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Abstract—With the integration of high-performance multicore
processors and multiple accelerators into modern mobile system-
on-chips (SoCs), power densities have grown substantially. As
a result, thermal management policies, which ensure operation
at thermally safe conditions, became essential components of
state-of-the-art mobile systems. Traditional thermal throttling
approaches aim at maximum utilization of the available thermal
headroom to minimize the performance loss and maximize user
performance. This paper demonstrates that, in a mobile platform,
such greedy techniques can lead to significant degradation in
the quality-of-service (QoS) levels as the duration of device
activity increases, leading to inconsistent user experience over
time. We demonstrate that incorporating user/application QoS
requirements into mobile power management to provide “just
enough” performance (instead of always maximizing perfor-
mance) allows for more efficient usage of the thermal headroom,
which translates to substantially extended durations of sustain-
able performance. We propose a closed-loop QoS control policy,
including an efficient dynamic voltage and frequency scaling
(DVFS) state scheduling technique, to minimize the thermal
impact for extending the sustainability of desired QoS levels.
Experiments on a modern smartphone show that the proposed
technique provides up to 74% longer sustainable performance
while meeting the target QoS demands for a variety of real-life
applications.

I. INTRODUCTION
Mobile devices have been growing in popularity and have

become essential parts of our daily lives. Growing user demand
for faster processing and enhanced visual quality have been
fulfilled by the increased computational capabilities of state-
of-the-art mobile devices. Modern mobile system-on-chips
(SoCs) have grown in complexity and processing power by
integrating high-performance multicore processors and various
accelerators (Graphics Processing Unit, Digital Signal Proces-
sor, etc.), resulting in excessive power densities. Higher power
densities lead to elevated temperatures, which downgrade
device reliability [2] and energy efficiency due to increased
leakage power [17]. Incorporating multiple heat generating
components such as battery, display and CPU into a small
form-factor device with limited cooling makes maintaining
safe chip temperatures even more challenging. Thus, modern
mobile systems adopt CPU throttling techniques that adap-
tively reduce the operating frequency of the mobile processor
to mitigate thermal emergencies. Thermal throttling, however,
incurs performance drops and may impair user satisfaction
in mobile systems where a satisfactory QoS level should be
delivered to the user.

Existing power and thermal management techniques in mo-
bile devices greedily exhaust the available thermal headroom
to improve performance in case of increased computational
demand. Although this approach works well for improving
the QoS in relatively short applications, rapidly elevated tem-
peratures can significantly increase the performance impact of
throttling as the durations of the mobile device (phone, tablet,
etc.) activity get longer. More aggressive thermal throttling
induces larger performance degradations and leads to incon-
sistent performance levels during the application run. While
current power management techniques in mobile devices favor
short term performance, mobile system users also demand
consistent performance for the applications that run for min-
utes or longer (i.e., consistent frame rate in gaming/video
streaming [21] or webpage rendering time in browsing [30]).
In fact, users have already reported significant performance
drops in new generation high performance smarphones during
extended durations of use [4][14]. Therefore, power manage-
ment solutions in mobile devices need to address performance
sustainability, as opposed to traditional short term performance
oriented design, in face of the growing thermal limitations.

This paper addresses the problem of providing the user
with sustainable performance levels over extended durations
of mobile system use. We present real-life experiments to
demonstrate the impact of thermal limitations on achieving
performance sustainability using a modern smartphone plat-
form. We observe that the available thermal headroom could
be utilized more efficiently for longer durations by restricting
the short term performance to a level that is “just enough” to
meet the user’s QoS demand. Based on this observation, we
propose a novel QoS tuning technique that takes the target
QoS goal as the primary performance constraint and attempts
to sustain this target for the maximum duration by efficiently
tuning the processor power level.

Our work makes the following specific contributions:
• We demonstrate the potential behind trading off short

term performance in mobile devices for minimizing heat
generation and achieving extended durations of sustain-
able performance.

• We propose a closed-loop QoS control policy integrated
with an efficient DVFS state scheduler that achieves fine-
grained CPU power control for meeting a wide range of
possible QoS targets with minimal thermal impact.
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Fig. 1: Frequency residencies over time on a MDP8974 smartphone during
continuous use. Performance impact of throttling increases over time as the
CPU is forced to use lower frequencies to meet the thermal constraints.

• We evaluate our approach under both processor and skin
temperature constraints using a variety of real-life appli-
cations with different QoS metrics. Our experiments on a
modern smartphone show up to 74% longer durations of
sustainable performance using the proposed technique.

The rest of this paper starts by motivating the need for
QoS-awareness in mobile thermal management to improve
performance sustainability. Section III provides an overview
and also the design details of our QoS tuning framework.
Section IV presents the experimental methodology and inte-
gration on a real smartphone platform. Section V evaluates our
technique. Section VI discusses the related work and Section
VII concludes the paper.

II. MOTIVATION

To exemplify the impact of extended application durations
on sustained performance, Figure 1 shows the frequency
residencies when the FFT application from Scimark Java
benchmark suite [22] is repeatedly run on a Qualcomm
Snapdragon MDP8974 smartphone [23]. The baseline CPU
frequency scaling governor1 scales the frequency to the highest
level to boost performance and, initially (iterations 1-2), the
application is able to operate below the thermal limit by
throttling down to lower two frequencies only (1.9-1.7GHz).
It should be noted that, in this example, frequencies lower
than 2.1GHz level are enforced due to thermal throttling rather
than by the power management scheme. In the later iterations,
there is a clear shift towards utilizing lower frequencies due
to more aggressive throttling applied by the baseline thermal
management policy1, which significantly reduces performance
over time. For instance, in the last iteration, more than 80%
of the running time is spent at 1.4GHz and 1.2GHz, while
the application was well able to run without scaling down to
those two frequencies initially. This example illustrates that
greedily utilizing the thermal headroom to boost short term
performance can lead to significant performance loss over
extended durations.

We present another experimental scenario to point to the
potential trade-off between the instant short term performance
and sustainable performance. Figure 2 presents an experiment

1In the given experiment, default ondemand governor is used. The baseline thermal
throttling policy is a PID controller with 80 ◦C thermal set-point that operate hierarchi-
cally with the ondemand governor.
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Fig. 2: An illustration of the effect of trading off the short term performance
on performance sustainability. The experiment corresponds to a repetitive run
of bodytrack application [7] at 3 static frequency settings and QoS values are
normalized to maximum QoS.

that corresponds to a repetitive run of the bodytrack application
[7] at three different static frequency levels. Note that the
system can still throttle the frequency below the assigned
static level to avoid thermal violation. Figure 2a shows the
average QoS for each iteration of the application over time.
The maximum static frequency setting, 2.1GHz, gives the
highest QoS initially. The QoS level, however, sharply reduces
after the CPU reaches its thermal limits at around 220 seconds,
as shown in Figure 2c. The QoS level continues to downgrade
as a result of more aggressive thermal throttling and, at the end
of the execution, QoS degrades to 25% of the initial maximum.
The QoS drops below 90%2 at around 300 seconds when using
the aggressive 2.1GHz setting, while setting the frequency at
1.9GHz frequency allows to sustain the QoS level above 90%
for 450 seconds. Figure 2b shows the QoS distribution for
this experiment. The highest power setting results in wider
distribution of the QoS while the 1.9GHz setting is able to rein
the QoS distribution towards the 90% range (indicating longer
duration of execution time spent around the 90% QoS). These
results indicate that lowering the short term performance
requirements to “barely” meet the target QoS level, can enable
longer sustainability of desired QoS goals.

III. QOS TUNING FRAMEWORK

In this section, we introduce our runtime framework and
policies for efficiently tuning the QoS to “barely” match the
target levels in the pursuit of achieving longer durations of
sustainable performance. Figure 3 presents an overview of
the framework that we have integrated into our platform.
Our design comprises of three main components. The closed-
loop controller takes the runtime tunable QoS level as a

2We choose 90% as an example acceptable QoS level to explain our motivation
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Fig. 3: Overview of the implementation framework. Frames per second (FPS),
throughput and heartbeat per second (HB/sec) correspond to the QoS metrics
for our applications that are listed in Section IV-B.

performance target and determines the operating frequency
of the processor. The DVFS scheduler unit converts the
continuous target frequency provided by the controller into
a time-scheduled sequence of available discrete DVFS levels
to efficiently match the continuous target frequency with
minimal thermal impact. The QoS monitoring unit periodically
monitors the frames-per-second (FPS), throughput, or heart-
beats/second (HB/sec). We leave the discussion on platform
integration of this framework to Section IV-C, and proceed
with the implementation details of the controller and the
DVFS scheduler in the following sections III-A and III-B,
respectively.

A. Closed-loop QoS Controller

We design a feedback controller for dynamically adjusting
the CPU speed to converge QoS towards desired levels. The
controller tracks the progress of the application towards the
target QoS by interacting with the QoS Monitoring Unit at
every control interval. We use the following performance
model, which represents the QoS level for the next time
interval (Q[k + 1]) as a fraction of the maximum achievable
QoS (Qmax) at the highest frequency setting:

Q[k + 1] = Qmaxu[k] (1)

e[k] = Qtarget −Q[k] (2)

The control signal u[k] ranges between 0 to 1 and corre-
sponds to the frequency scaling factor which determines the
QoS level at time k + 1. Since the goal of the controller
is to minimize the difference between the target and current
QoS levels, the error term e[k] simply corresponds to this
difference. The transfer function of the Equation 1 in the z-
domain is given by:

F1(z) =
Q(z)

U(z)
=

Qmax

z
(3)

We find the transfer function F2(z) that defines the corre-
spondence between the control signal and the error term by
setting the following global transfer function of the closed-
loop control system to 1/z:

G(z) =
F1(z)F2(z)

1 + F1(z)F2(z)
(4)

We obtain the discrete-time representation of the controller
equation by substituting the F2(z) and taking the inverse z-
transform as follows:

F2(z) =
U(z)

E(z)
=

z

Qmax(z − 1)
(5)

u[k + 1] = u[k] + e[k]/Qmax (6)

We examine the stability and convergence of this control
system by analyzing the global closed-loop transfer function
G(z) in z-domain. The closed-loop transfer function of 1/z
has only one pole located at zero, which lies within the
unit circle, ensuring the stabilization around the target QoS.
Convergence to the target QoS level can be examined by
evaluating the G(z) at z = 1 and verifying a unit gain. Since
G(z) = 1/z evaluates to 1 at z = 1, the system has unit
gain at the steady state and converges to the target QoS. The
settling time of the controller is a function of the largest pole
(a) of the closed-loop transfer function [12], approximated by
−4/log(a). Since the G(z) has its single pole located at 0,
the controller can converge instantly, limited by the controller
invocation period in practice.

B. DVFS State Scheduler

The controller provides a continuous output signal while
the CPU can only support discrete DVFS levels. We propose
a DVFS state scheduler which divides the controller period
into bins and switches between two neighbor frequency levels
to produce an average frequency that matches the controller
output. We also demonstrate the potential to minimize the ther-
mal impact by making thermally-aware scheduling decisions
to further extend the durations of sustainable performance.

Minimizing the Thermal Impact with Efficient DVFS
Scheduling. We use the following discretized version of a
lumped RC thermal model similar to prior research [25] to
demonstrate the intuition behind our scheduling approach for
minimizing the peak temperature of the CPU:

T [n+ 1] = T [n] + S(RthPk[n]− T [n])/RthCth (7)

T [n+ 1] = c1T [n] + c2T̂k (8)

where S is the sampling period, Rth and Cth are the thermal
resistance and capacitance, T [n] is the temperature at sampling
interval n, Pk[n] is the power level corresponding to DVFS
state k, and T̂k = RthPk[n] is the steady-state temperature for
the power level Pk.

Consider the case where the scheduler estimates M bins to
be scheduled with the higher frequency state in the following
control interval, and those high frequency states are applied at
distances of L. Next, we show that scheduler can reduce the
peak temperature by increasing the distance L. Using Equation
8, we write the peak temperature at the end of the M th high
frequency state as follows:



Tp = cML
1 T [0] + c2

M−1∑
i=0

ciL1 T̂h + c2

(M−1)∑
i=0

(iL+L+1)∑
j=iL+1

cj1T̂l (9)

Since c1 and c2 are less than zero, when the distance
between the high frequency states (L) is increased, the last
term dominates and temperature approaches lower steady state
temperature T̂l. Thus, distributing the high frequency states
furthest from each other reduces the increase in temperature.
Based on this intuitive observation, our scheduler implements
maximum spatial distribution of the high frequency state bins
within the control interval.

Impact of DVFS Granularity on Temperature. As a result
of thermal time constants, temperature exhibits a “gradual”
increase or decrease than a step thermal response. Thus, in
addition to efficient DVFS scheduling, applying the DVFS
state decisions faster, or increasing the number of switches
within the interval, can also reduce maximum temperature due
to the thermal buffer provided by the thermal time constants
[9]. We exploit such benefits of the fast DVFS within the
limitations of our experimental platform as pointed out in
Section IV-C.

IV. EXPERIMENTAL METHODOLOGY

A. Target Platform

Our target experimental platform is a state-of-the-art Qual-
comm Snapdragon MSM8974 smartphone [23] that hosts a
Snapdragon 800 SoC (used in many modern smartphones, e.g.,
Nexus 5 and Galaxy S4). The Snadragon 800 SoC consists
of a Quad Core Krait 400 CPU along with an Adreno 330
GPU, 2GB LPDDR3 RAM and is powered by a 1,600mAh Li-
ion battery. The phone runs Android KitKat version 4.4.2 and
Linux 3.4.0 kernel. The Krait 400 CPU supports 12 operating
frequencies ranging from 300MHz to 2.1GHz. Temperature
measurements can be done on a per-core basis via on-chip ther-
mal sensors. Sensor readings for the CPU cores, battery and
skin temperature are performed using the thermal virtual file
system provided by the Linux kernel (i.e., /sys/class/thermal)
with ±1◦C accuracy. We use the logcat system debugging tool
available as part of the Android framework for monitoring
the frames per second and use perf event kernel API for
accessing hardware performance counters. Our phone allows
for measuring only the overall power consumption using the
voltage and current sensors. For the CPU applications that do
not require graphical interface, we turn-off the LCD display
throughout the measurements. We leave the LCD display on
for the GPU applications.

B. Application Set

Mobile systems run a broad range of applications and a
single performance metric cannot gauge performance of all
applications. Thus, we construct a benchmark set for our
experiments by combining applications from various domains
and evaluate them using different QoS metrics as summarized
in Table I. The LU application, a common kernel in many

Application Category QoS Metric
Sjeng Artificial Intelligence Throughput
H.264 Media Processing Throughput

LU Math Throughput
Pearl Boy Graphics/WebGL Frames per second
Aquarium Graphics/WebGL Frames per second
Bodytrack Computer Vision Heartbeats/sec

TABLE I: Summary of applications and respective QoS evaluation metrics.

image/video processing and mobile healthcare applications, is
selected from Scimark 2.0 [22], which is a benchmark suite
for testing Java based platforms. A video encoding (H.264)
and an artificial intelligence application (Sjeng) are chosen
from the SPEC CPU2006 [13]. We use two online graphics
applications created with WebGL, Aquarium [1] and Pearl
Boy [3]. The Aquarium shows an animation of fishes in a
tank, while the Pearl Boy is an interactive application requires
directing a boat in the sea. To ensure consistency between
the runs, we automate the user interaction by applying the
same sequence of input swipe commands for each experiment
through a lightweight background shell program. We also use
Heartbeats [15] instrumented version of the bodytrack com-
puter vision application from the PARSEC suite [7]. Heartbeat
framework allows to monitor application-specific QoS using a
standardized interface and, for the bodytrack application, this
framework emits a heartbeat whenever the processing of one
scene is completed. Since the Heartbeats framework could be
applied to a wider domain of applications for QoS monitoring
and tuning purposes, we find value in demonstrating the
applicability of our techniques on a representative Heartbeat-
instrumented application.

C. Baselines and Implementation Strategy

In this section, we provide the implementation details of our
framework and summarize the baseline policies that we have
used in our platform for comparisons against our policy.

Baseline Policies. The default CPU frequency scaling policy
in our phone (and in most state-of-the-art Android devices) is
the ondemand governor [20], which adjusts the CPU frequency
based on the CPU load. Thus, we use the ondemand governor
as our baseline power management scheme in our experiments.

Thermal throttling policies operate hierarchically with the
CPU frequency governors and assign maximum frequency
limits for ensuring operation below a thermal set-point. The
CPU governors cannot use the frequencies that are above the
assigned limit. Since the control-theoretic thermal manage-
ment solutions are among the most commonly used techniques
for maintaining the maximum temperature at a given threshold,
we use a DVFS-based PID controller as the baseline CPU
throttling mechanism. Modern smartphones also incorporate
skin temperature management policies to keep the outer
device temperature within the human comfort levels. Thus,
performance degradations can occur due to increased skin
temperatures as well. Since our MSM8974 device does not
provide a skin temperature management policy by default, we
implement the skin thermal management scheme available in
the Nexus 5 smartphones. This policy assigns a maximum



H264 Bodytrack Sjeng LU
ondemand
& DTM QT90 QT80 ondemand

& DTM QT90 QT80 ondemand
& DTM QT90 QT80 ondemand

& DTM QT90 QT80 QT70

Before
Throttling

Average QoS 0.99 0.89 0.80 0.96 0.902 0.804 1.01 0.896 0.805 0.995 0.903 0.806 0.707
Standard

Deviation of QoS 0.035 0.042 0.037 0.02 0.028 0.043 0.086 0.059 0.065 0.107 0.109 0.075 0.074

Overall
Execution

Average QoS 0.85 0.85 0.79 0.871 0.872 0.803 0.85 0.84 0.79 0.723 0.756 0.732 0.695
QoS Degradation 27.2% 16.6% 0.3% 18.3% 11.3% 0.1% 28% 18% 4% 35% 30% 22% 7.4%

Time Spent in
Throttling 85.4% 55.5% 6.8% 59.4% 48.3% 0% 86.9% 61.7% 26.1% 87.7% 86.6% 73.9% 45.4%

Average Power 0.99 0.97 0.88 0.92 0.97 0.86 0.99 0.96 0.89 0.97 1.02 0.97 0.91
Energy

Consumption 1.01 0.98 0.94 0.91 0.97 0.93 1.01 0.98 0.96 1.02 1.01 0.99 0.97

QoS/Watt 0.99 1.02 1.05 1.09 1.04 1.08 0.99 1.013 1.03 0.997 0.994 1.006 1.03

TABLE II: A summary of results for the CPU applications. QT(X) represents proposed QoS tuning policy with X% target QoS. Average QoS, power, energy
and QoS/Watt values are normalized to the highest static frequency setting (2.1GHz). QoS degradation corresponds to the percentage of QoS loss from the
first to last iteration of the application run. Time spent in throttling results corresponds to the percentage of execution time thermal throttling is incurred.

Trip Point Frequency Limit
40◦C 1.9GHz
42◦C 1.5GHz
44◦C 1.2GHz

TABLE III: Temperature thresholds and target frequency limits of the baseline
skin temperature controller.

CPU frequency limit whenever a skin temperature trip point
is reached, as described in Table III. Both thermal throttling
mechanisms poll the thermal sensors and assign frequency
limits every 100ms to enable non-intrusive (less than %1
execution overhead) thermal management while maintaining
sufficient time granularity to avoid thermal emergencies.

Implementation of the QoS Tuning Framework. We
implement the closed-loop controller as a user-level program
that regularly monitors the QoS level and passes the target
frequency to the kernel-level DVFS scheduler. The controller
is invoked every 200ms for the CPU applications and every
1 second for the GPU applications. We have observed noise
in the FPS values when sampling at finer granularity. We
implement our DVFS scheduler in the kernel-level as a new
CPU governor with a sysfs interface to allow for assigning
target frequency levels from the user space. The governor
based implementation allows users to easily enable/disable
our QoS tuning policy. The DVFS scheduler applies the
frequency decisions at the granularity of 20 miliseconds via
the cpufreq [8] interface. We have measured the frequency
transition latency in our system to be 186.4 microseconds by
wrapping the cpufreq driver target call in our kernel module
with timing utilities. We have found 20 miliseconds to be
the finest DVFS granularity that could be applied without
introducing noticeable overhead (<1%) in our system. The
maximum performance overhead of our framework is less than
1.3% across all the applications in our benchmark set.

V. RESULTS & EVALUATION

In this section, we present a thorough evaluation of the
QoS tuning policy that we have proposed in this paper
and demonstrate the benefits of our approach for achieving
longer durations of sustained performance. We evaluate the
CPU applications with the CPU temperature triggered dy-
namic thermal management policy (DTMcpu), which is the
PID controller based throttling scheme described in Section

IV-C. For the graphics applications, we have observed that
CPU temperatures did not reach to critical limits while the
skin temperatures kept increasing over time. Thus, we also
provide an evaluation of our QoS tuning policy with the
skin temperature controller (DTMskin) running as the throttling
mechanism on our platform. We aim to show the benefits of
our QoS tuning approach from the performance sustainability
perspective under both processor and device-level skin tem-
perature constraints.

Extended Sustainability with QoS Tuning on CPU applica-
tions. For the CPU applications, we explore three target QoS
levels which are set to 90%, 80% and 70% of the average
QoS achieved when the application is run at the highest static
frequency setting on an initially cold system. For clarity, we
do not present results for the 70% cases if the application
QoS does not degrade to this level using the highest static
frequency setting. We emulate extended application durations
by repetitively running the applications for a fixed number of
iterations. We determine the number of iterations based on a
maximum battery temperature limit of 50 ◦C.

Table II gives a detailed overview of our experimental
results where QT(X) corresponds to the proposed QoS tuning
technique at the target QoS level of X%. All the values except
for the QoS degradation and the time spent in throttling are
normalized to the highest static frequency setting. We evaluate
the phases of the execution without throttling (indicated by
“before throttling” in Table II) separately to examine the
controller’s ability to meet QoS goals without the interference
of the throttling policy. Overall, our controller is able to
effectively meet the given QoS targets with less than 0.06
average deviation. In most cases, average QoS of the overall
execution is lower than the “before throttling” phase due to the
performance impact of the throttling. However, bodytrack and
h264 applications are able to sustain the performance close
to 80% QoS level throughout the whole execution as little or
no thermal throttling is incurred at that level for these two
applications. The highest QoS degradation is observed for the
LU application, which spends 45% of time in throttling even
in the lowest QoS target of 70%. This degradation is due to
the power hungry nature of this CPU intensive computing
kernel that quickly reaches the CPU thermal limits. For all
benchmarks, the baseline ondemand policy continuously seeks
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Fig. 4: Normalized duration of time spent above a QoS level by the proposed QoS tuning policy for different target QoS level. “QTX%” represents the
proposed QoS tuning policy with X% QoS goal. A data point in the figure corresponds to (Time spent above a QoS with QT)/(Time spent above a QoS with
(DTMcpu+ondemand).

to convert the thermal headroom into performance by scaling
the frequency to high levels and incurs the highest QoS
degradation due to the increased percentage of time spent
in throttling. The QoS tuning policy with 90% target level
achieves 38.6% reduction in throttling duration on average and
consistently provides lower QoS degradation for all bench-
marks. The QoS tuning also provides up to 14% and 7%
reductions in power and energy, respectively.

Figure 4 presents the improvements in performance sus-
tainability for our CPU applications. The figure shows the
duration of time spent above a QoS level with the proposed
QoS tuning (QT) policy as normalized to the baseline. The
proposed technique provides substantially longer execution
time around the given QoS target. This could be observed
in Figure 4a,4b and 4c where the the curves start to rise
significantly above the dashed line (normalized baseline) when
approaching the the given QoS goals. For the h264, bodytrack
and sjeng applcations, an average of 37% and 26.7% longer
sustainability is achieved for the 90% and 80% QoS levels,
respectively. Improvement by the QoS tuning on the bodytrack
application for the 80% QoS level is lower (11%) as the
QoS drops to 80% range for only a short duration of time
with the baseline policy. The LU application, as shown in
Figure 4d, provides the peak improvements in sustainability
with 74% longer duration the 70% QoS target is sustained.
This application has the highest power consumption among
our applications and quickly reaches to thermal limits with
the baseline setting. Therefore, using higher frequency settings
results in higher QoS degradation for this application. In fact,
the proposed policy is also unable to sustain the QoS around
the target range for the higher 90% and 80% target levels and
QoS distribution shifts towards a lower range.

Fine-grained QoS Control with DVFS scheduler. The DVFS
state scheduler converts the continuous frequency targets into
a time-scheduled distribution of two discrete frequency states
that are neighbours of the continuous target frequency. This
scheme enables fine-grained tuning of the QoS for accurately
matching to the target levels. Figure 5 compares the pro-
posed combined QoS controller and DVFS scheduler tech-
nique against two performance aware static frequency settings,
1.9GHz and 1.5GHz. We refer to such static frequency selec-
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Fig. 5: Average QoS per iteration over time for the H264 application with
the proposed QoS tuning and performance aware static frequency selection
policy.

tion as performance aware since those two frequencies provide
the nearest average QoS to 90% and 80% levels, respectively.
Using the static frequency settings fails to precisely meet the
target QoS goals. For instance, in Figure 5, 1.9GHz setting
provides higher QoS than 90% goal while 1.5GHz setting
provides 5% lower QoS than the target 80% level. Besides,
since the static 1.9GHz setting provides higher QoS than the
target level and consumes extra power for this offset, the QoS
drops below the 90% level prior to proposed fine-grained QoS
tuning technique due to earlier invocation of thermal throttling.

The DVFS state scheduler also aims to achieve the max-
imum spatial distribution of the higher frequency states to
minimize thermal impact. Figure 6 shows the effect of such
distributed scheme on the temperature trace of the h264
application. Undistributed scheme simply switches from low
frequency state to high frequency state only once during
the control period while the distributed policy applies finer
granularity switching with maximum possible low frequency
periods between the high frequency states, both providing the
same average frequency. As annotated by the two arrows in
Figure 6, the distributed policy allows for longer execution
without reaching to the thermal limit.

Dynamic Adaptation to Changes in QoS Requirements.
The target QoS requirements for an application could change
during runtime for various reasons (upon user request, remain-
ing battery level etc). Therefore, a good control policy should
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Fig. 7: QoS trace for the Aquarium WebGL application as the policy adapts to
QoS requirements during runtime. The values are normalized to the maximum
achievable FPS and QoS targets are arbitrarily modulated every 2 minutes.

respond to such changes in the performance requirements. In
order to exercise our proposed framework with dynamically
changing QoS goals, we design an experiment where the target
QoS is arbitrarily modulated every two minutes during a 10
minute run of the aquarium graphics application. Figure 7
presents the QoS trace as the policy adapts to the changing
target QoS levels. The closed-loop controller with DVFS
scheduler enables fine-grained QoS tuning and is able to
precisely meet the arbitrary QoS goals. We have measured
the root mean square tracking error of our policy to be 0.088
in this experiment.

Performance Sustainability Under Skin Temperature Con-
straints. We further investigate the applicability of our mo-
tivation and QoS tuning technique under skin temperature
constraints for extending the durations of target FPS levels
using two graphics applications. Figure 8 shows the cumulative
distribution of the QoS for both applications during a 15
minutes of continuous execution. 100% QoS corresponds to
40 FPS for the Aquarium application and 60 FPS for the Pearl
Boy application. A data point corresponds to the fraction of
the overall execution time spent above the corresponding QoS
level. For the Pearl Boy application, QoS tuning with 75%
target level improves the sustainability by 9%, from 36% to
40% of the execution time spent above the target. We do not
show the 90% case as the baseline policy provides a QoS range
below 88%. Figure 8a shows the cumulative QoS distribution
for the Aquarium application and the dashed line corresponds
to the 30 FPS limit which is pointed by prior research to be
the lowest frame rate in the user tolerable range [21][29]. The
QoS tuning policy with 75% target (30 FPS) increases the
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Fig. 8: Cumulative QoS distribution for the two WebGL graphics applications.
Dashed line in the left figure shows the 30FPS limit. The baseline policy
corresponds to ondemand+DTMskin.

sustainability of this QoS level from 40% of the execution
time to 62%, providing 55% longer duration that the user can
be provided with an acceptable FPS level.

VI. RELATED WORK

Thermal management of multicore CPUs and MPSoCs is a
well studied subject for conventional computer systems. Con-
trol theoretic DVFS techniques provide effective temperature
control while maximizing performance [6][25] and predictive
techniques (e.g., [28]) have been applied to project thermal
emergencies for minimizing temperature violations. There has
been a recently growing effort towards thermal modeling and
analysis of the mobile devices in particular. Xie et al. propose
a resistance network based thermal simulation framework for
obtaining component level steady-state temperatures [26] and
derive an RC model of the thermal coupling between the
battery and the application processor [27]. Singla et al. [24]
present a temperature prediction and power budgeting method-
ology for heterogeneous mobile SoCs and show power savings
compared to fan-based and reactive policies. ARM’s new
Intelligent Power Allocation [19] scheme aims to maximize
performance under thermally limited scenarios by shifting the
power between the heterogeneous CPU cores and GPU based
on the expected performance return. Unlike the previous work,
we do not attempt to improve performance under temperature
constraints. Instead, we consider the target QoS levels as
performance-wise sufficient and aim to sustain that QoS level
for maximum duration.

Power management for meeting performance goals have
been studied for various computing platforms. Ayoub et al.
[16] propose a DVFS management technique for meeting
throughput requirements in a server system. Lo et al. [18]
present PEGASUS, which utilizes the Intel’s Running Average
Power Limiter for enabling fine-grained CPU power tuning
in web clusters to match query latency requirements. Kadjo
et al. [5] reduce the QoS requirements in memory bound
applications and achieve platform level power savings in a
mobile system. Pathania et al. [21] propose a CPU-GPU power
budgeting algorithm to meet a frames-per-second constraint in
mobile games. While the above techniques do not consider
the sustainability of performance targets and thermal impacts,
a recent study [11] points to the performance measurement
flaws that occur due power level differences in the boosting



mode and the throttling mode in Intel’s TurboBoost enabled
processors. Other recent work [29] proposes to trade-off QoS
within the user tolerable range for energy minimization in
event-based mobile web applications while we present the case
for trading off the QoS for thermal headroom to achieve longer
sustainable performance.

Several studies addressed the scheduling of discrete DVFS
states with thermal considerations in real-time systems do-
main. Applying faster switching between the discrete DVFS
levels have been formally shown to maximize the workload un-
der a thermal threshold [9] and minimize the peak temperature
[10] in hard real-time systems. Inspired by those techniques
in real-time systems domain, we utilize DVFS scheduling to
enable fine-grained CPU power tuning and meet the target
QoS constraints with minimal use of the thermal headroom
for improved performance sustainability.

Overall, our work differs from the prior research by the fol-
lowing aspects: (1) we address performance (un)sustainability
in mobile devices that arises due to thermal limitations; (2)
we show the performance drawbacks of existing thermal
management approach due to the pursuit of favoring short term
performance; (3) we propose tuning the power management
policies in mobile systems to match the target QoS demands
for creating efficient usage of thermal headroom, enabling
extended durations of sustainable performance; (4) we run all
experiments on real-life systems.

VII. CONCLUSION

In this paper, we addressed the drawbacks of greedily
exhausting the thermal headroom to boost short term perfor-
mance in mobile devices that actively grow in power densities
under limited cooling capabilities. Through experiments on a
real-life platform, we demonstrated that existing thermal man-
agement approach leads to considerably lower performance as
the duration of device activity increases, as a consequence
of the increasing performance impact of thermal throttling.
Diminishing performance imperils the user-experience in ther-
mally limited modern mobile devices that must guarantee
satisfactory quality-of-service (QoS) levels. In order to meet
the user demand in the face of thermal limitations, we propose
to trade-off performance for thermal headroom while meeting
target QoS goals in a mobile system. We present a runtime
framework with a closed-loop QoS controller and a DVFS
state scheduler that enables fine-grained power tuning. Our
results show that, utilizing the proposed framework for tuning
the user performance to a “just enough” level to meet the
minimum QoS requirement, allows for more efficient usage of
the thermal headroom and extends the durations of sustained
QoS levels by up to 74%.
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