
Adaptive Sprinting: How to Get the
Most Out of Phase Change Based Passive Cooling

Fulya Kaplan and Ayse K. Coskun
ECE Department, Boston University, Boston, MA – {fkaplan3, acoskun}@bu.edu

Abstract—CMOS scaling trends lead to elevated on-chip
temperatures, which substantially limit the performance of to-
day’s processors. To improve thermal efficiency, Phase Change
Materials (PCMs) have recently been used as passive cooling
solutions. PCMs store large amount of heat at near-constant
temperature during phase change, allowing strategies such as
computational sprinting. While existing sprinting methods al-
low short performance boosts, there is significant unexplored
potential in improving performance on systems with PCM-
enhanced cooling. To this end, this paper proposes a novel runtime
management policy driven by observations that are not captured
by prior techniques: (i) PCM melts non-uniformly due to spatially
heterogeneous on-chip heat distribution; (ii) power consumption
during sprinting is highly application dependent and assuming a
fixed sprinting power leads to lower thermal efficiency; (iii) if we
monitor the remaining PCM energy at various locations, we can
utilize the PCM heat storage capability much more efficiently. The
proposed Adaptive Sprinting policy exploits these observations to
extend sprinting duration for increased performance gains. Our
policy monitors the remaining PCM energy corresponding to each
core at runtime, and using this information, it decides on the
number, the location and the voltage-frequency (V/f) setting of
the sprinting cores. Experimental evaluation including a detailed
phase change thermal model demonstrates 29% performance im-
provement, 22% energy savings, and 43% energy delay product
(EDP) reduction on average, compared to prior strategies.

I. Introduction

Technology scaling accompanied with saturation in voltage
scaling has led to an increase in on-chip power density
at a rate that exceeds the heat removal ability of current
cooling systems. This increase in power density introduces
the phenomenon referred to as dark silicon; i.e., not all the
transistors on the chip can be powered on at full performance
without exceeding the thermal design power (TDP). TDP is
the maximum amount of power that the chip can dissipate
while operating below the critical temperature threshold in the
sustained mode. ITRS roadmap projections estimate more than
50% dark silicon area for the 8nm technology node [1].

Recent research explores runtime mechanisms to efficiently
utilize the chip area to maximize performance under thermal
constraints in the dark silicon era [2][3][4]. Intel’s Turbo
Boost [2] and AMD’s Turbo CORE [3] exploit the temperature
headroom to operate the cores at higher V/f settings for short
amounts of time. Computational sprinting exceeds the TDP by
activating all of the dark silicon cores during short bursts of
high intensity computing demands [4].

On the cooling side, the use of PCMs has been investi-
gated as a passive cooling technique [4][5][6][7]. PCMs are
compounds that store large amounts of latent heat during
phase change from solid to liquid. PCM absorbs this heat at a
near-constant temperature and hence acts like a large thermal

capacitor. These properties have led to the use of PCM in
cooperation with computational sprinting [4][5][6].

The current research focuses on using PCM in the con-
text of computational sprinting to extend sprinting duration.
Prior techniques on computational sprinting alternate between
sprinting with all cores and not sprinting by switching to
idle mode or single core operation [4][5][6][7]. However,
existing techniques ignore the following observation: due to
the inherent heterogeneous heat distribution across a chip,
different parts of PCM melt at different rates depending on
their location. Thus, this type of sprinting with an all or
nothing approach wastes the yet unused PCM capacity, leading
to substantially suboptimal performance. Similarly, existing
techniques do not consider the application’s power consump-
tion and assume a fixed sprinting power. These policies operate
under the worst case power consumption scenario, and thus,
potentially incur performance losses for lower power applica-
tions. In fact, factors such as application’s power consumption
or the number of cores to sprint with are significant factors in
determining the sprinting duration. Sprinting policies that do
not consider these factors cannot exploit full benefits of PCM.

For example, prior techniques [4][7] start running applica-
tions with 16 threads and in case of thermal violation, they
switch to either idle mode or single thread operation, assum-
ing all cores exhaust their PCM capacity at the same time.
However, our work shows that there is opportunity to continue
sprinting with a lower number of threads (instead of a single
thread) using the cores that still have remaining unmelted PCM
on them. In this way, we can provide performance benefits over
the existing policies.

This paper addresses this performance gap by introducing
a novel PCM-aware Adaptive Sprinting policy that decides on
the number of sprinting cores, their locations and their V/f
settings at runtime. Our policy is application-aware and it does
not rely on a priori assumptions about the application’s power
consumption. Instead, it takes actions by tracking the PCM
capacity. Our main contributions are as follows:

• We show that for a system with PCM, melting occurs
heterogeneously at different parts of the PCM (Section IV).
Thus, even if some cores reach their thermal threshold, there
is an opportunity to continue sprinting with other cooler
cores that have not yet exhausted their PCM capacity.
• We propose a PCM-aware Adaptive Sprinting policy to

improve the performance of multithreaded workloads on
systems with PCM (Section IV). Our policy extends sprint-
ing duration by allowing sprinting with a lower/higher
number of cores based on the remaining PCM capacity and
by choosing an efficient V/f setting.

• Using a detailed PCM thermal model (Section III) we
show that our policy provides 29% higher performance,
saves energy by 22%, and reduces EDP by 43% on average
compared to the best performing sprinting strategy (Sec. V).

II. Related Work

Thermal management of computing systems with PCM has
been receiving attention. Recent studies explore the benefits
of using PCM as a heat spreader or heat sink enhancer
[8][9][10][11][12]. Tan et al. use computational fluid dynamics
(CFD) simulations for thermal analysis of a mobile phone
with a PCM filled heat storage unit [9]. Alawadhi et al. study
the effectiveness of a thermal control unit composed of PCM
and a thermal conductivity enhancer on a portable electronic
device [8]. Other research focuses on designing hybrid heat
sinks that use air-cooling and PCM together for energy savings
[10][11]. Low conductivity of PCM significantly limits its
potential benefits. Using metal matrix-PCM composites as heat
spreaders in mobile electronic devices addresses this issue [12].

Other work in the area proposes using PCM in cooperation
with the performance boosting policies to increase system
efficiency [4][5][6][7]. Raghavan et al. introduce computa-
tional sprinting, which is temporarily exceeding the TDP of
the chip to improve the responsiveness during short bursts of
computation [4]. In their proposed sprinting technique, all of
the cores are activated at the highest V/f setting until the cores
hit a temperature threshold, after which the execution continues
with a single core. Their follow-up work demonstrates the fea-
sibility of sprinting on a hardware/software testbed [5]. They
also introduce the concept of sprint pacing, where the cores
sprint at a lower frequency when half of the thermal capacity
is consumed. Other research develops techniques to sprint
periodically for longer durations [6][7]. Safe computational
re-sprinting policy targets periodic tasks with hard deadlines
and finds the minimum required PCM latent heat capacity to
guarantee re-sprinting at full power [6]. Shao et al. consider
repeated sprints with a fixed duty cycle, which is the ratio of
the sustained power over sprint power [7]. They implement
their technique on a thermal test chip with an on-chip phase
change heat sink as a proxy for a smart phone processor.

Our work is the first to consider the heterogeneous melting
of the PCM and exploit this heterogeneity to extend sprinting
duration. Our policy dynamically decides on the number,
location and the V/f setting of the sprinting cores, thus provides
continued sprinting with the cores that have available PCM
capacity. Moreover, our policy does not depend on assumptions
such as consuming a fixed power value during sprinting. In
this way, it provides performance benefits regardless of the
application power consumption.

III. Methodology

A. Phase Change Thermal Model

We use the detailed phase change model proposed in our
prior work [13], which was validated against a CFD model and
provided 0.27oC RMS error. This model was integrated into a
compact thermal simulator, HotSpot [14], which considers both
vertical and lateral heat flow. The PCM model uses the basic
3D stacking feature in HotSpot, allowing the user to define
multiple layers of any desired material. Grid-level simulation

(a) (b)
Fig. 1: (a) Chip package incorporating PCM; (b) Layout of
our target system.

granularity provides fine-grained simulation by dividing the
floorplan into small cells and computing the temperature for
each grid cell.

This model we adopt [13] assigns a nonlinear temperature-
dependent specific heat capacity to the PCM to model phase
change behavior. Phase change from solid to liquid occurs over
a temperature interval, during which time the specific heat
capacity of the PCM is set to a very high value compared
to the values in solid and liquid phases. A very high specific
heat capacity during phase transition indicates a very low rate
of change of temperature, thus mimics the close-to-constant
temperature behavior during melting. Integral of the specific
heat capacity over the temperature interval represents the latent
heat of fusion stored in the PCM.

To implement the model in HotSpot, we insert a layer of
PCM that lies on top of the silicon layer as shown in Figure
1(a). The PCM layer has the same layout as the block-level
silicon layer layout but it does not dissipate any power. We
modify HotSpot to define the melting point and latent heat
of fusion of the PCM. Each PCM grid cell is assigned a
temperature-dependent specific heat capacity as follows:

Cp,pcm(T) =

{
cps = cpl T < T1 or T > T2

ctr T1 ≤ T ≤ T2
(1)

where cps, cpl, and ctr are the specific heat capacities of
solid, liquid, and phase transition states, respectively. T1 is the
onset temperature and T2 is the end temperature of the phase
transition. In our experiments, we use a transition temperature
interval of 1oC and melting temperature is the center point of
the (T1, T2) interval. We set cps = cpl = 1.57 ·106J/m3K, and
ctr = 244.3·106J/m3K, which correspond to cerrobend PCM.
The specific heat capacity of each PCM grid cell is updated
based on its temperature at every time step of the simulation
following Equation (1). In this way, the model captures the
transient temperature behavior of the PCM for a given power
trace. The melting pace of the PCM varies depending on the
core/chip power consumption. The PCM model responds to
changes in the power consumption (due to dynamic voltage
frequency scaling (DVFS), etc.) at runtime by computing
the temperature of each grid cell based on its corresponding
specific heat capacity and the current power consumption at
each time step. By using the grid cell granularity, the model
also accounts for heterogeneous melting of the PCM (i.e., PCM
portions that are located above the hotter parts of the chip melt
while the other parts remain in the solid phase).

For the PCM layer, we assume a highly thermally conduc-

Performance	
simula/on	
(Gem5)	

Power	 simula/on	
(McPat	 &	 CACTI)	

Power	
Performance	
Database	

App	 name,	 V/f	 seBng	

Core	 &	 cache	 power	
App	 status	

HotSpot	
w/	 PCM	
model	

Management	
Policies	

Job	
Queue	

New	 job	

Benchmarks	 Instruc/on	 #	
2	 Million	 4	 M	 6	 M	 ……	 1000	 M	

Blackscholes	
VF1,	 1	 thread	

Core	 Power	
Cache	 Power	

Time	
.....	

Blackscholes	
VF1,	 2	 threads	 	

……..	 	

Frequency	 Voltage	 Average	 Core	
Power	

2.1	 GHz	 1.10	 V	 8.43	 W	

1.7	 GHz	 1.06	 V	 7.79	 W	

1.4	 GHz	 1.02	 V	 6.22	 W	

1.1	 GHz	 1.00	 V	 5.88	 W	

0.8	 GHz	 0.98	 V	 5.56	 W	

Fig. 2: Performance, power and temperature simulation frame-
work.

tive PCM-copper matrix as suggested in recent work [7]. We
use a PCM fraction of 80%, which provides effective thermal
conductivity of 75.4W/mK with a small sacrifice of the latent
heat capacity [7]. We set the PCM thickness as 0.5mm and the
melting point as 75oC.

B. Full System Simulation

We simulate a 16-core processor with private L2 caches as
shown in Figure 1(b). The core architecture is based on the
AMD Opteron 6172 processor manufactured using a 45 nm
SOI process. The architectural parameters for the cores and
caches are taken from recent work [15].

Our simulation framework consists of microarchitectural
performance simulation (Gem5 [16]), power simulation (Mc-
Pat [17] and CACTI [18]), temperature simulation (HotSpot),
and a database that decouples time-consuming performance
and power simulation from thermal simulation (See Figure 2).

We run each benchmark for 1 billion instructions in de-
tailed mode in their parallel phase, and collect performance
statistics every 2 million instructions with a total of 500
samples. We calibrate the McPat dynamic core power values
based on real measurements collected on the AMD Opteron
6172 processor. We scale the CACTI values based on cache
access rates. Figure 2 shows the available V/f levels and the
corresponding average core powers for our processor. We use
the HotSpot default package properties, except that we use a
1mm thick heat sink with 0.2 K/W convection resistance to
represent a system without an advanced heat sink.

The database maintains power and time information for
each 2 million instruction frame for each application at all
possible thread counts and V/f settings. At every sampling
interval, HotSpot polls the database for acquiring the power
data of the corresponding benchmark at a specific instruction
count. As each cell in the database represents an instruction
frame and not time, we can switch from one V/f setting to
another by reading from the cell of the desired V/f setting in
the next instruction frame. Thus, we can apply DVFS policies
or change the thread count (i.e., thread packing) at runtime.
This framework has acceptable accuracy because (i) each core
has private caches, (ii) V/f scaling is applied to all cores at the
same time (which is reasonable for the type of multithreaded
benchmarks we run), and (iii) thread packing overhead is
small (see Section IV-A). For evaluating any policy that uses
DVFS or thread migration, we include the DVFS and migration

Warning'Detector'
(Tcore,i)>)Tmax))OR)(PCMmelted,i)=)100%))

Warning'
(A<cores)≥)S<cores)?)
Migrate'to'A<cores'
(A<cores)<)S<cores)?)

Pack'Threads'to)A<cores'

No'Warning'''
(A<cores)>)S<cores)?)
Unpack'Threads'

to)A<cores'

Loca8on'of'new'S<cores'
Sort)PCMmelted,i)i)=)1,..,N)

Select)the)A<cores)with)min)PCMmelted))

Threads'

VF1'

VF2'

..'

Sprint)Efficiency)
Table)

#)threads)

V/f)

PCM'Monitor'
PCMmelted,i)
A<cores)
(Available)
cores))

Temperature'
Monitor'
Tcore,i)

Fig. 3: Proposed adaptive sprinting policy flowchart.

overheads, which are reported as less than 200us [19] and 1ms
[20], respectively.

We run benchmarks from the PARSEC Suite [21] as our
workload. For each benchmark, we generate performance and
power traces at various thread counts (i.e., 1, 2, 4, 6, 8, 10,
12, 14, and 16) using the sim-large input set. We assume equal
power consumption for individual threads of an application as
inter-thread differences are minimal for PARSEC running on
the Opteron CPU.

IV. Management Policies

A. Proposed PCM-Aware Adaptive Sprinting

Based on our experiments using the validated detailed PCM
thermal model, we observe that even if all cores consume
the same power, they use the PCM capacity at different
rates. Individual threads of an application in our experiments
consume equal power, thus, the thermal variation is due to the
location of the cores. For example, the center cores typically
get hotter and force the center part of the PCM to melt
faster. When center cores exhaust their PCM capacity and
hit a temperature threshold, the side cores still have thermal
headroom to continue sprinting. Existing sprinting policies
[4][5], however, assume that the cores use up the PCM capacity
equally over time, thus, if there is a thermal violation, they
either switch to a single core operation or put all cores to idle
state.

The goal of our adaptive sprinting policy is to operate in
sprinting mode as long as possible by leveraging this observa-
tion and exploiting the PCM capacity to near exhaustion. By
monitoring the PCM state, our policy determines how much
sprinting capability is left for each core. We also determine the
most sprint-efficient V/f setting using a lookup table. Based on
this information, the policy decides on (a) the number, (b) the
locations, and (c) the V/f setting of the sprinting cores. The
policy changes the number of sprinting cores at runtime by
thread packing (or unpacking), which is pinning the threads to
a lower (or higher) number of cores [5][22][23].

Figure 3 gives an overview of our adaptive sprinting policy.
We first introduce the terminology we use to describe our
policy. The active cores are the sprinting cores (S-cores).
Available cores (A-cores) are the cores which have used less
than 100% of their PCM capacity, and have lower temperature
than the critical temperature (i.e., Tmax = 80oC). A-cores can
be active or idle at a given time. A warning is raised if for
any of the cores, the PCM portion that lies above that core is
100% melted or if the core temperature exceeds Tmax.

Our policy checks for a warning every 50 ms (a tem-
perature sampling rate that incurs negligible overhead in real
systems) and if there is a warning, it determines the number
of A-cores by checking their PCM capacity. If the number of
A-cores is higher than or equal to the number of S-cores, we
merely migrate the threads to the A-cores. If not, we continue
sprinting with fewer cores by packing the threads to the A-
cores (i.e., binding the threads to a lower number of cores).
While thread packing, to determine the location of the new S-
cores, we sort the used PCM capacity of the cores and select
the ones that have exhausted the least amount of PCM capacity.
If we are left with no A-cores, we put all cores to idle state until
some portion of the PCM capacity is recovered (i.e., 10%).

In order to determine the V/f setting at a given time, we
follow an offline analysis approach. For this purpose, we run
all benchmarks for each of the {thread count, V/f setting} pair
when no management policy is applied. We record the original
application running times (Trun) and the number of instruc-
tions executed (Instspr) until the first thermal violation. Trun

is a measure of performance for the given pair. Instspr repre-
sents how much work can be done when sprinting at a given
setting until thermal violation. Based on these recordings,
we define a new metric, sprint efficiency = Instspr / Trun.
Choosing the pair with higher sprint efficiency corresponds
to choosing a configuration with higher performance while
considering the tradeoff between power and allowed sprinting
capability. We create a lookup table of sprint efficiency values
and our policy selects the V/f setting with the maximum sprint
efficiency for a given thread count.

Our policy also addresses the fact that while the S-cores
are using up the PCM capacity in parts of the chip, PCM
capacity is being recovered around the idle cores. For example,
PCM recovery may occur when a benchmark enters a low
power phase. Thus, in case of no warning, the policy checks
if there are more A-cores than the current number of S-cores.
If there are, sprinting continues with the number of A-cores
by unpacking the threads.

Monitoring the PCM capacity: An important aspect of our
policy is that it takes actions based on the current PCM
state. We monitor the percentage of melted PCM for each
core individually (i.e., for each core, we track the latent heat
stored in the PCM portion that lies on top of that core and
has the same area as that core). In this way, at a given
time, we know the sprinting capability for each core. In our
HotSpot simulations, we monitor the percentage of melted
PCM corresponding to each core using Equation (1) (i.e., % of
melted PCM for a grid cell increases linearly within the (T1,
T2) interval).

In a real-life implementation, such estimations can be done
by using temperature measurements and the thermal resistance
values as follows: For each core, we find the heat entering the
PCM from the silicon layer and exiting the PCM to the air.
Assuming we have thermal sensors on the cores and on the
corresponding locations of the PCM layer, we can estimate the
net heat entering the PCM by using the formula [6]:

PNET,i =
Ti − TPCM,i

RSi to PCM
− TPCM,i − TAMB

RPCM to AIR
(2)

ESTORED,i,(t) = ESTORED,i,(t−1) + PNET,i × tsampling (3)

where Ti, TPCM,i and TAMB are the temperatures of core i,
the PCM unit corresponding to core i, and ambient air, re-
spectively. RSi to PCM and RPCM to AIR are the equivalent
thermal resistances from silicon to PCM and from PCM to
air. ESTORED,i,(t) is the latent heat energy stored in the PCM
unit i at time t and tsampling is the sampling interval. In order
to fully melt, PCM has to store an amount of energy that is
equal to its latent heat of fusion. Equation (3) accumulates
this energy during melting. Most current processors have a
temperature sensor per core. For larger systems where temper-
ature sensors for each core and each PCM unit are unavailable,
temperature estimation techniques can be applied [24].

PCM Monitor Implementation on a Testbed: We demon-
strate the applicability of a PCM monitor on an in-house
hardware testbed with a PCM container on top. We measure
the average core and PCM temperatures using the on-chip
temperature sensors and a thermocouple, respectively. We
implement the soft PCM sensor described by Equations (2-
3) assuming a single PCM unit. We carry out experiments
at various V/f settings, applications, and observe consistent
behavior (i.e., the reported stored energy rises from zero to
the latent heat of the PCM over time with a slope that is
consistent with the power consumption). We measure the PCM
monitor overhead (including the temperature sensing and the
calculations) in terms of CPU utilization on our testbed, which
is less than 0.4% when tsampling = 50ms.

Performance Impact of Thread Packing: Our policy de-
creases the number of sprinting cores by binding the threads
to a subset of available cores. In that case, the active threads get
multiplexed on the active cores, which may incur performance
penalty due to synchronization and context switches. For
example, binding all 16 threads to a single core may give
worse performance than running with a single thread. For
PARSEC benchmarks, prior work reports that the performance
degradation due to thread packing is less than 3.6% (for an 8-
core system [23]) and is 7.3% on average (when packing 12
threads to 4 cores [22]). For benchmarks whose performance is
severely affected by thread packing, a task-queue based worker
thread execution framework can mitigate this effect [5]. In our
simulations using the adaptive sprinting policy, we observe
that the number of sprinting cores does not fall below 10.
Thus, we assume that the performance of packing the threads
to N cores is equal to running with N threads with negligible
additional penalty.

B. Baseline Policies

Truncated Sprints: This policy [4] activates all cores of a
system at the highest V/f level (i.e., full intensity) during
sprinting. Sprinting is truncated if the PCM capacity is fully
exhausted or if any core temperature exceeds Tmax. Upon
sprint truncation, execution continues on a single core and
all other cores are put to idle mode until the application
finishes (i.e., sustained mode). For applications with running
times shorter than the available sprinting duration, truncated
sprints work well. However, as the application running time
gets longer, more time is spent in the sustained mode, which
overshadows the benefits of sprinting. We implement an im-
proved version of this policy and use it for comparison in
Section V. After a truncated sprint, we allow re-sprinting if

some portion of the PCM capacity is recovered (i.e., 10%
per core), as opposed to running in sustained mode until the
benchmark execution ends.

Fixed Duty Cycle Sprinting: This policy has been proposed
for extended computations [5][7]. It alternates between the
sprint and rest modes (i.e., all cores are put to idle state) based
on a duty cycle. Duty cycle (D) is determined by the ratio
between the sustained power and the sprint power to allow
enough time to cool down after sprinting. For example, for
1W of sustained power and 10W of sprint power, D = 1 : 10.
Assuming a sprinting duration (i.e., the time it takes to reach
Tmax while sprinting) of 1s, this corresponds to 9s of rest time.

Some limitations of this policy are as follows: (1) It
assumes a fixed sprinting power and D for all benchmarks.
However, power consumption during sprinting is workload-
dependent. Having a fixed duty cycle requires considering the
worst case scenario (i.e., the highest possible sprinting power)
while setting D in order to avoid thermal violations. Thus,
for benchmarks that consume lower power, rest time is longer
than needed, which incurs performance penalties. (2) It poses
significant performance loss in some cases. For example, an
application that originally completes in a little over 1s would
wait for 9s in rest mode to complete the remaining small
portion of the work. We experimentally determine the D = 1 :
3.92 and the sprinting duration (561ms) for our system based
on the idle and highest sprinting power (2.63W : 10.3W).

Sprint Pacing: Prior work [5] proposes this policy to account
for a larger range of application lengths. This policy sprints
with full intensity until half of the PCM thermal capacity is
consumed. After that, it switches to a lower intensity sprint by
keeping all cores active, but changing to the lowest V/f setting.
However, prior work does not address how this policy behaves
in case of a thermal violation at the lowest V/f setting. Thus,
we implement two different versions of this policy: sprint
pacing, which does not take any action after switching to the
lower intensity sprinting, and modified sprint pacing, which
puts the cores to idle mode (until 10% of the PCM capacity
is recovered) if a thermal violation occurs during the lower
intensity sprint.

Reactive DVFS: We implement a reactive DVFS policy, which
represents the DVFS policies in current processors, as a base-
line that is oblivious to the PCM state. This policy decreases
the V/f setting by one step upon temperature violation in any
of the cores. If the violation occurs at the lowest V/f setting,
all active cores are put to idle mode. After cooling down and
recovering a certain thermal headroom (i.e., 2oC) to Tmax,
cores continue executing and V/f setting is increased in steps.

V. Results

The following set of results compares the performance
impact of sprinting policies. As our original power and per-
formance database corresponds to very short running times
(less than 300ms) that are lower than the PCM melting time,
we loop each application 50 times. We compare our proposed
adaptive sprinting policy against the baseline policies (Section
IV-B) and the case where no management policy is applied.
In the no management case, benchmarks run using 16 threads
at the highest V/f setting, which gives the ideal performance.

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

4.50	

blackscholes	 canneal	 dedup	 swap7ons	 x264	 Average	

N
or
m
al
zi
ed

	 R
un

ni
ng
	 T
im

es
	

Truncated	 Sprints	 Fixed	 Duty	 Cycle	 Sprint	 Pacing	

Modified	 Sprint	 Pacing	 Reac7ve	 DVFS	 Proposed	 Adap7ve	 Sprin7ng	

Fig. 4: Running times of the benchmarks normalized to the no
management (ideal) case for each application.

0.00	
10.00	
20.00	
30.00	
40.00	
50.00	
60.00	
70.00	
80.00	

blackscholes	 canneal	 dedup	 swap:ons	 x264	 Average	

%
	 T
im

e	
in
	 T
em

pe
ra
tu
re
	 V
io
la
0o

n	

Truncated	 Sprints	 Fixed	 Duty	 Cycle	 Sprint	 Pacing	

Modified	 Sprint	 Pacing	 Reac:ve	 DVFS	 Proposed	 Adap:ve	 Sprin:ng	

No	 Management	

Fig. 5: Percentage of thermal violation (time spent above
Tmax).

Figure 4 shows the running times of the individual bench-
marks normalized to the no management case. As indi-
cated, truncated sprints and fixed duty cycle policies result
in the worst performance. Performance of benchmarks such as
blackscholes and swaptions are severely degraded by truncated
sprints (up to 4.2x of their ideal value). This is because their
performance scale well with the number of threads, thus,
truncating a sprint leads to losing the benefit of performance
scalability. x264 scales well too, but its performance is not as
severely affected by truncated sprints. This is because x264
consumes lower power than the other two benchmarks, thus,
it spends more of its time in the sprinting mode.

Fixed duty cycle sprinting results in similar performance
for all benchmarks, however, the penalty is slightly higher for
the benchmarks that consume lower power. Blackscholes and
x264 are examples with normalized running times of 3.54 and
3.91, respectively. The duty cycle is determined based on the
highest power application (blackscholes in our case). Thus,
the lower power application x264 spends more time in the rest
mode than needed, leading to higher performance degradation.

In comparison to the policies discussed above, sprint
pacing and modified sprint pacing provide better performance.
However, sprinting pacing results in temperature violation up
to 60% of the time (See Figure 5). On the other hand, modified
sprint pacing, which is a thermally-aware version of sprint
pacing, does not perform as well. This is because it does not
use the intermediate V/f settings, and it exploits only 50% of
the PCM capacity at the highest V/f level.

Reactive DVFS performs better than all prior sprinting
strategies. The main reason is that the prior strategies primarily
use the number of threads as their control knob and operate
with either 1 or 16 threads, while reactive DVFS always runs
with 16 threads if not idle. Modified sprint pacing also applies

0	
5	
10	
15	
20	
25	

blackscholes	 canneal	 dedup	 swap4ons	 x264	

Eff
ec
%v

e	
Fr
eq

ue
nc
y	
(G
Hz

)	
Proposed	 Adap4ve	 Sprin4ng	 Reac4ve	 DVFS	

Fig. 6: Average effective frequency (f(GHz)×#threads) for
the reactive DVFS and adaptive sprinting policies.

0.00	
1.00	
2.00	
3.00	
4.00	
5.00	
6.00	
7.00	
8.00	
9.00	
10.00	

0.00	
0.25	
0.50	
0.75	
1.00	
1.25	
1.50	
1.75	
2.00	
2.25	
2.50	

Truncated	 Sprints	 Fixed	 Duty	 Cycle	 Modified	 Sprint	
Pacing	

ReacFve	 DVFS	 Proposed	 AdapFve	
SprinFng	

N
or
m
al
iz
ed

	 A
ve
ra
ge
	 E
DP

	

N
or
m
al
iz
ed

	 A
ve
ra
ge
	 E
ne

rg
y	

Energy	 EDP	 (Right	 Axis)	

Fig. 7: Average energy and EDP normalized to the no man-
agement case.

DVFS, but it uses either the highest or the lowest V/f level,
thus, cannot outperform reactive DVFS.

Comparison of reactive DVFS and adaptive sprinting poli-
cies show that, our proposed adaptive sprinting policy provides
29% shorter running time on average. Figure 6 explains the
reason by comparing the average effective frequencies of the
two policies. Effective frequency is the sum of the frequencies
of the active cores (e.g., maximum is 2.1GHz × 16). Merely
applying reactive DVFS cannot mitigate the temperature prob-
lem due to the dark silicon phenomena. Thus, once the thermal
headroom is exhausted, reactive DVFS has to put the cores
to idle, leading to lower effective frequency. On the other
hand, adaptive sprinting allows extended sprints with fewer
cores and avoids idling, providing up to 6.38GHz higher
effective frequency. Our policy provides 29% and 42% higher
the performance on average compared to the reactive DVFS
and modified sprint pacing, respectively, without exceeding
thermal limits.

Figure 7 shows the average energy and EDP values nor-
malized to the no management case for the thermally-aware
policies. Adaptive sprinting saves energy by 22% and 32%
on average in comparison to the reactive DVFS and modified
sprint pacing policies, respectively. It also provides 43% and
59% lower EDP on average compared to the reactive DVFS
and modified sprint pacing policies, respectively.

VI. Conclusion

In this paper, we have proposed adaptive sprinting policy
for efficient runtime management of systems with PCM. By
monitoring the PCM state of the cores, our policy dynamically
decides on the number, location and the V/f setting of the
sprinting cores. It allows extended sprinting by exploiting
the PCM capacity fully, thus provides substantial perfor-
mance improvement. Adaptive sprinting policy gets closer to
ideal performance than previously proposed sprinting policies
while meeting the thermal constraints. Experimental evaluation
shows that our policy improves performance by 29%, saves
energy by 22%, and reduces EDP by 43% on average com-
pared to the best performing sprinting strategy.

REFERENCES

[1] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA
challenges in the dark silicon era,” in Design Automation Conference
(DAC), pp. 1–6, June 2014.

[2] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power-management architecture of the intel microarchitecture
code-named sandy bridge,” Micro, IEEE, vol. 32, pp. 20–27, March
2012.

[3] A. Nussbaum, “AMD Trinity APU,” 2012.
[4] A. Raghavan et al., “Computational sprinting,” in HPCA, pp. 1–12,

2012.
[5] A. Raghavan et al., “Computational sprinting on a hardware/software

testbed,” in ASPLOS, pp. 155–166, 2013.
[6] A. Tilli, A. Bartolini, M. Cacciari, and L. Benini, “Don’t burn your

mobile!: safe computational re-sprinting via model predictive control,”
in CODES+ISSS, pp. 373–382, 2012.

[7] L. Shao et al., “On-chip phase change heat sinks designed for com-
putational sprinting,” in Semiconductor Thermal Measurement and
Management Symposium, pp. 29–34, March 2014.

[8] E. Alawadhi and C. H. Amon, “PCM thermal control unit for portable
electronic devices: experimental and numerical studies,” IEEE Transac-
tions on Components and Packaging Technologies, vol. 26, pp. 116–125,
March 2003.

[9] F. Tan and S. C. Fok, “Thermal management of mobile phone using
phase change material,” in Electronics Packaging Technology Confer-
ence, pp. 836–842, 2007.

[10] D. Yoo and Y. Joshi, “Energy efficient thermal management of elec-
tronic components using solid-liquid phase change materials,” IEEE
Transactions on Device and Materials Reliability, vol. 4, no. 4, pp. 641–
649, 2004.

[11] A. Stupar, U. Drofenik, and J. Kolar, “Application of phase change
materials for low duty cycle high peak load power supplies,” in Inter-
national Conference on Integrated Power Electronics Systems (CIPS),
pp. 1–11, 2010.

[12] S. Lingamneni, M. Asheghi, and K. Goodson, “A parametric study
of microporous metal matrix-phase change material composite heat
spreaders for transient thermal applications,” in ITHERM, May 2014.

[13] F. Kaplan et al., “Modeling and analysis of phase change materials
for efficient thermal management,” in International Conference on
Computer Design, Oct 2014.

[14] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in ISCA, pp. 2–
13, 2003.

[15] P. Conway et al., “Blade computing with the AMD Opteron Processor
(magny − cours).” http://bit.ly/1LVbJXn, Aug. 2009.

[16] N. L. Binkert et al., “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, pp. 52–60, July 2006.

[17] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
pp. 469–480, 2009.

[18] S. Thoziyoor et al., “CACTI 5.1,” tech. rep., April 2008.
[19] S. Park et al., “Accurate modeling of the delay and energy overhead

of dynamic voltage and frequency scaling in modern microprocessors,”
TCAD, vol. 32, pp. 695–708, May 2013.

[20] A. K. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing, “Evaluating
the impact of job scheduling and power management on processor
lifetime for chip multiprocessors,” in SIGMETRICS, pp. 169–180, 2009.

[21] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[22] C. Hankendi, S. Reda, and A. Coskun, “vcap: Adaptive power capping
for virtualized servers,” in International Symposium on Low Power
Electronics and Design, pp. 415–420, Sept 2013.

[23] S. Reda, R. Cochran, and A. Coskun, “Adaptive power capping for
servers with multithreaded workloads,” Micro, IEEE, vol. 32, pp. 64–
75, Sept 2012.

[24] R. Cochran and S. Reda, “Spectral techniques for high-resolution
thermal characterization with limited sensor data,” in DAC, pp. 478–
483, 2009.

