Then a diff operation is calculated on these two 
snapshots, and the change set is generated. 
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Figure 2 Training and discovery phases of the system change discovery framework. 
Labels and extracted fingerprints from change sets are input into learning algorithms to 
train the model in the training phase. The learned model is then used to discover and label 
the new-coming unidentified changes during discovery.   
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Figure	  3.	  	  2D vectors created by w2v for a set of filenames when file tree information is 
supplied to it. Created vectors retain the semantic relationship among the software objects 
they represent.	  
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Figure	   4.	   Discovery accuracy for multiple fingerprinting methodologies and learning 
algorithms. Results are grouped by learning algorithms.  
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{ 
    Created: { 
        os: { 
 type: ‘RHEL linux’, distro: ‘Red Hat’, version: ‘4.2’, ipaddr: ‘9.25.34.1’, 
hostname: ‘vm23.rescloud.ibm.com’, mount-points:{‘/dev/vda1’ : ‘ext3’, ‘/dev/vda2’: 
‘ext4’}, ... 
 }, 
        file: { 
 ‘/etc/hosts’:{permission: ‘-rw-r--r—’, size: 236, user: ‘root’, group: ‘wheel’},  

 
... < one entry per file in the file system > ... 
},   

        package: { 
 tomcat6 :{version: ‘6.0.2’, vendor: ‘Apache’, arch:  ‘x86_64’},  
 ... < one entry per installed package > ... 

},   
        process: { 
 ‘httpd’ :{pid: 23, exec: ‘/opt/apache/httpd’, ports: [8080], open-files: 
[‘/var/log/httpd/httpd.log’, ...] }, 

... < one entry per running process > ... 
},   

        config: { 
 ‘/var/tomcat/web.xml’:{<contents of config file can also JSON-encoded. e.g.> 
Connector:{sslEnabled: true, maxPostSize: 2MB, port: 8080, URIEncoding: ISO-8859-
1}}, 

 … < one entry per config file (client-specified list) > … 
},  

    }, 
    Modified: { 
 ... < similar entries to "Created" > ... 
    }, 
    Deleted: { 
 ... < similar entries to "Created" > ... 
    } 
} 
 
Listing 1: A sample change set. It contains all entities that are created, modified or 
deleted during the system change event, e.g., OS, files, packages, processes and 
configurations.  

 
 
 
 
 


