
3D-MMC: A Modular 3D Multi-Core Architecture
with Efficient Resource Pooling

Tiansheng Zhang∗, Alessandro Cevrero†, Giulia Beanato†, Panagiotis Athanasopoulos†,
Ayse K. Coskun∗ and Yusuf Leblebici†

∗ECE Department, Boston University, Boston, MA, USA ∗{tszhang, acoskun}@bu.edu,
†LSM, EPFL, Lausanne, Switzerland

†{alessandro.cevrero, giulia.beanato, panagiotis.athanasopoulos, yusuf.leblebici}@epfl.ch

Abstract—This paper demonstrates a fully functional hard-
ware and software design for a 3D stacked multi-core system
for the first time. Our 3D system is a low-power 3D Modular
Multi-Core (3D-MMC) architecture built by vertically stacking
identical layers. Each layer consists of cores, private and shared
memory units, and communication infrastructures. The system
uses shared memory communication and Through-Silicon-Vias
(TSVs) to transfer data across layers. A serialization scheme is
employed for inter-layer communication to minimize the overall
number of TSVs. The proposed architecture has been imple-
mented in HDL and verified on a test chip targeting an operating
frequency of 400MHz with a vertical bandwidth of 3.2Gbps.
The paper first evaluates the performance, power and temper-
ature characteristics of the architecture using a set of software
applications we have designed. We demonstrate quantitatively
that the proposed modular 3D design improves upon the cost
and performance bottlenecks of traditional 2D multi-core design.
In addition, a novel resource pooling approach is introduced to
efficiently manage the shared memory of the 3D stacked system.
Our approach reduces the application execution time significantly
compared to 2D and 3D systems with conventional memory
sharing.

I. INTRODUCTION

The scaling to nanometer technologies has led to a transition
from single-core to multi-core processors, and the trend is now
moving towards many-core architectures [1]. While hundreds of
millions of transistors can now be placed on a single chip, they
cannot be fully exploited due to interconnect/memory latency,
power consumption, and yield related issues. 3D integration
is an emerging technology aiming to overcome the limitations
faced by traditional (2D) design. In 3D circuits, multiple dies
can be stacked on top of each other and interconnected by
TSVs. In this way, it is possible to improve yield (owing
to smaller chip area) and also tackle the latency, bandwidth,
and power challenges of interconnects. In chip multiprocessors
(CMPs), whose performance is typically limited by the memory
access bottleneck, increased communication and memory access
bandwidths are distinguishing advantages of 3D stacking.
Nevertheless, the benefits offered by 3D integration may vanish
without an efficient software infrastructure to fully exploit the
additional available resources. This paper introduces both the
architectural design and software development for 3D-MMC,
a low-power, modular 3D-CMP system.

Previous architecture research on 3D-CMPs focuses either
on stacking memory layers on top of core logic to boost memory

bandwidth, or on augmenting the capabilities of planar CMPs
including additional logic layers. In both cases, each tier has a
different layout. To the best of our knowledge our system is
the first fabricated CMP that combines multiple identical tiers
in a modular fashion to increase system performance. A similar
approach has already been adopted for 3D-DRAM, where
identical memory chips are stacked to increase the overall
memory capacity [2]. The 3D-MMC platform has several
advantages owing to the modular design approach. First, it
dramatically simplifies the chip design process and reduces
Non Recurring Engineering (NRE) costs by creating a portfolio
of architectures using the same mask set. Second, homogeneity
of the system allows using the same testing protocol for each
die within the stack, leading to pre-bond testability without
any additional effort for test engineers.

In addition to introducing the specifics of the 3D-MMC
architecture, this paper evaluates the performance, power, and
thermal behavior of our 3D system. Following our analysis, we
implement a novel resource management approach to manage
memory accesses and increase performance. Our specific
contributions are as follows:

• We introduce a novel 3D-CMP architecture based on
the integration of identical layers to augment the system
performance with minimal design cost compared to conven-
tional planar IC design. The system uses shared memory
communication and TSVs to transfer data among the layers.
A serialization scheme is employed to minimize the TSV
overhead. The system is implemented to run at 400MHz and
3.2Gbps inter-layer data transfer bandwidth.
• We study performance, power, and thermal characteristics
of the 3D-MMC architecture. Our results demonstrate the
low power consumption and reliable thermal profiles.
• We propose a resource pooling technique to optimize
memory access latency in the 3D-CMP. Resource pool-
ing allows cores to leverage available memory resources
on remote layers to minimize memory contention. While
resource pooling concept has been introduced in recent
work [3], our work demonstrates the first specific, fine-
grained implementation on a real-life 3D-CMP design.

The rest of the paper starts with discussing related work.
Section III describes the 3D-MMC design. Section IV intro-
duces our resource pooling method. Section V evaluates the
performance and Section VI concludes the paper.978-3-9815370-0-0/DATE13/©2013 EDAA

II. RELATED WORK

3D integration has received considerable attention from
academia and industry recently [4] [5] [6]. 3D systems can be
broadly classified into two categories: memory + logic systems
and logic + logic systems. The former generally refers to cache
or main memory stacked over logic. Stacking SRAM or DRAM
on logic achieves shorter memory access latency compared
to the baseline performance of multi-core systems [7]. Two
examples in this category, utilizing GlobalFoundries’ 130 nm
process and Tezzaron’s FaStack technology, respectively, are
3D-MAPS [8], where the logic die consists of 64 cores operating
at 277MHz and the stacked memory die contains 256KB SRAM,
and Centip3De [9], a configurable near-threshold 3D stacked
system with 64 ARM Cortex-M3 cores.

The logic-on-logic case involves splitting a planar design’s
logic area into two or more layers, such as the 3D version
of an Intel Pentium 4 family processor in Garrou et al.’s
work [7]. A processor where a baseline microarchitecture
is augmented by vertically stacking additional blocks (e.g.,
more caches, reservation station, etc.) to target different market
segments is proposed by Loh [10]. Exploring vertically stacked
microprocessors, Homayoun et al. [3] envision resource pooling
as an efficient method to achieve mocroarchitectural resource
sharing at a fine granularity.

Our work introduces both the hardware architecture and the
software implementation for a novel 3D-CMP architecture.
We focus on exploiting shared memory resource pooling
and provide a practical implementation. Our system uses
homogeneous stacking, which results in lower wafer and 3D
bonding costs compared to heterogeneous partitioning, as
demonstrated by Zhao et al. [11]. Thus, 3D-MMC offers a
desirable tradeoff among complexity, cost and performance.

III. OPTIMIZED 3D MODULAR DESIGN

This section provides the details of the proposed modular
3D architecture, 3D-MMC. We then describe our performance
evaluation setup. Finally, considering the significance of ther-
mal challenges in 3D stacking, we demonstrate the thermal
feasibility of our system.

A. Architecture Description

Figure 1 provides a diagram of the 3D-MMC system
composed of two layers interconnected by TSVs. The number of
layers in the stack determines the total core count as well as the
memory size and the level of memory resource pooling. A single
layer can function either as a stand-alone 2D-CMP and as part
of a 3D-system when integrated with the 3D communication
infrastructure. We next describe the planar architecture and the
3D communication infrastructure.

1) Planar (single-layer) architecture: A single layer is
composed of four Processing Elements (PE) that exchange data
through a shared memory, which is placed in the Peripheral
Subsystem (PS) unit. A system of semaphores arbitrates the
access of PEs to the shared memory. The routing between
each PE and the shared memory occurs through a Network-on-
Chip (NoC). Several 3D-NoC topologies have been proposed
recently, and their superior performance over 2D-NoC have
been demonstrated by Pavlidis et al. [12]. In 3D-MMC, a

LAYER 1

System Clock

PLL

3D conn. macro

Peripheral Subsystem
(PS)

Dualclock
FIFO

Processing Element
(PE)

NI

NI

Private
RAM

Shared
local RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

NoC

Serializer
Deserializer

LAYER 2

PLL

3D conn. macro

Peripheral Subsystem
(PS)

Dualclock
FIFO

Processing Element
(PE)

NI

NI

Private
RAM

Shared
local RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

NoC

Serializer
Deserializer

Fig. 1. Overview of the 3D-MMC built with stacking identical layers. The
figure does not show the data TSVs for clarity.

specific source-routed NoC is implemented to manage the
signals routing to and from 6 directions (North, South, East,
West, Up, Down). In the 3D stack, NoC on different layers
are interconnected to enable the management of the signals in
both horizontal and vertical directions.

Figures 2(a) and 2(b) illustrate the internal architecture of a
PE and a PS, respectively. Each PE is built out of a 32-bit RISC
processor, the open-source LEON3 unit from Aeroflex Gaisler,
which is connected to the slave modules through an AMBA
bus. An AHB JTAG master module is included for debugging
purposes. Slave devices for each PE are a privately addressable
memory space including a ROM for booting and a private
RAM to host the program code. The Network-Interface (NI)
block is a master located within both PE and PS. It interfaces
the AMBA bus to the NoC, and is responsible of transferring
data packets to/from the shared memory, which has an address
space visible to each core. Similar to PEs, the PS contains NI
and AHB JTAG acting as masters, whereas all the remaining
units (semaphore, shared RAM) act as slaves.

Each PE in an N-layer system has access to N+1 different
memory modules that can be accessed in parallel: a private-
RAM contained in its own PE, a shared local-RAM located in
the PS of its layer, and N-1 shared remote-RAMs situated in
the PS of the other stacked layers. Similar to the architecture
designed by Benini et al. [13], the proposed memory hierarchy
that uses shared data memory for inter-processor communica-
tion simplifies the hardware complexity and avoids memory
coherency overhead. The multi-core synchronization is handled
at the software level.

2) 3D communication and control infrastructure: Inter-layer
communication is achieved through a 3D communication unit,
3D-macro, which leverages an array of TSVs as a vertical
data bus. To limit the TSV area overhead, we use a serializer-
deserializer (serdes) module to minimize the total number of
TSVs. This serdes module is explained in detail in our prior
work [14]. Data signals are serialized before the transmission
through TSVs, and de-serialized at the receiving layer. The
bandwidth loss due to serialization can be compensated by
increasing the serdes clock frequency. Serialization is more
cost-efficient than parallel buses in 3D-ICs [15].

A challenging issue for 3D-ICs is the reliable distribution
of the clock signal [16]. In 3D-MMC, each stacked layer
has an independent clock domain. The clock is injected onto
a pad of the top layer, passes through a PLL module, and
is both distributed in the circuit and sent to the next layer.
The bottom layer receives the clock from power TSVs, and
forwards it to a PLL module to be re-generated for maintaining
its integrity. Hence, all layers operate at the same frequency,
but are asynchronous from each other due to potential phase
shifts among the clocks. In the multi-clock domain approach,
signals are transmitted among the layers together with their
clock and then they are re-synchronized to the clock domain of
the receiving layer using a Dual Clock FIFO. Clock propagation
is demonstrated in Figure 3(a).

Once the identical layers are stacked, they need to operate
as a complete system without further modification. For this
purpose, a dedicated control signal, namely the layer identi-
fication number (LayerID) is implemented for enabling auto-
configuration of the layers depending on their positions in the
3D-system. As shown in Figure 3(b) for a sample case of two
layers, the sequence "00", is injected through the pads and
selected by a multiplexer as the layerID of the top layer. The
value is also forwarded to a half adder that computes the ID
for the next layer below, "01". The pads of the bottom tier
are designed to be pulled-down when no signal is applied to
them. As a result, the multiplexer on the second layer selects
the LayerID transmitted by the TSVs.

cpu-id

I-cache

LEON3
core

Private
RAM

Network
Interface (NI)

timer IRQ

AMBA AHB 2.0

AMBA APB 2.0

Processing Element

(PE)

to/from Switch

layer
ID

ROM
APB

bridge
AHB
JTAG JTAG

I/O pads

(a)

Shared
RAM

Network
Interface (NI)

UART

AMBA AHB 2.0

AMBA APB 2.0

Peripheral Sub-system

(PS)

to/from Switch

layer
ID

Semaphore
APB

bridge
AHB
JTAG JTAG

I/O pads

(b)

Fig. 2. (a) PE internal architecture; (b) PS internal architecture.

1

0

Pad clk

PLL

LAYER 1

’0’

Layer_ID

Clock
tree

to
flip flops

to
flip flops

1

0

PLL

LAYER 2

’1’

Layer_ID

Clock
tree

buried pad
pulled down

(a)

LAYER 1

Pad
Layer_ID

1

0
"00"

weak
pull down

2

2

"01"

"00"

"01"

to
logic

LAYER 2

1

0
2

2

to
logicburied pad

pulled down

"01"

"01"

to next
layer

(b)

Fig. 3. (a) Clock distribution and propagation between two layers using three
redundant TSVs; (b) LayerID generation and propagation between two layers
using three redundant TSVs.

B. Evaluation platform

The proposed architecture has been implemented in HDL
and verified on a test chip targeting an operating frequency of
400MHz and a vertical bandwidth of 3.2Gbps. The 2D-CMPs
have been fabricated using a standard UMC 90nm CMOS
technology. Single dies have been tested and verified, and then
processed for in-house TSV fabrication and stacking.

The performance study in this paper is conducted through
cycle-accurate post-layout simulations in ModelSim. We have
designed a set of software benchmarks to evaluate performance.
The benchmarks are compiled using a SPARC compiler, loaded
into the ROM, and executed following the boot script.

C. Thermal Evaluation

A significant challenge in 3D stacking is the power density
increase per footprint, which may cause temperature to increase
beyond reliable thresholds. This section demonstrates the
thermal feasibility of 3D-MMC.

The power consumption of each component in a layer of
the 3D stack is estimated via statistical power analysis using
Encounter Power System by Cadence. We assume a switching
rate of 50% for each flip flop and each input port, and we
use a 100% toggling rate for the clock. The tool automatically
estimates the power consumption based on the average toggling
rate of each gate. Table I provides the power consumption of
all the components at 400MHz including leakage power. Core
power in the table includes the logic, I-Cache, ROM, and all
other sub-blocks of the core except for the local RAM. Table I
highlights the low power consumption of 3D-MMC, where
each layer consumes 267mW.

We use HotSpot version 5.02 [17] for thermal simulations.
The package and die parameters used in the simulation are
provided in Table I. The floorplan of each layer is identical and
is shown in Figures 1 and 4. To take the impact of TSVs into
account during thermal evaluation, we use a modified version
of HotSpot that enables modeling heterogeneity within a layer
[18]. We compute joint thermal resistivities for each TSV block
based on the ratio of TSV (Cu) area to overall TSV array area
(including all the spacing between the TSVs). We simulate the
system without a heat sink by using a very small number for
the heat sink thickness in HotSpot. Layers are stacked using a
glue (interface material) layer of Parylene-C.

Figure 4 provides the steady state peak temperatures for a
single layer chip and 3D systems including 2 layers, 4 layers,

TABLE I. POWER CONSUMPTION AND THERMAL PROPERTIES OF
3D-MMC

Power Consumption Characteristics
Components Power (mW)
Core 37.98
Local RAM for each core 17.13
Router 10.07
Data TSV arrays 1.6 (smaller array) to 8.11 (larger array)
Shared memory 22.16
PLL 5

Package and Die Thermal Characteristics
Die area 3.5mm x 3.5mm
Die thickness (bottom layer) 280µm
Die thickness (other layers) 50µm
Die (Si) resistivity 0.01mK/W (meter-Kelvin per Watt)
Glue conductivity 0.082W/mK at 25°C
Glue thickness 2µm

Fig. 4. The figure demonstrates the peak temperatures at steady state for a
single layer as well as 2, 4, and 8-layered stack. On the right, we show the
thermal map of the top layer for the 2-layered stacks. Thermal variations are
similarly low (limited to a few degrees only) for 4 and 8-layered stacks.

1 Core 2 Cores 3 Cores 4 Cores
0

50

100

150

200

250

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Local Shared Memory

Remote Shared Memory

Resource Pooling

Fig. 5. Comparison of execution time of Memory Stress benchmark when
all cores access local memory, all cores access remote memory, and when
memory resource pooling is applied.

and 8 layers when all cores are active. In the figure, we also
provide a thermal map for the top layer of the 2-layered system.
For 2 and 4-layered systems, even though cores overlap on top
of each other and all cores are active, we do not observe high
temperatures. For the 8-layered stack, peak temperature reaches
74°C, which is still below the typical 85° thermal thresholds
used in most processor chips. As we focus on a 2-layered stack
in this paper, we do not apply thermal management strategies.

IV. RESOURCE POOLING FOR EFFICIENT MEMORY
ACCESS

In traditional 2D design, as the number of cores increases,
the bandwidth of the shared memory becomes a performance
bottleneck. In 3D-MMC the possibility to utilize all layers’
resources as a whole allows to address the memory bottleneck
problem using resource pooling. Resource pooling in 3D
systems refers to the sharing of resources between vertical
stacked layers [3]. This section first demonstrates the memory
bottleneck problem on a 2-layer 3D-MMC, and then proposes a
methodology to find the optimal way to apply resource pooling.

3D-MMC’s memory subsystem has only one write port and
one read port. When the memory access rate exceeds a certain
level, access blocking occurs. Aiming to evaluate memory
bottlenecks and resource pooling, we create a memory-intensive
benchmark, Memory Stress, which performs 1000 writes of
integer-length values into the shared memory. We perform
experiments that write on local (same layer’s) shared memory
and remote (different layer’s) shared memory respectively,
with 1-core, 2-core, 3-core, and 4-core cases. In this group
of experiments, all active cores are on the same layer. The
resulting execution times for both local and remote shared
memory cases are shown in Figure 5. This figure shows that
as more cores attempt to access shared memory, performance
penalty increases. When there are either more than two cores
accessing the remote shared memory or more than three cores

Local Shared Memory Access Remote Shared Memory Access Blocked Memory Access

Scheduled Actual Scheduled Actual Scheduled Actual

(a). Baseline

 Same Schedule &

 Different Amount of

Remote Memory Accesses

 Different Schedule &

 Same Amount of

Remote Memory Accesses

(b). (c).

E
x
ecu

tio
n
 T

im
e

Fig. 6. Performance under different workload allocation and scheduling
combinations. (a) serves as the baseline, (b) has the same schedule with (a)
but has fewer remote memory accesses, while (c) has the same number of
remote memory accesses but has a different schedule.

accessing the local shared memory, the extra cores are blocked
for a while. Blocking of cores happens because of the memory
bottleneck and the communication limitation between layers.

To overcome the local shared memory bottleneck, we
propose utilizing the remote shared memory to mitigate the
access competition. We call this scenario Memory Resource
Pooling. For the experiment in Figure 5, for the multi-core cases
we assign one core to access the remote shared memory while
the others still access the local shared memory. In the 3-core
case, one core is assigned to access remote shared memory
while the other two write to the local shared memory. For 3-
core and 4-core cases, memory resource pooling brings 26.6%
and 42.3% reduction in execution time, respectively.

The above memory resource pooling strategy schedules
memory accesses at the core granularity; thus, we call it Core
Level Resource Pooling (CLRP). Task Level Resource Pooling
(TLRP) includes adjustable Workload Allocation and Workload
Scheduling within each core. With TLRP, the workload of
each core is divided into two parts: local memory accesses and
remote memory accesses. For each core in the system, workload
allocation determines the ratio of local and remote memory
accesses, while workload scheduling defines the execution
sequence of memory accesses. We allocate equal amount of
workload to all the cores for a fair comparison.

In Figure 6, each group of 4 bars represents the workload
execution of four cores on the same layer. White and gray blocks
stand for local and remote memory accesses, respectively, and
black ones represent the memory stalls. In the same figure,
Scheduled refers to the sequence of workload execution planed
for each core, while Actual shows the real execution. We
consider (a) as a baseline case, where simultaneous local
memory accesses from 4 cores are avoided. In this case, all
cores behave as scheduled and no core is blocked because
of contention. Case (b) shows the situation where the system
applies the same workload schedule with (a) but with fewer
remote memory accesses. As local shared memory allows for
at most 3 cores to simultaneously access to it, there is a
noticeable performance loss once all four cores access the
local shared memory. Case (c) demonstrates the system’s
behavior when the cores have the same amount of remote
memory accesses as (a) but they are scheduled to access
local and remote shared memory at the same time, which
causes considerable performance loss compared to (a). Thus,
combination of workload allocation and scheduling in TLRP
has significant effects on performance.

To optimize performance via memory resource pooling, we
should avoid the memory bottleneck as much as possible. Next,

(a). 4-thread-RSM

(b). 2-thread-RSM

1-thread-RSM

Local Shared Memory Access

Remote Shared Memory Access

1+2 thread-RSM 2+4 thread-RSM

2+4 thread-RSM

(1)

E
x
ecu

tio
n
 T

im
e

E
x
ecu

tio
n
 T

im
e

E
x
ecu

tio
n
 T

im
e

(2) (3) (4)

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5) (6) (7)

(c). Optimal Schedule:

Fig. 7. Workload schedules for task level resource pooling. (a). 4 threads
accessing remote shared memory at the same time–4-thread-RSM; (b). (1)-(3):
2 threads accessing remote shared memory at the same time–2-thread-RSM;
(c). (1)-(3): 1 thread accessing remote shared memory–1-thread-RSM.

we propose an approach for computing the relationship between
performance and the number of remote memory accesses. We
introduce three workload schedules as shown in Figure 7, where
each schedule is applicable to any workload allocation. In
Figure 7, remote memory accesses increase gradually from left
side to right side. Schedule (a) always makes all four cores
access the remote shared memory (4-thread-RSM, where RSM
stands for remote shared memory). Schedule (b) issues two
cores to access remote shared memory at a time (2-thread-
RSM) from (1) to (3). In (4-7), there are too many remote
memory accesses to be scheduled using 2-thread-RSM, thus
we apply mixed 2+4 thread-RSM until the ratio of remote
memory accesses increases to 100%. 1-thread-RSM has only
one thread accessing remote shared memory at a time to
minimize simultaneous local memory access, as shown in case
(c) from (1) to (3). As the remote memory accesses increase,
schedule (c) uses 1-thread-RSM, 1+2 thread-RSM, and 2+4
thread-RSM successively, which minimizes simultaneous local
memory accesses.

To compare the performance of these 3 schedules, we
observe the execution time of the whole application, i.e., the
longest execution time among all four cores. The execution
time on each core is the product of Instruction Count, Cycles
per Instruction and Cycle Time. Since most memory-intensive
applications contain a large number of memory accesses, in
this case we can substitute instructions with memory accesses,
which means execution time equals the product of # of Memory
Accesses, Cycles per Memory Access and also Cycle Time.
To apply TLRP, we need to split memory accesses into local
memory accesses and remote memory accesses. In the following
equation, Texec stands for the execution time, NMemAcc is the
total number of shared memory accesses in the application,
WL and WR represent the weight (i.e., ratio) of local and
remote memory accesses, and CLi and CRi refer to the number
of cycles when i cores are accessing local shared memory
and remote shared memory, respectively. CLi and CRi can be
obtained from the shared memory access test. After replacing
the variables with their values we can compute the function of
Texec and WR, and thus we can calculate the execution time
according to the ratio of remote memory accesses.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
75

100

125

150

175

200

225

250

E
x

ec
u

ti
o
n
 T

im
e

(m
s)

Remote Shared Memory Access Percentage

Optimal Schedule (Based on Equ.1)

Optimal Schedule Test Results

2−thread−RSM Test Results

4−thread−RSM Test Results

Fig. 8. Test results of different memory resource pooling schedules and the
optimal schedule’s curve based on Eqn. (1).

Texec = (
∑

(WLi ×NMemAcc × CLi)+∑
(WRi ×NMemAcc × CRi))× TCycle (1)

WL +WR =
∑

WLi +
∑

WRi = 1 (2)

Figure 8 shows the test results and fitted curves of the
workload schedules in Figure 7. For the optimal schedule,
we also draw the theoretical curve based on Eqn. (1). The
experimental results fit very well with the theoretical curve.
Although all of the three schedules can take advantage of
resource pooling, the optimal one improves the performance
by up to 48.9%, which coincides with the curve for 2-thread-
RSM. The optimal schedule shown in the figure demonstrates
the potential benefits of memory resource pooling and TLRP
workload scheduling.

In Eqn. (1), NMemAcc is related to the application, Tcycle de-
pends on the architecture, and CLi and CRi are both application
and architecture related. Thus, for most of the shared-memory
systems and applications, the proposed approach is applicable
for quantifying the potential performance improvement of
memory resource pooling.

V. PERFORMANCE EVALUATION

This section demonstrates the performance benefits of
3D-MMC. To evaluate the performance, we design four
benchmarks: 1D DCT, a single dimension 8×8 matrix discrete
cosine transformation; 1D FFT, 8× 8 matrix 12 butterfly Fast
Fourier Transformation; 1D Median Filter with a window size
of 3 and an input array with 64 integers; Matrix Multiplication,
8 × 8 multiplication implemented using divide and conquer
algorithm.

The test results are shown in Figure 9. Ideal performance
improvement refers to the improvement we can get from the
multi-core system if the benchmarks can be fully parallelized.
For 1-core to 4-core cases, the cores are all on one layer and
thus the system can be viewed as a 2D layer only. As for
8-core case, we have two 2D layers with four cores on each,
which is the 3D-MMC architecture described above. It can
be observed from this figure that the performance improves
significantly (61% on average) from 4-core (2D) to 8-core (3D).
The difference of improvement among benchmarks is because

1−Core 2−Cores 4−Cores 8−Cores
0

1

2

3

4

5

6

7

8

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

1D DCT

1D FFT

1D Median Filter

Matrix Multiplication

Ideal Performance Improvement

Fig. 9. Performance improvement compared to single core.

TABLE II. EXECUTION TIME OF DIFFERENT SHARED MEMORY
ACCESS SCENARIOS WHEN ALL 8 CORES ARE ACTIVE.

Benchmark All cores access a
single shared memory

(ns)

All cores access their
local shared memory

(ns)
1D DCT 16716 16495
1D FFT 26260 26063
Median Filter 8674 7420
Matrix Multiplication 52838 51935

the benchmarks vary in their scalability. For example, both
DCT and FFT have the same input matrix and large amounts
of computation, but FFT is more computation-bound compared
to DCT. Reading the input can be viewed as the serial part of
a benchmark and the computation is the parallel part since it
can be done locally in each PE. Thus, the scalability of DCT
is lower compared to FFT, and this difference in turn results in
different performance improvements. This figure demonstrates
the performance benefits of using 3D stacking. Assuming a
negligible area overhead is imposed by stacking, performance
per area is 61% better than a 2D chip on average.

For the 8-core case there are two ways of accessing shared
memory for the cores: accessing a single shared memory in the
system or each core accessing their local shared memory only.
Table II shows the execution times of these two scenarios. For
DCT and FFT, execution times differ by 1.3% and 0.8% only.
Matrix Multiplication has 1.7% difference between these two
situations because of its slightly higher memory access rate.
There is a much larger difference (16.9%) for Median Filter
because it is the most memory-intensive benchmark.

Finally, we apply memory resource pooling to the Median
Filter benchmark. As this benchmark also needs a lot of private
memory accesses, four cores running this benchmark do not
stress the shared memory sufficiently to reach the memory
bottleneck, limiting the performance improvement to 5%. The
available benefit from memory resource pooling is proportional
to the memory access rate. The memory access rate becomes
higher with a larger number of cores on 2D layer and/or by
running more memory-intensive applications. When applying
resource pooling to more than 2 layers in a 3D system, the
benefits are expected to increase as the cores can utilize a larger
number of shared memory blocks across different layers.

VI. CONCLUSION

In this paper, we have demonstrated the potential of 3D
stacking technology to build a low power multi-core system
based on homogeneous stacking. A 3D-MMC prototype has
been fabricated, delivering a vertical data bandwidth of 3.2

Gbps. The system uses data serialization during inter-layer
communication to reduce the overall number of TSVs. We
have also described an optimal way of exploiting the additional
resources offered by the 3D stacked system through memory
resource pooling. In addistion, the paper has shown an analytical
approach to evaluate the benefits of resource pooling. For a set
of software applications we have designed, 2-layered 3D-MMC
achieves up to 61% performance improvement compared to a
single layered 4-core chip.

ACKNOWLEDGMENT

This work has been partially funded by the NSF CAREER grant #1149703.

REFERENCES

[1] J. D. Owens et al., “Research challenges for on-chip interconnection
networks,” IEEE Micro, vol. 27, no. 5, pp. 96–108, Sept. 2007.

[2] U. Kang et al., “8 Gb 3-D DDR3 DRAM using through-silicon-via
technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp.
111–119, Jan. 2010.

[3] H. Homayoun et al., “Dynamically heterogeneous cores through 3D
resource pooling,” in 18th International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2012, pp. 1–12.

[4] G. H. Loh and Y. Xie, “3D stacked microprocessor: Are we there yet?”
IEEE Micro, vol. 30, no. 3, pp. 60–64, May 2010.

[5] T. Thorolfsson, K. Gonsalves, and P. D. Franzon, “Design automation
for a 3DIC FFT processor for synthetic aperture radar: a case study,” in
46th Annual Design Automation Conference (DAC), 2009, pp. 51–56.

[6] G. H. Loh, “3D-stacked memory architectures for multi-core processors,”
SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 453–464, Jun. 2008.

[7] P. Garrou, C. Bower, and P. Ramm, Handbook of 3D Integration:
Technology and Applications of 3D Integrated Circuits. John Wiley &
Sons, 2008, no. v. 2.

[8] D. H. Kim et al., “3D-maps: 3D massively parallel processor with
stacked memory,” in IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2012, pp. 188–190.

[9] D. Fick et al., “Centip3De: A 3930DMIPS/W configurable near-threshold
3D stacked system with 64 arm cortex-M3 cores,” in ISSCC, 2012, pp.
190–192.

[10] G. Loh, “A modular 3D processor for flexible product design and tech-
nology migration,” in Proceedings of the 5th conference on Computing
frontiers, 2008, pp. 159–170.

[11] J. Zhao, X. Dong, and Y. Xie, “Cost-aware three-dimensional (3D)
many-core multiprocessor design,” in DAC, June 2010, pp. 126–131.

[12] V. Pavlidis and E. Friedman, “3-D topologies for Networks-on-Chip,”
IEEE Transactions on VLSI Systems, vol. 15, no. 10, pp. 1081–1090,
Oct. 2007.

[13] Benini, L. et al., “P2012: Building an ecosystem for a scalable,
modular and high-efficiency embedded computing accelerator,” in Design,
Automation Test in Europe Conference (DATE), March 2012, pp. 983–
987.

[14] G. Beanato et al., “Design and testing strategies for modular 3-d-
multiprocessor systems using die-level through silicon via technology,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 2, no. 2, pp. 295 –306, June 2012.

[15] Sun, F. et al., “Design and feasibility of multi-gb/s quasi-serial vertical
interconnects based on TSVs for 3D ICs,” in 18th IEEE/IFIP VLSI
System on Chip Conference (VLSI-SoC), 2010.

[16] V. Pavlidis, I. Savidis, and E. Friedman, “Clock distribution networks
for 3-d integrated circuits,” in Custom Integrated Circuits Conference
(CICC), Sept. 2008, pp. 651 –654.

[17] K. Skadron et al., “Temperature-aware microarchitecture,” in 30th Annual
International Symposium on Computer Architecture (ISCA), June 2003,
pp. 2–13.

[18] J. Meng, K. Kawakami, and A. Coskun, “Optimizing energy efficiency
of 3-D multicore systems with stacked DRAM under power and thermal
constraints,” in DAC, June 2012, pp. 648–655.

