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Abstract—The dragonfly network topology has attracted atten-
tion in recent years owing to its high radix and constant diameter.
However, the influence of job allocation on communication time
in dragonfly networks is not fully understood. Recent studies
have shown that random allocation is better at balancing the
network traffic, while compact allocation is better at harnessing
the locality in dragonfly groups. Based on these observations, this
paper introduces a novel allocation policy called Level-Spread for
dragonfly networks. This policy spreads jobs within the smallest
network level that a given job can fit in at the time of its
allocation. In this way, it simultaneously harnesses node adja-
cency and balances link congestion. To evaluate the performance
of Level-Spread, we run packet-level network simulations using
a diverse set of application communication patterns, job sizes,
and communication intensities. We also explore the impact of
network properties such as the number of groups, number of
routers per group, machine utilization level, and global link
bandwidth. Level-Spread reduces the communication overhead
by 16% on average (and up to 71%) compared to the state-of-
the-art allocation policies.

I. INTRODUCTION

Efficient system management in ever-growing high perfor-
mance computing (HPC) systems is a common concern of
designers, administrators, and users. As the number of cores
required by parallel programs continues to increase, network
communication time among the compute nodes becomes a
performance bottleneck [1], [2]. Thus, reducing the communi-
cation cost on HPC systems is essential for better utilization
of valuable computation resources.

Dragonfly [3] is a network topology utilizing high-radix
routers, and has attracted attention in recent years [4]–[10].
Dragonfly networks are composed of interconnected groups
that behave as virtual routers. A group contains a set of
compute nodes, network links, and routers. One example of a
group is shown in Fig. 1. Different groups are connected by
optical global links, and routers in each group are connected
by electrical local links. Each router is connected to several
nodes. Owing to the all-to-all connections among its groups,
dragonfly is a constant-diameter network (i.e., the diameter
does not scale up with the increase in the number of nodes). A
message sent from one node to another following the shortest-
path route passes through at most two local links and one
global link. The dragonfly topology has been implemented in
some of the latest HPC systems [11], [12].

An important factor that affects the communication time in
HPC systems is job allocation [2], which is the procedure of

Fig. 1: A group in a dragonfly network. The group is composed
of 4 routers that are connected to each other by local links
(green). Each router is connected to 4 nodes, which are labeled by
numbers. The entire dragonfly machine (not shown here) consists
of a number of such groups. Between each pair of groups there
is a global link (blue) connecting them together.

selecting a set of compute nodes to run a parallel program. The
hierarchy of the dragonfly topology brings new complexity to
job allocation, and to date, job allocation on dragonfly has
not been fully explored. Most studies on dragonfly networks
only consider two allocation policies: simple allocation (i.e.,
selecting nodes by following the label order) and random
allocation [11]. Jain et al. [13] proposed six different job
allocation policies for dragonfly machines and concluded that
random allocation is generally better than the others. Yang
et al. [9] further demonstrated that random allocation cannot
guarantee the best performance for every job.

Inspired by the prior work, we examine the shortcomings
of existing allocation policies and conclude that a size-aware
job allocation policy is necessary to further improve the
performance on dragonfly networks. To this end, we propose
the Level-Spread allocation policy (Sec. III) and compare it
with several state-of-the-art allocation policies (Sec. IV). We
perform extensive simulations (Sec. V) and show that our
proposed policy outperforms the existing policies (Sec. VI).
In addition, we discuss the influence of scheduling on the
performance of allocation policies (Sec. VI-E). The specific
contributions of our work are as follows:

• We demonstrate that on dragonfly networks, harnessing
node locality and balancing link congestion are two com-
plimentary approaches to reduce communication latency.
Existing allocation policies only resemble either one of
these two approaches. We show that combining them
intelligently provides better performance.
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• We design a novel allocation policy, Level-Spread, for
dragonfly networks. This policy spreads jobs within the
smallest network level that a given job can fit in. Through
packet-level network simulations, we show that our pro-
posed policy reduces the communication time by 16%
on average compared to the state-of-the-art policies by
harnessing node locality and balancing link congestion.

II. RELATED WORK

Prior work observed the impact of job interference on the
performance of HPC systems [1], [2], [14], [15]. Bhatele et
al. [1] and Leung et al. [2] demonstrated the performance
variation of parallel programs caused by job allocation and
communication interference on a torus network.

Several studies explored the influence of job allocation on
dragonfly networks. Jain et al. [13] compared the performance
of six dragonfly-specific job allocation policies. They observed
that random allocation is generally beneficial in spreading
network traffic and reducing communication hot spots. We
include these allocation policies as part of the baseline policies
in our work (Sec. IV). Budiardja et al. [16] showed that
spreading jobs to all groups during allocation distributes the
network traffic, and thus, reduces congestion.

Yang et al. [9] observed performance degradation due to
random allocation when multiple jobs run simultaneously on
a dragonfly machine. They found that the network congestion
caused by communication-intensive jobs greatly impacts the
performance of other jobs. They further anticipated a com-
bined approach of simple and random allocation. However,
they did not propose a specific allocation policy.

Job allocation on traditional network topologies such as fat-
tree also inspired our work. For example, Jokanovic et al. [14]
proposed a size-aware policy that alleviates communication
interference by allocating large jobs on one side of the system
and small jobs on the other side.

On the topic of link configuration and bandwidth for drag-
onfly machines, Groves et al. [8] analyzed the influence of link
bandwidth on job execution times. Several studies compared
different global link arrangements for dragonfly networks in
terms of theoretical bisection bandwidth [4], [17]. Routing
algorithms for dragonfly networks have also been explored
extensively [3], [6], [13], [18], [19]. Task mapping, which
refers to mapping the tasks of a parallel application onto the
processors of the allocated computing nodes, has also been
studied on dragonfly networks [20], [21].

Our work distinguishes from the related work by the fol-
lowing points. First, we propose a size-aware job allocation
policy, Level-Spread, specifically for the dragonfly topology.
Prior work on size-aware allocation policies either focus on
other network topologies or demonstrate performance tradeoffs
without providing a concrete policy. Second, we evaluate our
allocation policy on a broad range of workloads, machine
configurations, and communication characteristics, instead of
focusing on a specific job type or network setting.

Fig. 2: We compare random group allocation (RDG), which
prioritizes selecting nodes from the same group when allocating
a parallel job, and random node allocation (RDN), which selects
nodes randomly across the entire network, and we simulate two
different workloads. Workload 1 (small jobs) benefits from RDG,
whereas workload 2 (large jobs) benefits from RDN.

III. LEVEL-SPREAD ALLOCATION POLICY

This section describes our Level-Spread policy. In
Sec. III-A, we show that the best-performing allocation strat-
egy is different for jobs of different sizes, and we explain why
spreading tasks of a job inside a suitable network level can be
beneficial to their MPI (Message Passing Interface) commu-
nication. We then present our Level-Spread in Sec. III-B.

A. Motivation

Intuitively, allocating jobs compactly reduces communica-
tion times as it leads to small network distances. However, in
dragonflies, allocating large jobs compactly (i.e., prioritizing
using nodes from the same group when allocating a job) leads
to hot spots on network links. Hence, several studies suggest
random allocation for dragonfly networks [9], [13], [22].

Our simulation results in Fig. 2 confirm this phenomenon.
The figure compares the communication time by running two
workloads on a 272-node dragonfly machine with 16 nodes per
group. With each workload, we compare two allocation poli-
cies proposed by Jain et al. [13]: (1) random group allocation
(RDG), which randomly selects a group and allocates the job
to all the idle nodes in that group, and repeats this process if
more nodes are required; (2) random node allocation (RDN),
which randomly selects nodes in the entire machine for a job.
Each simulation is further repeated 10 times to reduce the bias
due to randomness.

In workload 1, seventeen 16-node jobs are running si-
multaneously, fully utilizing the dragonfly machine. RDG
outperforms RDN as RDG allocates each job to a single group,
harnessing group-level locality and avoiding interference on
global links. Contrary to workload 1, in workload 2, where
four 68-node jobs are running simultaneously on the same
machine, RDN reduces the communication time by 30%
compared to RDG. Although more packets travel on global
links with RDN than with RDG, the RDN policy benefits from
a balanced load on the network.

These observations inspire us to design a new allocation
policy combining the advantages of both RDG and RDN.

B. Level-Spread allocation policy

Our goal is to minimize the communication time of jobs
running on HPC systems with dragonfly topologies through
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job allocation. Here, a job consists of multiple parallel tasks,
and each task is defined as an MPI rank. In contrast to exist-
ing dragonfly-specific allocation policies that apply the same
allocation strategy (grouping or spreading) for all jobs [13],
our Level-Spread policy selects specific allocation strategies
based on the job size along with the machine state.

The principle of our policy is to allocate a job into the
smallest network level (router, group, or machine) where that
job can fit in and to spread the parallel tasks of the job
within that level. Selecting the smallest network level benefits
a job by letting it harness node locality and by reducing the
communication interference with other jobs. Spreading the
tasks within that level balances the network communication
on the links, and thus, reduces network hot spots. The specific
steps are as follows:

• If a job fits within the available nodes that are connected
to a single router, we select the router with the largest
number of idle nodes and allocate the job there.

• If a job cannot fit within a single router but fits within the
available nodes in a single group, we select the most idle
group and allocate the job there. To further reduce load
imbalance on local links in this group, we select nodes
connected to different routers in a round-robin manner.

• If a job cannot fit within a single group, we spread the
job throughout the entire network, where we select nodes
in different groups in a round-robin manner.

Following the terminology used by Kim et al. [3], in this
article, p represents the number of nodes connected to a router;
a represents the number of routers in a group; g represents the
number of groups in the entire dragonfly machine.

Fig. 3 illustrates an example allocation for three jobs. The
first 4-node job is allocated to a single router. The second 8-
node job (green) is spread within the group with the largest
number of idle nodes. The third job (blue) is spread throughout
the entire machine, occupying the first six available nodes of
every group.

In the implementation of our algorithm, we scan through all
routers/groups when searching for the router/group with the

Fig. 3: Three jobs are allocated to a dragonfly machine (g = 9,
a = 4, p = 4) by Level-Spread. Only four groups are drawn
for simplicity. The first job (orange) is allocated to the nodes
connected to a single router. The second job (green) is allocated
to different routers in the same group. The third job (blue) is
spread to all groups in a round-robin manner.

maximum availability. The time complexity of our algorithm
is linear with the number of nodes in the machine, i.e., O(a×
g × p), as follows: Allocating jobs that fit to a single router,
is performed in O(a× g+ p) time, where selecting a router is
O(a× g) and allocating nodes within the router is O(p). The
allocation of the jobs that do not fit in a single router but do
fit within a group is performed in O(a × g + a × p). For the
remaining jobs, the algorithm simply scans through all nodes
in O(a×g×p). Owing to its linear time complexity, our policy
can be easily implemented on real dragonfly machines.

IV. BASELINE ALLOCATION POLICIES

We select the following seven allocation policies [13], [23]
for dragonfly networks as baselines for comparison:

• Simple selects idle nodes by following the node label
order, which is defined as follows: the nodes in the
first group are labeled as in Figure 1 and the labeling
continues with the next group in the network following
the same rationale. Simple policy allocates jobs in a
compact manner in general.

• Slurm allocates jobs following the policy for dragonfly
implemented in the Slurm Workload Manager [23]. It first
attempts to allocate a job to the nodes connected to a
single router. The first available router with a sufficient
number of idle nodes is chosen, and the nodes connected
to that router are allocated following the label order. If
there are no routers with a sufficient number of idle
nodes, it searches for the router with the fewest number
of idle nodes and selects the idle nodes connected to
that router following the label order, and repeats this step
as necessary. This allocation policy does not utilize the
group structure of a dragonfly network.

• Random Nodes (RDN) chooses nodes completely ran-
domly from the entire machine.

• Random Routers (RDR) randomly selects a router and
then selects idle nodes connected to that router following
the label order, and repeats this step as necessary.

• Random Group (RDG) randomly chooses a group and
selects the nodes in that group following the label order,
and repeats this step as necessary.

• Round Robin Nodes (RRN) starts from the first group,
selects the first idle node following the label order in that
group, then moves to the next group and repeats the same
process as necessary.

• Round Robin Routers (RRR) starts from the first group,
chooses the first available router following the label
order and selects the idle nodes connected to that router
following the label order. It then moves to the next group
and repeats the same process as necessary.

We also compare our policy with a job-size-aware policy
for fat-tree networks, proposed by Jokanovic et al. [14], and
adapt their policy to dragonflies. Their policy places a virtual
boundary dividing the machine into two partitions. When
allocating a job whose size is smaller than the number of
nodes per group, the policy allocates the job to a group in
the first partition that has enough idle nodes. When allocating
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TABLE I: Configurations of simulated dragonfly machines.
Machine Parameters Values
Processors per node 2
Nodes per router (p) 4
Routers per group (a) 4 or 8
Number of groups (g) 17 or 33
Total number of nodes (p× a× g) From 272 to 1056
Local link bandwidth 8 Gbit/s
Global link bandwidth 2 Gbit/s, 8 Gbit/s, or 32 Gbit/s
Routing algorithm Adaptive routing
Machine utilization level 90% or 70%

larger jobs, the policy places the job in the second partition,
starting from the last nodes (according to the label order).
In this way, this policy reduces system fragmentation as well
as interference between small and large jobs. The boundary
between two partitions is updated dynamically based on the
allocation history. Results for Jokanovic’s policy are discussed
in Sec. VI-F.

Our Level-Spread policy distinguishes from the existing
policies by combining the grouping and spreading allocation
strategy intelligently based on job sizes. Existing policies only
relies on either the grouping or the spreading strategy, and
cannot take full advantage of the specific hierarchical structure
of dragonflies.

V. EXPERIMENTAL METHODOLOGY

A commonly-used method to examine the performance of
dragonfly networks and to explore various network configura-
tions is to run network simulations [7], [9], [13], [20], [24]–
[26]. To evaluate the performance of different job allocation
policies on dragonflies, we run network simulations using
the Structural Simulation Toolkit (SST) [27] with different
network configurations and job communication patterns.

A. Structural Simulation Toolkit (SST)

The SST [27] is an open-source architectural framework
developed to model and simulate HPC systems. It supports
packet-level network simulations and has been verified and
used in recent studies [8], [27]–[30]. We have extended SST
by adding new allocation policies for the dragonfly network:
the baseline policies and our Level-Spread policy.

B. Simulated Environments

We simulate dragonfly networks with various configura-
tions, listed in Table I. We select these parameters following
previous studies [9], [10], [20]. Our dragonfly machines have
16 or 32 (= p× a) nodes per group. Thus, Level-Spread will
spread jobs that are larger than 16 or 32 nodes to the entire
machine. Following the designed structure of dragonfly net-
work in Ref. [3], the routers inside each group are connected
to each other by local links in an all-to-all fashion.

For message routing, we use the adaptive routing algo-
rithm [3], which has been shown to provide good performance
in dragonfly networks [3], [9], [13]. Based on link congestions
derived from the local queue information, adaptive routing
dynamically chooses between shortest-path routing and Valiant
routing, which first directs each packet to a randomly-selected
intermediate group and then to the destination group.

TABLE II: Parallel workloads in our experiments.
Type Workload
Homogeneous workloads Multiple 16-node jobs

Multiple 64-node jobs
Four quarter-machine-size jobs

Heterogeneous workloads 16-node jobs and 64-node jobs
Jobs with randomly-selected sizes

Different from job allocation, task mapping controls the
order of task placement onto the processors of the allocated
nodes. We use random task mapping to reduce the bias caused
by the task mapping process. We assume that each node has
two processors where each processor executes one task.

We also explore various machine utilization levels, defined
as the number of busy nodes divided by the total number
of nodes in the machine. As real HPC systems are heavily
utilized, we test utilization levels of 90% and 70%.

C. Parallel Workloads

We examine both homogeneous and heterogeneous work-
loads listed in Table II. For each homogeneous workload, the
number of jobs is determined by machine size and utilization.
For example, for a 1056-node dragonfly machine and 90%
utilization level, the homogeneous workload of 16-node jobs
consists of b1056× 90%/16c = 59 such jobs. For each
heterogeneous workload, we set the number of 16-node jobs
the same as the number of 64-node jobs. To explore a broader
range of job sizes and numbers, we also generate random
workloads each composed of two types of jobs with randomly-
generated sizes (see Sec. VI-D).

All jobs in our workloads arrive at the same time. The order
of jobs to be allocated, which is determined by scheduling
algorithm, influences the outcome of allocation. As allocation
is typically performed independent of scheduling, in Sec. VI-E
we investigate two job ordering scenarios: small-job first and
large-job first.

The communication structure among the tasks of a job
defines the job’s communication pattern. To explore the in-
fluence of job communication patterns on the performance,
we use the following six communication patterns, which
represent common communication characteristics in parallel
HPC applications [31]–[35]:

• All-to-all: each task sends messages to all other tasks.
• Broadcast: one central task broadcasts messages to all

other tasks.
• FFT3d: the communication pattern of doing 3-D fast

Fourier transform.
• Halo2d: each task sends messages to its 4 nearest neigh-

bors, forming a communication graph in a 2-D grid.
• Halo3d: each task sends messages to its 6 nearest neigh-

bors, forming a communication graph in a 3-D grid.
• Halo3d26: each task sends messages to its 26 neighbors

in 3 dimensions, including 6 nearest neighbors and 20
diagonal neighbors.

In order to focus on the communication overhead due to job
allocation, we simulate jobs with only communication without
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(a) Workload composed of 16-node jobs. As the jobs fit in a single group, this workload benefits from the grouping-strategy policies
(Level-Spread, Simple, Slurm, RDG), which, in this case, allocate the tasks of a job into the same group.

(b) Workload composed of 64-node jobs. As the jobs do not fit in a single group, this workload benefits from spreading-strategy
policies (Level-Spread, RDR, RRR, RDN, RRN), which, in this case, spread tasks of a job into different groups.

Fig. 4: Communication time of homogeneous workloads on a machine with 16 nodes per group, 17 groups in total, at 90% utilization,
and using an application message size of 1 KB. Results are normalized with respect to the Simple allocation policy. Error bars
represent the standard deviation. Both (a) and (b) shows reduced difference among these allocations when the global link bandwidth
increases relative to the local link bandwidth.

any computation. We also explore the influence of communi-
cation intensity by using 1KB and 100KB job message sizes.

To reduce the influence of randomness introduced by task
mapping, routing, and allocation policies with randomization,
we repeat each experiment ten times.

We explore all the combinations of the machine configu-
rations listed in Table I, workloads listed in Table II, and
communication characteristics discussed above. In total, we
conduct more than one hundred thousand simulations.

VI. RESULTS AND DISCUSSIONS

In this section, we provide our experimental results and
analyze the strengths and weaknesses of the baseline policies
as well as our proposed policy. We first display the results
from running homogeneous and heterogeneous workloads.
Next, we analyze the impact of communication intensity on
performance. In Sec. VI-D, we examine the performance on a
broad range of random workloads. In Sec. VI-E, we discuss the
influence of scheduling on the performance of Level-Spread.
In Sec. VI-F, we compare Level-Spread with a size-aware
allocation policy proposed by Jokanovic et al. for fat-tree
networks.

We focus on communication time, which is a better metric
than throughput to evaluate the network performance because
it has a more direct impact on job execution time [20]. As
users generally care about the relative degree of the delay of
HPC jobs, we use normalized values in our evaluation.

A. Homogeneous Workloads
Figure 4 shows the average communication time of the

homogeneous workloads. The results in each subfigure is
normalized with respect to the average communication time
using the Simple allocation policy. We simulate workloads
that consist of the same communication pattern, for all six
communication patterns described in Sec. V-C. Each column
of subfigures focuses on a communication pattern, while each
row focuses on a different ratio of global link bandwidth to
local link bandwidth.

For the 16-node-job workloads in Fig. 4(a), because the
smallest network level that a single job can fit in is a dragonfly
group, Level-Spread allocates the tasks of each job within
a single group. Level-Spread and policies that select nodes
compactly (Simple, Slurm, and RDG) outperform the policies
that spread the tasks across the entire machine (RDR, RRR,
RDN, and RRN) by reducing the communication time by 15%
to 89%. The degree of reduction depends significantly on link
bandwidth.

Figure 4(b) shows the normalized communication time in
workloads composed of 64-node jobs. As a 64-node job cannot
fit in a single dragonfly group, Level-Spread spreads the tasks
of each job across the entire machine. These results demon-
strate that Level-Spread and the policies that spread the tasks
(RDR, RRR, RDN, RRN) outperform the other policies that
select nodes compactly. When the bandwidth ratio of global-
to-local links is 1, which is close to the values in existing
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Fig. 5: Packet count and stalls at the output port to global or local
links when running the 16-node-job homogeneous workload.

dragonfly machines, Level-Spread reduces the communication
time by 22% to 54% compared to Simple allocation.

By comparing different columns in Fig. 4, we see that the
performance of the eight allocation policies is consistent for
the six communication patterns. By comparing different rows,
we see that the increase of global link bandwidth reduces
performance difference among allocations.

For all machine parameters and communication patterns we
use, we have also examined the impact of machine utilization.
For the two utilization levels, 90% and 70%, our results
show negligible impact of utilization level on the relative
performance of different allocation policies.

We collect network statistics in these simulations to un-
derstand the underlying causes of the performance difference.
Fig. 5 shows the number of packets and stalls on network
links when the machine is running the 16-node-job All-to-all
workload. The green boxes represent 25% to 75% percentiles,
the central line represents median, and the whiskers represent
min/max. In this case, the global-to-local link bandwidth is
1, job message size is 1KB, and the machine has 17 groups
and 16 nodes per group. Fig. 5 shows that Level-Spread
and the grouping-strategy policies (Simple, Slurm, RDG)
indeed stress the links less than other policies. Consequently,
grouping-strategy policies lead to fewer stalls, leading to better
performance.

Similarly, Fig. 6 shows network statistics when the machine
is running the 64-node-job All-to-all workload. Level-Spread
and the spreading-strategy policies (RDR, RRR, RDN, RRN)
lead to more packets on both local and global links in terms
of median. However, spreading-strategy policies create smaller
variations on packet count, in agreement with our expectation
that spreading-strategy policies balance load on the links, and
thus, reduce hot spots. Therefore, spreading-strategy policies
result in fewer stalls compared to grouping-strategy policies,
which explains their better performance.

To examine the performance of running jobs larger than
64-nodes, we also ran homogeneous workloads that consist of
four jobs, each of quarter-machine-size. For the four machines
ranging from 272 nodes to 1056 nodes, the performance of
different allocations on these workloads are very close to
Fig. 4(b); so we omit these results due to space constraints.

Fig. 6: Packet count and stalls at the output port to global or local
links when running the 64-node-job homogeneous workload.

B. Heterogeneous Workloads

We evaluate the benefits of size awareness in our Level-
Spread allocation policy using heterogeneous workloads that
consist of jobs with different sizes. Fig. 7 shows the commu-
nication time of jobs in heterogeneous workloads composed
of n 16-node and n 64-node jobs, where n is determined by
the machine size and the target utilization level. We simulate
six such workloads, each using jobs from one of the six
communication patterns. We allocate small jobs first; the
impact of the allocation order is studied in Sec. VI-E.

In every subfigure, the X-axis of a point represents the
average communication time of the 16-node jobs, and the Y-
axis represents that of the 64-node jobs. Values are normalized
with respect to the Simple allocation policy in each sub-
figure. The grouping-strategy policies (Simple, Slurm, RDG)
are marked with warm-colored diamonds, and the spreading-
strategy policies (RDR, RRR, RDN, RRN) are marked with
cool-colored circles. Level-Spread is marked with a green star.

All subfigures in Fig. 7 show that Level-Spread lies in
the bottom-left part, which demonstrates that Level-Spread
reduces the communication time for both small and large
jobs. The X-axis of Level-Spread coincides with the X-axis
of diamonds, showing that the communication time of the 16-
node jobs allocated by Level-Spread remains similar to the
Simple, Slurm, and RDG policies that allocate jobs compactly.
Meanwhile, the Y-axis of Level-Spread coincides with the Y-
axis of circles in general, showing that the communication
time of the 64-node jobs allocated by the Level-Spread remains
similar to the RDR, RRR, RDN, and RRN policies that spread
the jobs across the machine.

On the other hand, the diamonds in Fig. 7 lie in the top-left
part of each subfigure, showing that these grouping-strategy
policies do not work well for the large jobs. Circles lie in
the bottom-right part of each subfigure, showing that these
spreading-strategy policies do not work well for the small jobs.

Comparing the columns in Fig. 7, we observe the con-
sistency of the benefits of our Level-Spread policy across
different communication patterns. Different rows in Fig. 7(a)
illustrate the impact of global link bandwidth on performance.
Increasing the global link bandwidth reduces the difference
among the policies but does not change their ranking.

Different rows in Fig. 7(b) explore the impact of machine
size on performance. Level-Spread consistently outperforms
the others in all three machine sizes and all communication
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(a) Each row uses a different global-to-local link bandwidth ratio in a machine with 17 groups and 16 nodes per group. Simple,
Slurm, and RDG overlap with each other. In the first row, RRR’s X-axis position is beyond 5, thus not in the figure.

(b) Each row uses a different machine size. The global-to-local link bandwidth ratio is 1.

Fig. 7: Communication time of heterogeneous workloads each composed of n small jobs (16-node) and n large jobs (64-node) with
a message size of 1KB. The number n is determined by the target utilization level of 90%. In each subfigure, a point represents
the results from running the heterogeneous workload using a specific allocation. The X-axis of the point represents the average
communication time of the small jobs, and the Y-axis represents that of the large jobs. The star corresponds to the Level-Spread
allocation policy; the diamonds correspond to the grouping-strategy policies; the circles correspond to spreading-strategy policies.
Values are normalized with respect to the Simple allocation policy in each subfigure.

patterns. Increasing the machine size magnifies the difference
among allocations. In the case of a 1056-node machine (33
groups), Level-Spread policy reduces the communication time
of the 16-node jobs by 32% (Broadcast) to 64% (All-to-all).

In these simulations, changing machine utilization level
from 90% to 70% has negligible influence on the relative
performance of the eight allocation policies, so we omit the
results for 70% utilization.

C. Impact of Communication Intensity

To explore the influence of communication intensity on
the performance of different allocation policies, for all our
workloads and parameter sets listed, we run simulations using
1KB and 100KB job message sizes. We find that as long as
the communication intensity is homogeneous for all jobs in
the workload, the impact of job message size on the relative
performance of different allocation policies is negligible. Si-
multaneously increasing message size of all jobs from 1KB to
100KB only increases the communication time of every job by
approximately 100 folds. Due to the similarity of these results
to Fig. 4 and Fig. 7, we do not depict these results.

In Fig. 8, we explore the cases where the communication
intensity of 16-node jobs is different from the intensity of 64-

node jobs. We experiment on a 272-node machine and simulate
different combinations of message sizes.

From top to bottom in Fig. 8, we gradually increase the
ratio of communication intensity between the 16-node jobs
and the 64-node jobs. These plots demonstrate a clear trend
that increasing the communication intensity of the large (64-
node) jobs worsens the performance of RDR, RRR, RDN, and
RRN policies on the small (16-node) jobs. This is because
when the tasks of the small jobs are spread into many groups,
the intensive communication among the tasks of the large
jobs drastically delays the communication of the small jobs.
Conversely, increasing the communication intensity of the
small jobs significantly worsens the performance of RDR,
RRR, RDN, and RRN policies on the large jobs. This is
because in these spreading policies, the communication among
the tasks of the large jobs are delayed by the communication-
heavy small jobs. However, for Simple, Slurm, RDG, and
Level-Spread policies, the small jobs are less affected by the
interference with the large jobs because the small jobs by these
policies do not stress global links. These results agree with the
findings of Yang et al. [9].

The results in Fig. 8 demonstrate the effectiveness of Level-
Spread in various communication intensities. We have also
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Fig. 8: Varying the communication intensity in terms of message size of the jobs. Here, we simulate a heterogeneous workload
composed of three 16-node jobs and three 64-node jobs on a 272-node machine. We repeat the simulations with six communication
patterns and different message sizes. From top to bottom, we gradually increase the ratio of communication intensity between the
16-node jobs and the 64-node jobs. In the first row, some circles are beyond the range of the X-axis and thus not displayed.

Fig. 9: Counted occurrence of job sizes in the 1000 randomly
generated workloads used in Sec. VI-D.

verified that these conclusions on communication intensities
are valid for different machine parameters listed in Table I.

D. Mixed Job Sizes and Communication Patterns

In Sec. VI-B, we have examined the performance of dif-
ferent allocation policies using workloads composed of 16-
node jobs and 64-node jobs. To verify that our results can
be generalized to other job sizes and mixed communication
patterns, we use a broader set of 1000 randomly generated
workloads, each composed of two types of jobs (small and
large). The following simulations use a 272-node machine
with 16 nodes per group (4 nodes per router and 4 routers
per group) and a global-to-local links bandwidth ratio of 1.
Machine utilization level is not fixed and depends on the
generated workload.

To generate the workloads, we first randomly select an
integer between 17 and 136 (= 272/2) as the size of the
large jobs. We choose the upper limit as 136-node because an
individual job is commonly restricted from occupying more
than half of a machine. Next, a random integer between 2
and 16 is chosen as the size of small jobs. Then, the number
of the small jobs and the number (which can be different) of
the large jobs are selected randomly under the restriction of
machine size. Fig. 9 shows the overall distribution of job sizes
in these 1000 random workloads, which qualitatively matches
the distribution of job sizes in real HPC systems (e.g., [36]).
The communication pattern for each of the two types of jobs is
randomly selected. In these simulations, we allocate small jobs
before the large jobs in a given workload, and start running
all jobs simultaneously. All jobs use a message size of 1KB.

Fig. 10: Results from 1000 randomly generated workloads
with mixed job sizes and communication patterns. Each point
represents one allocation policy in one workload. Values are
normalized with respect to Level-Spread.

In Fig. 10, the X-/Y-axis of each point represents the average
communication time of the small/large jobs in one workload
using one allocation policy. For each workload, the values are
normalized with respect to the average communication time
achieved using the Level-Spread policy. The dashed green lines
split the graph into four parts, and a blue number shows the
percentage of points in each part.

Fig. 10 shows that the grouping-strategy allocation policies
(Simple, Slurm, and RDG) benefit the small jobs over the
large jobs. Conversely, the spreading-strategy policies (RDR,
RRR, RDN, RRN) benefit the large jobs at a cost of higher
small-job communication overhead. Level-Spread, located at
coordinate (1,1), combines the advantages of both grouping
and spreading. Only in 3% of all cases, a baseline policy is
strictly better than Level-Spread, i.e., for both the small and
the large jobs. Meanwhile, in 59% of all cases, Level-Spread
is strictly better than the baselines. In the best case, Level-
Spread reduces communication time by 71%. Averaging over
both small and large jobs and over all 1000 workloads, Level-
Spread reduces communication time by 16%.

In addition, we run random-workload simulations where
only a single communication pattern is used. For each com-
munication pattern, we generate 100 workloads composed
of small and large jobs. Our results show that for All-to-
all, Halo3d, Halo3d26, Halo2d and Broadcast workloads the
percentage of cases where a baseline policy is strictly better
than Level-Spread is 1%, 1%, 3%, 4%, and 8%, respectively.
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Fig. 11: In an adverse scheduling decision where the allocation of
large jobs (jobs that cannot fit in a single group) are prioritized,
Level-Spread at least performs as well as the baselines.

Fig. 12: Comparing Level-Spread policy with Jokanovic’s policy
using 1000 random workloads with mixed job sizes and commu-
nication patterns.

E. Influence of Scheduling on the Level-Spread Policy

In HPC systems, the order of allocating pending jobs is
decided by a job scheduler, and this order affects where the
jobs are allocated. For our Level-Spread policy, the scheduled
order of pending jobs may influence the performance due to
the job-size-awareness of Level-Spread. For example, assume a
15-node job and a 50-node job are pending on an empty 272-
node dragonfly system whose nodes per group is 16. Using
Level-Spread, if the 50-node job is scheduled first, it will be
spread into different groups, occupying 2 or 3 nodes in each
group. In this case, the 15-node job won’t be able to fit in any
group and will be also spread, converging to the RRN policy.

To evaluate the performance of Level-Spread in an adverse
scheduling decision, we generate 1000 random workloads
composed of two types of jobs similar to Sec. VI-D, but
this time, we schedule the large jobs before the small jobs.
To clarify, we allocate all jobs following the scheduled order
and then start running them simultaneously. Fig. 11 shows
that prioritizing large jobs in scheduling slightly moves all
the points of baseline policies toward the left compared to
Fig. 10, making the performance of Level-Spread closer to
the four spreading-strategy allocations. This shows that with
an adverse scheduling decision where large jobs are scheduled
first, Level-Spread performs at least as well as the baselines.

F. Comparison with Jokanovic’s Allocation Policy

In the previous sections, we compare Level-Spread with
state-of-the-art policies for dragonfly networks. There are
also allocation policies for other network topologies such as
Jokanovic’s policy [14] for fat-tree networks (see Sec. IV). To
compare Level-Spread with Jokanovic’s policy, we simulate
1000 random workloads similar to Sec. VI-D (parameters are
kept the same). Fig. 12 shows that in 64% of the workloads,

Fig. 13: Comparing Level-Spread policy with Jokanovic’s policy
using 1000 random workloads where large jobs are always
allocated prior to small jobs.

Level-Spread performs strictly better than Jokanovic’s policy
(i.e., for both small jobs and large jobs). Jokanovic’s policy
does not perform strictly better than Level-Spread in any of
these workloads. While Jokanovic’s policy is good for small
jobs, it is significantly worse than Level-Spread for large jobs.

The reason why Jokanovic’s policy does not perform well in
dragonfly networks is that dragonflies are not very sensitive
to system fragmentation, owing to its low diameter and the
all-to-all inter-group connections. As discussed in Sec. III-A,
dragonfly networks benefit from a more balanced network
traffic when we spread large jobs. Therefore, spreading large
jobs, as done by Level-Spread, gives better performance than
Jokanovic’s policy, which groups large jobs together.

Similar to Sec. VI-E, we also run simulations on 1000
random workloads where the large jobs are scheduled prior to
small jobs. Fig. 13 demonstrates that even with this adverse
scheduling decision for Level-Spread, our Level-Spread policy
continues to outperform Jokanovic’s policy.

VII. CONCLUSIONS AND FUTURE WORK

On dragonfly networks, compactly allocating the tasks of
a parallel application to harness locality and spreading the
tasks to balance congestion on network links are two allocation
strategies to reduce communication latency. Existing allocation
policies resemble only one of these two strategies. To combine
the benefits of these two strategies, we propose Level-Spread
allocation policy, which finds the lowest network level (router,
group, or machine) a job can fit in and spreads the job
throughout that level. Our allocation policy combines the
advantages of existing policies for dragonfly networks.

To evaluate Level-Spread, we conduct extensive simulations
with a broad range of workloads. We compare Level-Spread
with eight other allocation policies, and conclude that Level-
Spread outperforms the state-of-the-art by 16% on average
(and up to 71%) in terms of communication time. To examine
the applicability of our policy under different conditions, we
conduct simulations with various dragonfly configurations,
global link bandwidths, job communication intensities, and
communication patterns. Our results validate the generality of
Level-Spread, and we show that the performance gain from
our policy further increases when the machine size increases
or the global link bandwidth decreases.

Since our allocation policy selects nodes based on job size,
the order of scheduling for a set of jobs may affect the
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results. Using simulations, we demonstrate that scheduling the
smaller jobs before the larger ones is beneficial for Level-
Spread. In future work, a joint optimization of allocation and
scheduling can further improve the performance of Level-
Spread as well as any other potential size-aware allocation
policies on hierarchical network topologies.
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