
ConfEx: Towards Automating Software
Configuration Analytics in the Cloud
Ozan Tuncer∗, Nilton Bila†, Sastry Duri†, Canturk Isci†, and Ayse K. Coskun∗

∗ Boston University, {otuncer, acoskun}@bu.edu
† IBM Research, {nilton, sastry, canturk}@us.ibm.com

Abstract—Modern cloud applications are designed in a highly
configurable way to ensure increased reusability and portability.
With the growing complexity of these applications, configuration
errors (i.e., misconfigurations) have become major sources of
service outages and disruptions. While some research has so far
focused on detecting errors in configurations that are represented
as well-structured key-value pairs, the configurations of cloud
applications are typically stored in text files with application-
specific syntax and in unlabeled file system locations, limiting
the use of existing error detection tools.

This paper introduces ConfEx, a framework that enables
discovery and extraction of text-based configurations in multi-
tenant cloud platforms and cloud image repositories for configu-
ration analysis and validation. ConfEx uses a novel vocabulary-
based technique to identify text-based configuration files in cloud
system instances with unlabeled content, and leverages existing
configuration parsers to extract the information in these files.
We show that ConfEx achieves over 98% precision and recall
in identifying configuration files on 3893 popular Docker Hub
images and we also demonstrate a use case of ConfEx for
detecting injected misconfigurations via outlier analysis.

I. INTRODUCTION

Cloud applications have complex architectures, often com-
prising many software components adopted from the open
source or a variety of vendors that must work in tandem. To
function correctly, securely, and with high performance, these
applications often depend on precise tuning of hundreds of
configuration parameters. As application architectures grow
more complex, developers no longer hold full mastery of
every configuration knob used by each software component in
their applications. This complexity and resulting knowledge
gap has elevated software configuration errors to become a
leading cause of cloud software failures [1]. The problem
is exacerbated because applications seldom validate their
configurations before using them. Recent work has shown
that, depending on the application, the software lacks any
special error checking code to validate 14% to 93% of its
configuration parameters [2].

The research community has developed various tools to au-
tomatically check for errors in an application-agnostic manner
(e.g., [3], [4]). Among such tools, statistical and learning-
based techniques (e.g., [5], [6]) have gained popularity as
low overhead configuration checkers. Statistical configuration
checkers train on a corpus of configurations and learn common
patterns, and then identify configurations that deviate from the
norm as potential errors.

Training learning-based models and using them for valida-
tion of configurations requires discovery of configurations and
extraction of configuration parameters across large populations
of installed applications. However, our experience with cloud
applications has revealed that configurations are often stored
in non-standard locations in the file system, which complicates
the task of configuration discovery. Moreover, the config-
uration parameters are often embedded in human readable
text files that are difficult to extract reliably with automated
tools outside of the native software that is co-developed with
the configuration format. For effective application-agnostic
analysis, the information extracted from these files needs to
be represented in a consistent format that allows comparison
of individual parameters across different files.

This paper introduces ConfEx, a novel software config-
uration analytics framework that enables robust analysis of
text-based configurations in multi-tenant cloud platforms and
image repositories. ConfEx discovers configuration files of
known applications in cloud instances (i.e., images, VMs,
and containers) and parses these files to produce consistent
configuration data for corpus-based analysis. We demonstrate
a use case of ConfEx on a corpus of 3893 popular Docker Hub
images by detecting injected misconfigurations through outlier
analysis. Our contributions can be summarized as follows:

• We present our design and implementation of ConfEx, a
configuration analytics framework that enables discovery
and extraction of consistent configuration data and robust
configuration analysis in multi-tenant cloud platforms.

• As part of our framework, we develop a vocabulary-based
configuration file discovery technique to identify text-
based software configuration files in cloud instances with
unlabeled content. Our approach identifies application
configuration files with over 98% precision and recall.

• We show that the outputs of existing configuration file
parsers often lack the consistency and robustness needed
for statistical analysis, and design a disambiguation
methodology on parser outputs to resolve this problem.
The impact of disambiguation is especially visible when
performing outlier analysis to detect misconfigurations.

II. CONFEX CONFIGURATION ANALYTICS FRAMEWORK

Figure 1 shows an overview of ConfEx. ConfEx first
discovers the configurations files in cloud system instances
with unlabeled content using an offline-generated vocabulary.
It then extracts the configuration data from these files using a

Discovery

Target	system
(image,	VM,	
container)

File	
labeling

Vocabulary

Liste n 80

<IfMo dule a_m od>
Use r us r
Gro up g rp

</IfM odul e>

Error Doc 404 err. html
myopt ion

omnio rb 8 088/ tcp
omnio rb 8 088/ udp

clc-b uild -dae mon
8990/ tcp
xinet d 90 98/t cp

mande lspa wn 9 359/ udp
mande l

serve r {

l iste n 44 3
defer red http 2 ss l;

r oot /app /www ;

s sl o n;
i nclu de

serve r.d/ *.co nf;}

Liste n 80

<IfMo dule a_m od>
Use r us r
Gro up g rp

</IfM odul e>

Error Doc 404 err. html
myopt ion

Text
files

- /etc/httpd.conf
- /config/httpd.conf
- /server.httpd.conf

httpd files

MySQL files
- /etc/mysql/my.cnf
- /etc/my.cnf
- /mysql_conf.cnf

Extraction

File	parser

. .
 .

Disambiguation
Application File Parameter	key Value

httpd /etc/httpd/httpd.conf LoadModule my_mod my_mod_file.so
httpd /etc/httpd/httpd.conf Listen 8080
mysql /etc/mysql/my.cnf mysqld datadir /var/lib/mysql

Extracted configuration data

key value

Analysis

Outlier	
detection

Constraint	
generation

. . .

Fig. 1. ConfEx overview. Given a target system instance, File labeling examines the contents of text files and labels configuration files with the name of the
software they belong to. Based on this label, the File parser extracts the file content and produces key-value pairs using software-specific parsing rules. The
Disambiguation step transforms the parser output into consistent key-value pairs, where a key corresponds to a single configuration parameter consistently
across different system instances. The extracted configuration data is then used for corpus-based analysis such as outlier detection and constraint generation.

community-driven configuration parser and applies a software-
specific disambiguation methodology to prepare the extracted
data for analysis. The extraction phase generates key-value
pairs that represent configuration data. Finally, these key-value
pairs are augmented with the software label and the source file
path to enable robust corpus-based configuration analysis. The
rest of this section described ConfEx’s phases in detail.

A. Discovery
We focus on text file based configurations, which are preva-

lent for many of the building blocks of cloud applications (e.g.,
MySQL, Nginx, and Redis). Our configuration file discovery
technique is based on our observation that parameter names
and configuration commands, which we refer to as important
words, can be used to associate text files with applications.
Figure 2 depicts ConfEx’s file discovery step in detail. During
offline training, we use known configuration files that are
labeled with application names. We then generate application-
specific vocabularies by extracting the important words in
each of these files in an application-agnostic way as follows:
We first discard commented-out lines in a file as comments
typically contain descriptions of the configuration options with
few (or no) application-specific words. We focus on the first
word in the remaining lines as the first words of non-comment
lines in a configuration file typically correspond to parameter
names or configuration commands, whereas the subsequent
words are user-provided values such as integers and file paths.
While extracting the first word of a line, we use the following
characters as delimiters to account for the characters that are
commonly used as part of a configuration file syntax: \t, =,
, :, <, >, [,], ,.

During testing, we use the same methodology to extract the
set of important words in an input text file. We then calculate
the similarity of the input important word set to each important
word set in the vocabulary of each application. To calculate
the similarity of a set pair, we use the Jaccard index, defined as
|A∩B|/|A∪B|, where A and B are two sets. If the maximum
achieved similarity using an application vocabulary is larger
than a certain threshold, Tconfidence, the file is labeled as a
candidate configuration file of that application.

To reduce the overhead of ConfEx, we only perform anal-
ysis on text files that are smaller than 200KB. This threshold
is supported by our investigation of 3893 Docker Hub images
on which the largest configuration file found was 36KB.

Param1
Param2
Param3
...

Param1
Param2
Param3
...

Param1
Param2
Param3
...

Param1
Param2
Param3
...

App 2
vocabulary

Listen 80
<IfModule a_mod>

User usr
Group grp

</IfModule>

ErrorDoc 404 err.html
myoption

omniorb 8088/tcp
omniorb 8088/udp
clc-build-daemon
8990/tcp
xinetd 9098/tcp
mandelspawn 9359/udp
mandel

server {
listen 443

deferred http2 ssl;
root /app/www;
ssl on;
include

server.d/*.conf;}

Listen 80
<IfModule a_mod>

User usr
Group grp

</IfModule>

ErrorDoc 404 err.html
myoption

Listen 80
<IfModule a_mod>

User usr
Group grp

</IfModule>

ErrorDoc 404 err.html
myoption

omniorb 8088/tcp
omniorb 8088/udp
clc-build-daemon
8990/tcp
xinetd 9098/tcp
mandelspawn 9359/udp
mandel

server {
listen 443

deferred http2 ssl;
root /app/www;
ssl on;
include

server.d/*.conf;}

Listen 80
<IfModule a_mod>

User usr
Group grp

</IfModule>

ErrorDoc 404 err.html
myoption

Known config.
files of app 1

Input text file

Param1
Param2
NewWord

Set of important
words

App 1
vocabulary

comment
Param1 value1
Param2 value2
NewWord value3

max ∩
∪

Training

Testing

Param1
Param2
Param3
...

Param1
Param2
Param3
...

Param1
Param2
Param3
...

Param1
Param2
Param3
...

Set of important
words

> Tconfidence
The input file is a candidate

config. file of app 1
yes

Fig. 2. Discovery phase. During offline training, a vocabulary is generated for
each application using known configuration files. Input text files are compared
with each application vocabulary and selected as candidate configuration files
upon a match that is larger than a confidence threshold.

B. Extraction

While existing studies on configuration analysis have mostly
focused on configuration stores that do not require data extrac-
tion such as Windows Registry (e.g., [7]), or configurations
with standard file formats such as XML and JSON (e.g., [4],
[8]), most configuration files in today’s cloud services (such as
httpd and Nginx) are kept in human-readable text files that do
not use standard file formats. The variety and rapid evolution
of applications make it expensive and bug-prone to implement
and maintain custom parsers for different applications for
every configuration analysis tool.

To leverage the knowledge of domain experts on vari-
ous applications and re-use an existing code-base that is
continuously maintained, we build our extraction phase on
top of Augeas [9], which is one of the most popular tools
available today for automatized configuration parsing and
editing. Augeas has extensive software configuration coverage
including common cloud applications such as httpd, MySQL,
Nginx, PHP, and PostgreSQL.

As Augeas is primarily intended for managing configu-
rations in systems with uniform and known configuration
structure, its output is not ideal for key-value-based analysis.
As seen in Fig. 3, Augeas produces artificial keys (e.g.,
/directive[1]) that do not correspond to parameters but

Listen 80
Redirect /Foo /Bar
<IfModule mymod>
User myuser

</IfModule>

key value
/directive[1] Listen
/directive[1]/arg 80

/directive[2] Redirect
/directive[2]/arg[1] /Foo

/directive[2]/arg[2] /Bar
/IfModule/arg mymod
/IfModule/directive User
/IfModule/directive/arg myuser

/h
ttp

d.
co

nf
La

be
l: h

ttp
d

App. File Parameter key Value
httpd /httpd.conf Listen 80
httpd /httpd.conf Redirect /Foo /Bar
httpd /httpd.conf IfModulemymod/User myuser

Parsing by Augeas

Au
ge

as
 o

ut
pu

t
ke

y-
va

lu
e

pa
irs

Disambiguation

C
on

fE
x

ou
tp

ut

Fig. 3. Extraction phase. Augeas parses configuration files based on the
labels given by the discovery phase and generates key-value pairs that
represent configurations. Then, using software-specific rules, Augeas’ output
is transformed into a format where a key corresponds to a single parameter
consistently across different files.

represent the location and type of the configuration entries.
Hence, a specific Augeas key does not necessarily point to
the same parameter across different files. To resolve this issue,
we write software-specific transformation rules and transform
Augeas’ output into a standardized format shown in Fig. 3,
where a key consistently points to the same configuration
parameter across different files. We write these rules manually
based on an investigation of Augeas’ output and applications’
documentation, and transform the Augeas output such that the
transformed key-value pairs faithfully represent configurations.
As an example, one such rule for httpd configurations is to use
the first argument of a Redirect directive in the parameter
key and the second argument of it as the value of the parameter
(marked with bold text in Fig. 3).

C. Analysis

The discovery and extraction phases of ConfEx produces
consistent key-value pairs, enabling various configuration anal-
ysis techniques in the cloud. A rich variety of analysis methods
can be applied as part of ConfEx, including outlier value
detection [6] and rule-based validation [5], [10].

III. EVALUATION

We focus on the Docker Hub images that con-
tain either the network services system configuration file
(/etc/services) or one of the three following pop-
ular cloud applications: httpd, MySQL, and Nginx. For
/etc/services, we use the most downloaded thou-
sand images and discard the images that do not have
/etc/services. For each application, we use the images
that contain the application name in their name or description
and are downloaded at least 50 times. We have manually
labeled the configuration files in these images by examining

TABLE I
STATISTICS ON THE STUDIED DOCKER HUB IMAGES

application # of images total # of
config. files

total # of
text files

httpd 272 9191 330106
MySQL 715 2600 509857
Nginx 2906 22450 313357

Network services 726 726 not used for
discovery

httpd MySQL Nginx
Application

0.90
0.92
0.94
0.96
0.98
1.00

Pr
ec

isi
on

default
ConfEx

(a) precision

httpd MySQL Nginx
Application

0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll default
ConfEx

(b) recall
Fig. 4. Comparison of the default path-based and ConfEx’s vocabulary-based
discovery approaches (Tconfidence = 0.5). The default approach can identify
only 19-74% of the application configuration files.

file contents and file paths. Table I summarizes the number
of images we use in our evaluation along with the number of
text files and identified configuration files in these images.

A. Discovery

We compare ConfEx’s configuration discovery with a com-
mon approach that searches for configuration files only in well
known file system locations. We use the file locations checked
by Augeas. We measure the effectiveness of discovery sepa-
rately for each application and using five-fold cross validation,
where we repeat each cross validation ten times with different
randomly-selected partitions.

We use precision and recall as evaluation metrics. Preci-
sion is the fraction of true positives (i.e., correctly predicted
configuration files) to the total number of files predicted as
configuration files, and recall is the fraction of true positives
to the total number of configuration files in the testing set.

In our experiments, we find that using a similarity threshold
larger than 0.5 has negligible impact on precision and recall,
and hence, use Tconfidence = 0.5. Figure 4 compares the default
(Augeas) discovery approach with ConfEx’s vocabulary-based
discovery. As the standard configuration file paths do not
contain text files that are not configurations, the default ap-
proach achieves ideal precision. However, as shown in Fig. 4b,
only 19% of Nginx configuration files can be found with this
approach as the remaining configuration files are not located
in the default paths in the target images.

Overall, ConfEx successfully identifies 34156 target config-
uration files (out of 34241), while the baseline can identify
only 12249 of the configuration files. In the remaining 85
files that are missed by ConfEx, approximately half of the
parameter names are uncommon and are not seen during
training. ConfEx’s lowest precision is observed with Nginx,
where ConfEx mislabels 347 files as Nginx configurations.
These mislabeled files contain words that are used as pa-
rameter names in Nginx such as the word include in file
/etc/ld.so.conf.

TABLE II
INJECTED APPLICATION MISCONFIGURATIONS

application name description

httpd url Error 401 points to a remote URL
httpd dns Unnecessary reverse DNS lookups
httpd path Wrong module path
httpd mem MaxMemFree should be in KB
httpd req Too low request limit per connection

MySQL enum Enumerators should be case-sensitive
MySQL buf Unusually large sort buffer
MySQL limit Too low connection error limit
MySQL max Invalid value for max number of connections
Nginx files Too few open files are allowed per worker
Nginx debug Logging debug outputs to a file
Nginx access Giving access to root directory
Nginx host Using hostname in a listen directive

B. Detecting Misconfigurations via Outlier Analysis

We present a use case of ConfEx by automatically detecting
injected misconfigurations using PeerPressure [6]. PeerPres-
sure is originally designed for Windows registry, and finds the
culprit configuration entry in an image with a single config-
uration error, where configurations are provided as key-value
pairs. It ranks the configurations based on their probability
of being an error, which is calculated using outlier analysis
via Bayesian estimation. We apply PeerPressure on all files
discovered by ConfEx. We also show the impact of ConfEx’s
disambiguation step on PeerPressure’s accuracy by using the
default Augeas output before disambiguation as a baseline.

We use PeerPressure to detect the application misconfigura-
tions listed in Table II as well as synthetic /etc/services
misconfigurations. For applications, we inject each miscon-
figuration listed in Table II to a randomly selected image that
contains the target parameter to be misconfigured. To generate
/etc/services misconfigurations, we randomly select a
service in a randomly chosen image, and change the port
used by the selected service to a random integer between 1
and 10000. For each target misconfiguration, we repeat the
randomized injection 1000 times.

Figure 5 shows the percentage of injected errors that are
ranked within the top five suspects by PeerPressure among
1000 randomized injections of our target misconfigurations.
Using ConfEx’s disambiguated keys consistently leads to
similar or higher rankings compared to using default Augeas
keys, making it easier to pinpoint the injected error.

With the default keys, PeerPressure suffers from having
an incorrect view on the distribution of configurations. This
problem becomes more significant when the number of keys
that represent the misconfigured parameter across the corpus is
large (e.g., more than five), such as in services misconfigu-
rations. Moreover, when the misconfigured image has files that
have substantially different parameter ordering compared to
the files seen in the corpus, common configuration entries use
uncommon keys and become outliers in the corpus, resulting in
high error probability. However, PeerPressure can still detect
the injected errors with the default keys if the parameter

url dns
pathmem req enum buf

lim
it

max file
s
debug

acc
esshost

ser
vic

es

Misconfiguration

0
20
40
60
80

100

%
 o

f e
rro

rs
 th

at
ar

e
am

on
g

th
e

to
p

5
su

sp
ec

ts

default
ConfEx

Fig. 5. The percentage of injected errors that are ranked within the top
five suspects by PeerPressure among 1000 randomized injections for each
misconfiguration. services is the /etc/services misconfiguration.

ordering in the misconfigured image is similar to the majority
of images seen in the corpus.

In files and debug errors, outlier detection performs poorly
both with the default Augeas keys and ConfEx’s disam-
biguated keys. This is because compared to the other injected
errors, the parameters being misconfigured in files and debug
have fewer instances in the corpus. Hence, the injected erro-
neous values are not perceived as an outlier by PeerPressure.
This can be avoided by using a larger configuration corpus.

IV. CONCLUSION

In this work, we have introduced ConfEx, a framework
to discover and analyze text-based software configurations in
multi-tenant cloud platforms. Our framework enables the use
of existing configuration analysis tools, which are designed
for key-value pairs, with text file based configurations in the
cloud. Our results have shown that ConfEx achieves over 98%
precision and recall on identifying configuration files, and our
disambiguation method consistently improves the efficacy of
detecting configuration errors through outlier analysis.

REFERENCES

[1] Z. Yin et al., “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2011, pp. 159–172.

[2] T. Xu et al., “Early detection of configuration errors to reduce failure
damage,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[3] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in OSDI,
2012, pp. 307–320.

[4] F. Behrang, M. B. Cohen, and A. Orso, “Users beware: Preference
inconsistencies ahead,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE), 2015, pp. 295–306.

[5] J. Zhang et al., “Encore: Exploiting system environment and corre-
lation information for misconfiguration detection,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 687–700.

[6] H. J. Wang et al., “Automatic misconfiguration troubleshooting with
peerpressure,” in OSDI, 2004, pp. 17–17.

[7] D. Yuan et al., “Context-based online configuration-error detection,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2011,
pp. 28–28.

[8] S. Zhang and M. D. Ernst, “Proactive detection of inadequate diagnostic
messages for software configuration errors,” in Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA),
2015, pp. 12–23.

[9] D. Lutterkort, “Augeas–a configuration api,” in Linux Symposium, 2008,
pp. 47–56.

[10] S. Baset et al., “Usable declarative configuration specification and
validation for applications, systems, and cloud,” in Proceedings of the
Industrial Track of the 18th International Middleware Conference, 2017.

