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Abstract— Data centers have shown great opportunities to
participate in extensive demand response programs in recently
years. This paper specifically focuses on data centers as partic-
ipants in regulation service reserves (RSR) power market. We
propose a novel approach to model the dynamics of the job
processing Quality of Service (QoS) in data centers that offer
RSR, and use stochastic dynamic programming (DP) to solve for
the optimal reserve deployment policies. We show that the job
QoS degradation can be modeled as a time varying probability
distribution function (PDF) whose mean and variance evolve
as functions of recent control statistics. The mean and variance
are in fact additional state variables or sufficient statistics
of the stochastic DP whose solution provides the data center
operator (DCO) decision supports to minimize the average
operating costs associated with RSR signal tracking error and
job processing QoS degradation. Simulation results show that
the feedback control policy obtained from the stochastic DP
solution can reduce the DCO’s operating costs compared to
heuristic operating protocols reported in the literature. In
addition, the DP value function can assist the DCO to bid
optimally into the hour-ahead joint energy and reserve market.

I. INTRODUCTION

Power system renewable integration is increasing world
wide. The EU has set the goal of reaching a 20% share of
renewable energy in gross energy consumption by 2020 [1].
In the US, 38 states have long term renewable portfolio
standards and 14 states have installed more than 1,000 MW
of wind power [2]. It is expected that the total renewable
generating capacity will have a growth of 52% utill 2040 [3].
Higher renewables integration increases the frequency con-
trol, regulating and operating reserve requirements provided
mostly by conventional centralized generation today but
expected to be significantly complemented in the near future
by demand side participants, such as smart buildings, large
factories, and data centers through either centralized utility
direct load control (DLC) or price based distributed control.

An interesting related development is that electricity con-
sumed by data centers is growing rapidly. In the US, the
annual growth rate of data center electricity consumption is
12% [4], while it has already accounted for about 3% of
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overall electricity consumption [5]. Data centers have had
a great impact on today’s power market. Recent advanced
server power management techniques, such as dynamic volt-
age frequency control (DVFS) [6] and management of CPU
resource limits [7], have enabled data centers to use the
flexibility in their power consumption to advantage. In this
vein we argue that data centers offer a unique opportunity
to participate in extensive demand response programs, either
through current and emerging technology such as DLC, or
as participants in reserve power markets on a par basis
with centralized generation. Such a new role of data centers
will render their growth economically and environmentally
sustainable, benefiting data centers themselves and the elec-
tricity sector in general, by enabling efficient integration of
clean energy generation.

This paper investigates the participation of data centers in
the provision of regulation service reserves (RSR) ([8], [9]),
by modulating the data center servers processing rates to
meet system needs, while maintaining job processing Quality
of Service (QoS) promised to their customers. We consider
RSR provision in the hour-ahead market that clears with
relatively high RSR prices. Our specific contributions are:

First, we introduce a dynamic model of probability dis-
tribution function (PDF) that quantifies the likelihood of
a data center job departing beyond the contracted QoS
guarantees (Section II-C). Based on extensive numerical
study, the dynamic QoS degradation PDF can be accurately
approximated by a uniform distribution whose mean and
variance are functions of the history of the control inputs
(i.e., server retired instructions per second (RIPS) as the
processing rate, or equivalently power consumption rate).
Specifically, the mean of the QoS degradation PDF can be
estimated by a linear regression of the integral of recent
controls, while the variance can be represented as a linear
regression of the number of job departures, which can be
characterized as a Poisson random variable whose parameters
are related to the current control. We account for the fact
that the protracted use of a high processing rate decreases
the likelihood of large QoS degradation, and vice versa.

Second, we develop a stochastic dynamic programming
(DP) problem to minimize the expected cost of tracking
errors in RSR provision and QoS guarantee violations (Sec-
tion II-C). The state variables of DP include the distribution
of QoS degradation (i.e., the mean and variance of it, as they
are sufficient statistics to characterize the distribution), RSR
signal transmitted by the independent system operator (ISO),
and statistics on the recent data center power consumption
trajectory. The DP is solved using value iteration with



Monte Carlo simulated state transitions to derive optimal
state feedback policies and the average cost value function
(Section III-B). We observe and discuss on the partial non-
monotonic property in the derived optimal policies, which is
caused by the discontinuity in the cost of job system time
that quantifies contracted QoS degradation.

Finally, the DP based optimal policy is compared with
heuristic operating policies proposed in previous work on
data center RSR provision [10] (Section III-C). Results show
that our control law is associated with costs that are 5% lower
than those incurred under the heuristic policies. In addition,
we show that the DP value function can assist the data center
operator (DCO) to optimally bid into the hour ahead energy
and reserve market (Section IV).

Broadly speaking, this work also contributes to the real
time control literature by relaxing the usual assumption
that the QoS, or consumer’s utility preferences, can be
adequately characterized by a static PDF in the short-
term ([11], [12], [13], [14]). For example, the demand for
energy in the cooling zone, or the demand for access to
a dynamically priced mobile service bandwidth, has been
commonly modeled by a uniform probability distribution that
remains constant over time regardless of past controls (e.g.,
prices). Undoubtedly, this assumption is inaccurate and the
PDF of consumer preferences can be affected significantly
by the recent control [15].

II. PROBLEM FORMULATION

In this section, we first introduce the RSR market for data
centers to participate. Then we present the general data center
model as well as the applicable server power management
techniques in RSR provision. After that, we discuss our
dynamic QoS modeling, and introduce the formulation of
the data center RSR provision as a stochastic DP problem.

A. Regulation Service Reserves

Today’s power markets and reserve provisions are clas-
sified into several categories based on different time scales
and the frequency of the reserve commands deployed ([9],
[16], [17]). In this work, we focus on RSR in the hour-ahead
power market, as data centers are capable of modulating
their powers at such frequency (4 seconds), and the price
of reserves is high. While previous RSRs were mainly
provided by centralized generators, market rules are changing
to encourage more demand sides to provide reserves. For
instance, PJM has allowed demand sides to provide RSR
since 2006 [18], and other ISOs are following this trend.

In RSR provision, each potential provider bids an average
power consumption P̄, and a reserve value R to the ISO in an
hour ahead. Once the bid is accepted, and the market prices
of energy consumed and reserve are cleared at ΠE and ΠR

respectively, the RSR provider is charged for ΠE P̄−ΠRR
in the following hour. In other words, the provider can
receive ΠRR credits for providing R amount of reserves. The
credits, however, do not come for free. The RSR provider
is asked to track the RSR signal y(t) broadcast every 4
second, by modulating its power consumption P(t) such that

P(t) ≈ P̄+ y(t)R. The signal y(t) is the main tool used by
ISO to balance the supply and demand in the power market.
It is generated in real-time that is unknown to providers in
the hour ahead. However, the statistical behavior of y(t) is
well known. It is a random variable between [−1,1], with
an average of zero over long time intervals. The signal is
updated every 4 seconds in increments that do not exceed
±R/(τ/4), where τ is 150 seconds for the fast signal and
300 seconds for the slow signal. It follows a well-behaved
two level Markov model whose transition probabilities can
be calibrated in advance. During the hour, the tracking error
|ε(t)| = |P(t)− (P̄+ y(t)R)| is also calibrated, and part of
credits ΠRR is reduced based on it. Examples of the signal
as well as its detailed descriptions are referred to ([10], [19]).

B. The Data Center Model

A data center consists of many servers. Each server can be
set in one of multiple states at any time: active, idle, sleep and
shut down. Only in the active state a server has its processing
rate larger than zero, hence, can serve jobs. When the server
is active, the power consumption of it can be modulated by
several power management techniques, such as DVFS [6] and
CPU resource limits [7]. Meanwhile, the server processing
rate is changed correspondingly. Previous experiments have
shown that applying either DVFS or CPU resource limits as
the control knob, the relation between server dynamic power
consumption Ps(t) and the processing rate us(t) at time t can
be well fitted by a linear function fp [10]:

Ps(t) = fp(u(t)) = kus(t)+Pidle, (1)

where Pidle is the power consumption of the server at the idle
state, which is a constant1, k is a fixed parameter depending
on types of jobs that are served. In this work for simplicity,
we mainly focus on two most common states of the server
in emerging data centers – the active state and the idle state,
while leaving rest of states to be considered in future.

A data center total power consumption is an aggregation
of the consumption from several sub-components, such as
computational (including all servers), cooling (air condition-
ers, fans, etc.) and lighting units. We focus on regulating
the computational power in this work, while other units in
general have lower regulation capacity, thus can participate
in some slower frequency demand responses. The computa-
tional power is an aggregation of each server’s consumption,
i.e., P(t) = ∑

N
s=1 Ps(t) at any time t, where P(t) is the total

power consumption of the computational units, Ps(t) is each
server’s power (we use subscript s to denote server level
variables in this paper), and N is the number of servers
in the data center. In addition, we assume each server can
only serve one job per time, and define a queue for holding
incoming jobs of the data center.

C. The Stochastic Dynamic Programming Problem

We formulate the data center RSR provision as a stochastic
DP problem. We start with the scenario when all servers are

1Pidle in fact is a temperature dependent variable. We assume there is no
temperature change here.



in active state and have the same controllable processing rate
u(t) at time t, i.e., the total data center power budget P(t)
is always uniformly distributed to each server, so that the
fairness among all servers is kept. The period cost function
of the DP is composed of (i) the cost of inaccurate RSR
signal tracking, i.e., PCtrack(t), characterized by the deviation
between the data center power consumption P(t) and the
RSR signal y(t), and (ii) the cost of QoS degradation, i.e.,
PCQoSD(t), characterized by the PDF of QoS degradation. In
later discussion, we introduce to represent the PDF of QoS
degradation by its mean and variance.

(i) Tracking cost PCtrack(t): denoting the processing rate
of an individual server by us(t), it has been shown that the
server power consumption Ps(t) is linearly related to us(t)
with function fp in Eq.(1). Since all servers operate at the
same controllable processing rate u(t) for fairness, the whole
data center energy consumption is N fp(u(t)). Given the RSR
signal y(t), the tracking error period cost is defined as:

PCtrack(t) = Π
Err|N fp(u(t))− (P̄+ y(t)R)|, (2)

where ΠErr is a constant, representing the penalty price on
per unit of tracking error.

(ii) Cost of QoS degradation PCQoSD(t): we first define the
QoS degradation of each job i as QoSDi = Ti/Ti,min, where
Ti is the job system time (i.e., waiting time plus processing
time), Ti,min is the job shortest processing time, which is a
static value measured in advance, referring to the time of
processing the job with the maximal server processing rate
umax, and without any waiting time in the queue. QoSDi = 1
means no degradation in QoS of job i.

We start with simulating a data center with N = 1000
servers extensively to characterize the distribution of the
dynamic QoS degradation for each 4 seconds2. Assuming
each server’s maximal possible processing rate is umax, we
simulate the scenario that jobs arrive following a Poisson
distribution with the parameter λ = 50% ∗ Numax, where
Numax represents the maximal processing capacity of the
data center. A job arrival rate at 50% of maximal capacity is
selected here for the reason that an utilization around 50%
is a typical scenario in emerging data centers.

Based on queueing theory, in order to guarantee that the
system is stable, the average processing rate of the whole data
center, i.e., Nū, should be greater than the job arrival rate λ =
N ∗ 0.5umax. Hence the constraints on the data center RSR
bidding values (P̄,R), where P̄ = N fp(ū), are as follows:

N fp(umax)≥ P̄ > N fp(0.5umax),
min(N fp(umax)− P̄, P̄−NPidle)≥ R≥ 0. (3)

We simulate by using a 24-hour historical PJM RSR
signal data [8] as y(t), and test on different selections of
(P̄,R) that satisfy Eq.(3). In addition, since different control
policies lead to varying tracking errors, for the general
purpose we involve the tracking error ε(t) = N fp(u(t))−
(P̄ + y(t)R) as a Gaussian random variable in simulation,

2As mentioned in Section II-A, 4 seconds is the frequency of the RSR
signal regulated. For the rest of paper, by default the time interval t is 4
seconds.
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Fig. 1. Mean of the QoS degradation is characterized by the integration of
the past power consumption. Strong anti-correlation -0.97 is found between
two curves.

i.e., ε(t) ∼ N(µε(t),σ2
ε (t)), where µε(t) is changed for

every t = 5 minutes, obeying a uniform distribution as
µε(t) ∼ U(−0.1R,0.1R), and σ2

ε (t) = |4µε(t)|. During the
simulation, jobs are served with processing rate u(t) that
calculated based on the assigned data center power budget
P̄+y(t)R+ε(t). We record the QoS degradation of every job
that departs the system in the 4 second interval to generate
the distribution of QoS degradation for every 4 seconds.

Simulation results show that in every 4 seconds the QoS
degradation is uniformly distributed. Therefore it is necessary
and sufficient to characterize the PDF by its mean and vari-
ance. We begin by formulating the mean of QoS degradation
E QoSD(t) for every 4 seconds. Based on standard queuing
theory, the mean of QoS degradation depends only on the
mean of queuing length µW of the system, when the data
center does not provide RSR and consumes power steadily
at level P̄. When providing RSR, if the power consumption
N fp(u(t)) is higher than P̄, then it results in a smaller value
of µW and therefore smaller E QoSD(t), and vice versa. We
further observe a strong anti-correlation (−0.97) between
the integration of the past history of power consumption

(with P̄ as the reference value), i.e.,
t∫

0
(N fp(u(τ))− P̄)dτ and

E QoSD(t), which is shown in Fig.1. Hence, we propose to
model E QoSD(t) with linear regression as follows:

E QoSD(t) = α

t∫
0

(N fp(u(τ))− P̄)dτ +g(µW )+ω1, (4)

where g(µW ) is the proper function that transforms the mean
of queue length to mean of system degradation, α can be
determined from simulation, and ω1 is a zero mean random
variable with known variance. Since fp(u(t)) = ku(t)+Pidle
from Eq.(1), and P̄ = N fp(ū) = N(kū+Pidle), Eq.(4) can be
simplified as:

E QoSD(t) = αNk
t∫

0

(u(τ)− ū)dτ +g(µW )+ω1, (5)

in which we linearly transform the integration of power
consumption to the integration of the processing rate.

The variance of the QoS degradation, V QoSD(t), is
affected by the number of job departures Dep(t) in every
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Fig. 2. Variance of QoS degradation is characterized by the number of job
departure (i.e., finished) in 4 seconds. The higher departure number results
in higher uncertainty to the system, and thus higher variance.

4 seconds from the observation. A larger Dep(t) results in
more sample uncertainties, and therefore larger V QoSD(t).
Fig.2 is the scattered plot between Dep(t) and V QoSD(t),
whose correlation is 0.94. With linear regression we have:

V QoSD(t) = β (Dep(t)−1)+ω2, (6)

where Dep(t) can be estimated as a Poisson random variable
with λ = Nu(t)∆t (∆t = 4 seconds) based on simulation
results. β and ω2 can be determined from simulation.

Given E QoSD(t) and V QoSD(t), the PDF of the uni-
formly distributed QoSD(t) is

p(QoSD(t)) =
{ 1√

12V QoSD(t)
QoSD(t) ∈ [a,b]

0 otherwise
, (7)

where the lower and upper bounds are

a = E QoSD(t)−
√

3V QoSD(t)
b = E QoSD(t)+

√
3V QoSD(t).

(8)

If the DCO signs a contract with users in which a penalty
C(QoSD(t)) is added when the QoS degradation exceeds a
pre-defined level Q, then the expected period cost per job
departure incurred by QoSD(t) is

∞∫
Q

p(QoSD(t))C(QoSD(t))dQoSD(t)−Π
SV , (9)

where ΠSV represents the credit earned from per job depar-
ture. The overall period cost of QoS degradation for every 4
seconds equals to the expected cost of all job departures in
that 4 seconds:

PCQoSD(t) =

E
[
Dep(t)

( ∞∫
Q

p(QoSD(t))C(QoSD(t))dQoSD(t)−ΠSV
)]

.

(10)
Finally, based on (2) and (10), the total period cost

function for every 4 seconds is

PCtotal(t) = PCtrack(t)+PCQoSD(t) =
ΠErr|N fp(u(t))− (P̄+ y(t)R)|+
E
[
Dep(t)

( ∞∫
Q

p(QoSD(t))C(QoSD(t))dQoSD(t)−ΠSV
)]

.

(11)
Next, we formulate the state dynamics of the DP. Clearly

E QoSD(t) in Eq.(5) is not Markov with respect to u(t).

We transform the variable into a memoryless one by adding
an auxiliary variable z(t) representing the integration of the
processing rate u(t) corresponding to ū up to time t. Letting
z(0) = 0, we have the dynamic of z(t) as

z(t +1) = z(t)+(u(t)− ū). (12)

Substituting z(t) into (5), we have

E QoSD(t) = αNkz(t)+g(µW )+ω1. (13)

The dynamics of the RSR signal can be formulated by a
Markov chain with two states: the value of y(t) and the sign
of y(t)− y(t − 1), namely D(t), representing the direction
of the signal changes at time t. Conceptually this can be
represented as:

y(t +1) = f1(y(t),D(t))
D(t +1) = f2(y(t),D(t)) . (14)

Since the statistic behavior of the RSR signal is known
ahead, function f1 and f2 can be calculated in advance.
They can also be mined from historical ISO RSR signal data.
Detailed discussion on Eq.(14) is referred to [15].

We formulate the stochastic DP problem as a discounted
cost infinite horizon DP. If we denote the value function as
J(y,D,z) and the overall state dynamics by

x(t +1) = f (x(t)), (15)

where x(t) is composed of {y(t),D(t),z(t)}, then the Bell-
man Equation is

J(y,D,z) = PCtotal(y,D,z)+ηE
[
J( f (y,D,z))

]
, (16)

where η is the discounted rate.
To conclude, the state variables are {y(t),D(t),z(t)},

the control variable is u(t), the disturbances are
E QoSD(t),V QoSD(t), and the discounted cost infinite
horizon DP is to solve the following problem

min (16) over u
s.t. (6),(7),(12),(13),(14). (17)

III. OPTIMAL FEEDBACK CONTROL

In this section, we introduce the simulation method to
solve for the optimal feedback policy of our discounted rate
infinite horizon DP problem. We then discuss the policy and
compare it with a heuristic operating solution in literature.

A. Simulation Method

To figure out the optimal control policy u, we solve
the discounted cost infinite horizon problem with the value
iteration method. We normalize and discretize the control
variable u(t) into 11 levels in the range of [0,1], with the
granularity at 0.1. For the state variable z(t) introduced in
Eq.(12), we simulate extensively and study its distribution
to acquire its possible range. Based on the distribution, a
range of [-20, 20] can include more than 95% values of
z(t). For |z(t)| > 20, we truncate them to 20. Since z(t)
is the integral of u(t), we discretize z(t) using the same
granularity as u(t). We discretize the state variable y(t) at
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Fig. 3. The optimal policies u(t) via y(t) and z(t) given D(t) = 1, of three cases: (a) PCtrack(t) >> PCQoSD(t), i.e., the tracking cost dominates in the
overall period cost function; (b) PCtrack(t) << PCQoSD(t), i.e., the cost of QoS degradation dominates in the overall period cost function; (c) PCtrack(t)
and PCQoSD(t) are on the same order of magnitude.

the granularity of 0.1. Since the state variable D(t) = ±1,
there are 16842(= 401×21×2) different states in total.

By understanding the real-life data center service level
agreement (SLA), we define the cost function of the QoS
degradation in Eq.(9) as

C(QoSD(t)) =
{

0, if QoSD(t) ∈ [1,Q)
ΠDQoSD(t), otherwise , (18)

which is a discontinuous function. ΠD is a constant, repre-
senting the penalty price on per unit of the QoS degradation.
We select the threshold Q = 3 in simulation. ΠD here and
ΠSV in Eq.(10) are estimated based on the price information
of Amazon Web Service (AWS) [20]. In general, ΠD and
ΠSV have the same order of magnitude.

B. Optimal Policy
The optimal policy can be quite different while select-

ing different values of ΠERR and ΠD. A large ΠERR can
lead to PCtrack(t) >> PCQoSD(t), while large ΠD can have
PCtrack(t) << PCQoSD(t). Fig. 3 shows the optimal control
policy u via key state space variables y(t) and z(t) given
D(t) = 1, of the following three cases:

(i) ΠERR is large, i.e., PCtrack(t) >> PCQoSD(t). In this
case the cost of tracking error is much larger than that of the
QoS degradation, the optimal policy tends to always track
the RSR signal y(t) as accurate as possible to minimize the
overall costs. So the policy is sensitive to and monotonically
varies with y(t), and is almost independent of z(t);

(ii) ΠD is large, i.e., PCtrack(t)<< PCQoSD(t). In this case
the cost of tracking error is much smaller than that of the
QoS degradation, the optimal feedback policy is a bang-
bang controller that either sets u(t) at the minimal or at the
maximal level. Specifically, if the mean of QoS degradation
E QoSD(t) is large because of a small z(t), then u(t) = 0 and
the policy decreases the number of departure jobs at t, i.e.,
Dep(t). If E QoSD(t) is small because of a large z(t), then
u(t) = 1 and the policy increases the number of departure
jobs at t, so as to minimize the overall costs. Overall, the
optimal policy in this case is only sensitive to z(t) and is
independent of y(t);

(iii) PCtrack(t) and PCQoSD(t) have the same order of
magnitude. While (i) and (ii) are two extreme cases, case

(iii) requires to balance between the signal tracking costs
and the QoS degradation costs. From Fig. 3(c) we find that
the optimal policy depends on both z(t) and y(t). The policy
shows that: 1) for the same z(t), the optimal processing
rate u(t) increases when the signal y(t) increases, so as to
better track the signal; 2) for the same y(t), the optimal
processing rate generally increases as z(t) increases, which
shows that when the mean of QoS degradation is small, the
optimal policy tries to finish and depart more jobs during that
moment; 3) there is a non-monotonic behavior of the optimal
policy around z(t) = 10 to z(t) = 15. This region of z(t)
corresponds to the region of E QoSD(t) around threshold
Q in Eq.(18), which is the discontinuous turning point of
the QoS degradation penalty cost function, while below
which there is no degradation penalty and above which the
penalty linearly increases. Such non-monotonic behavior of
u(t) can be explained as follows: When z(t) corresponds to
E QoSD(t) that is near the left extreme of threshold Q, at
which there is still no penalty of QoS degradation, the policy
applies larger processing rate u(t) to finish and depart more
jobs to minimize the overall costs. When z(t) is larger, e.g.,
z(t) = 20, however, the DCO does not necessarily use large
processing rate, as there would be also no penalty if jobs
are finished and depart later when z(t +∆) = 15 for small ∆.
Instead, the system can focus more on eliminating tracking
errors at that moment to minimize the overall costs. This
explains the phenomenon that the optimal processing rate
u(t) can be larger for z(t) = 15 than z(t) = 20.

The optimal policy of D(t) = −1 is similar to that of
D(t) = 1, except that there is a small shift in the figure
along the direction of z(t) axis. This is because that when
D(t) =−1, there is a higher probability that the RSR signal
y(t) is going to decrease in the future than when D(t) = 1.
In order to eliminate the overall tracking error, the optimal
policy of D(t) =−1 prefers lower u(t) than that of D(t) = 1.
Overall, the shift is small, which shows that the policy is not
very sensitive to the state variable D(t).

C. Policy Comparison

We compare the optimal policy with a previous heuristic
operating policy [10], which simply tracks the signal y(t)



as accurate as possible and does not include costs of QoS
degradation in the period cost function. We consider the
same scenario for both policies: a data center with N = 1000
servers, jobs arrive following the Poisson distribution with
the arrival rate as λ = 50%Numax. We run simulation with
a real 24-hour historical RSR signal data from PJM [8]
as our y(t), and use only data from the 2nd to the 23rd

hour (data from the 1st and the last hour is not clean and
stable due to the effects of the initialization and termination
of the experiment). We treat this 22-hour simulation as 22
repetitions of the 1-hour experiment and then measure the
statistics in order to achieve statistical confidence. The price
information used in simulation is estimated based on real
PJM [8] and AWS [20] data, i.e., ΠErr = 0.2$/kWh, ΠD

= ΠSV = 0.1$/h. These price values lead PCtrack(t) and
PCQoSD(t) to share the same order of magnitude, and thus the
scenario falls in the category (iii) introduced in Section III-B.

We measure the tracking cost Jtrack and the cost of QoS
degradation JQoSD, and recall that the overall cost Jtotal
equals to Jtrack +JQoSD. Comparing to the previous heuristic
operating policy that best tracks the signal y(t) [10], our
DP optimal policy incurs larger Jtrack, which is expected,
as the previous policy tracks signal the best. However, our
new policy leads to much smaller JQoSD, due to the fact that
the QoS degradation is carefully taken into account in our
DP solution. Overall, the total cost, Jtotal of the DP optimal
policy is decreased by 4.55% on average.

IV. HOUR-AHEAD BIDDING MECHANISM

Acquiring the optimal policy, we then study the optimal
hour-ahead bidding strategies for the DCO in the energy
and reserve market. For the scenario of the data center with
1000 servers and the utilization of 50%, Eq.(3) provides the
constraints of the bidding values. Obeying the constraints,
we run simulations with different (P̄,R) and measure the
data center’s hourly overall bill as

B(P̄,R) = Π
E P̄−Π

RR+ Jtotal(P̄,R), (19)

where Jtotal(P̄,R) is the summed value of the tracking error
cost and the cost of QoS degradation in DP formulation,
introduced in Section III-C.

For simplicity of notation, we denote N fp(0.5umax), i.e.,
the lower bound of P̄ in Eq.(3) as Plb. Table I shows the
overall hourly bill (in dollars) of a 1000-server data center
with P̄ = 1.001, 1.1 and 1.2 Plb respectively in each row3.
For each selected value of P̄, the maximal possible reserve
value is: Rmax =min(N fp(umax)− P̄, P̄−NPidle) from Eq.(3).
In the table, we measure the bill via R = 20%, 40%, 60%,
80% and 100% Rmax respectively, for each P̄. ΠE = ΠR =
0.2 $/kWh based on the real market data ([8], [21]).

The table shows that, satisfying the constraints in Eq.(3),
the overall hourly bill of the data center in RSR provi-
sion increases monotonously as P̄ increases, and decreases
monotonously as R increases. Therefore, in order to minimize

31.001Plb is selected because Plb itself does not satisfy Eq.(3), however,
a power value sightly larger than Plb is able to, e.g., 1.001Plb.

TABLE I
THE HOURLY BILL OF A 1000-SERVER DATA CENTER WITH RSR

PROVISION VIA DIFFERENT (P̄, R)

100% 80% 60% 40% 20%

1.001 $31.33 $34.89 $38.23 $41.36 $43.90

1.1 $40.79 $43.55 $46.43 $49.58 $53.00

1.2 $47.99 $49.49 $50.82 $52.02 $53.19

a1.001, 1.1 and 1.2 represent P̄ = 1.001Plb, 1.1Plb and 1.2Plb respectively,
with Plb = N fp(0.5umax).

b100%, 80%, 60%, 40% and 20% represent R = 100%Rmax, 80%Rmax,
60%Rmax, 40%Rmax and 20%Rmax respectively, with Rmax = min(N fp(umax)−
P̄, P̄−NPidle).

the monetary costs, the optimal bidding mechanism for the
data center RSR provision is to choose the smallest P̄ and
the largest R that satisfy Eq.(3).

V. RELATED WORK

As the overall need for reserves increases with increasing
renewable penetration, relying on conventional generators for
reserves is costly and environmentally undesirable. Results
show that loads, by acting as both positive and negative
generation sources, can promise to respond to RSR signals to
maintain grid balance and help reduce the need for secondary
reserves from conventional fossil fuel generators ([22], [23]).
An off-only switched control has been proposed to achieve
bi-directional electricity modulation [24]. The operator at
each time only needs to decide the fraction of appliances to
be disconnected. Disconnected appliance will automatically
reconnect after a fixed amount of time. Some recent work
proposes joint optimization frameworks to minimize the
average cost of RSR deployment requirement violation and
consumer dis-utility, by employing dynamic system models
or Markov decision process [25]. In addition to thermostatic
loads, several heuristic scheduling policies have been pro-
posed to solve for large scale participation of deferrable load
in reserve provision. The proposed policies include earliest
deadline first strategy, least laxity first strategy, and receding
horizon control [26]. Moreover, deadline constrained appli-
ances, such as electric vehicles, washing machines, can be
coordinated to fill in the overnight demand valley, to miti-
gate renewable energy intermittency and reduce transmission
congestion ([27], [28], [29], [30], [31], [32], [33]).

Discovering that the power consumption of data centers
worldwide keeps increasing rapidly during the past few
decades, a growing number of studies begin to model and
investigate the capacity and benefit of enabling data centers
to participate in multiple types of power market demand re-
sponse and to provide various reserves, including RSR ([21],
[34], [35], [36]). Various data center power management
techniques, e.g., load shedding and load shifting, are ex-
ploited for data center demand response participation ([37],
[38]). Brocanelli et al. [39] propose to provide reserves by
exploiting synergies of degrees of freedom in data center
and employee PHEVs. Finally, other work explores the
opportunities of data centers in stabilizing the power network
and balancing the electric power load ([40], [41], [42]).



VI. CONCLUSION
In the work, we have modeled QoS degradation of job

processing in data centers as a dynamic uniform probability
distribution whose dynamic mean and variance depend on re-
cent control trajectory statistics and job departures. The mean
and variance of this probability distribution serve as sufficient
statistics that describe the useful information on the current
QoS performance. We have introduced a stochastic DP that
employs these sufficient statistics along with other state
information to determine optimal state feedback policies,
which enable the DCO to (i) reduce by around 5% energy
cost compared to heuristic policies proposed in literature, and
(ii) buy energy and sell reserve optimally in the hour-ahead
market. Future work will focus on investigating additional
control actions by accounting for multiple server operating
modes, such as putting servers to sleep, and pursuing the
characterization of optimal switching control policies, i.e.,
binary level control, in addition to the currently deployed
continuous power consumption rate control.
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