
1

Fuzzy Control for Enforcing Energy Efficiency
in High-Performance 3D Systems

Mohamed M. Sabry‡, Ayse K. Coskun†, David Atienza‡
‡Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

†Electrical and Computer Engineering Department, Boston University, USA.

Abstract— 3D stacked circuits reduce communication delay
in multicore system-on-chips (SoCs) and enable heterogeneous
integration of cores, memories, sensors, and RF devices. However,
vertical integration of layers exacerbates the reliability and
thermal problems, and cooling is a limiting factor in multi-
tier systems. Liquid cooling is a highly efficient solution to
overcome the accelerated thermal problems in 3D architectures;
however, liquid cooling brings new challenges in modeling and
runtime management. This paper proposes a novel controller
for improving energy efficiency and reliability in 3D systems
through liquid cooling management and dynamic voltage fre-
quency scaling (DVFS). The proposed fuzzy controller adjusts
the liquid flow rate at runtime to match the cooling demand for
preventing energy wastage of over-cooling and for maintaining
a stable thermal profile. The DVFS decisions provide chip-level
energy savings and help balancing the temperature across the
system. Experimental results on 8- and 16-core multicore SoCs
show that the controller prevents the system to exceed the given
threshold temperature while reducing cooling energy by up to
50% and system-level energy by up to 21% in comparison to
using a static worst-case flow rate setting.

I. INTRODUCTION

3D integration is a recently proposed design method for
overcoming the limitations regarding the delay, bandwidth, and
power consumption of the interconnects in multicore chips,
while reducing the chip footprint and improving the fabrication
yield. However, one of the main challenges for designing 3D
circuits is their elevated temperatures resulting from higher
thermal resistivity [12], [17]. Thus, it is more difficult to
remove the heat from 3D ICs. 3D systems are also prone to
large thermal variations; e.g., cores located at different tiers or
at different coordinates across a tier have significantly different
heating/cooling rates [7]. Such large thermal gradients have
adverse effects on system reliability, performance, and cooling
costs.

A number of thermal management techniques have been
proposed for controlling temperature on 2D multicore sys-
tems. DVFS and thread migration/scheduling based on thermal
feedback are examples of such techniques (e.g., [9]). Recent
research has extended 2D management techniques for work-
load scheduling and DVFS-based thermal management in 3D
multicore systems [28], [8], [27]. However, as power densities,
number of cores, and number of tiers increase, extremely high
temperature values appear in 3D stacks [27], resulting in severe
restrictions in high-performance 3D system design.

Inter-tier liquid cooling is a potential solution to address
the high temperatures in 3D chips, due to the higher heat
removal capability of liquids in comparison to air [5], [4]. This

technology involves injecting fluid (e.g., water) through micro-
channels (or pin-fin structures) between the tiers of a 3D stack
using a pump to remove the heat. While liquid cooling has a
large capability in terms of thermal reduction of 3D systems,
it is necessary to use such technique in conjunction with task
scheduling, load balancing, and DVFS to exploit trade-offs
with other key parameters in 3D multicore systems, such as
energy efficiency and performance. In addition, previous work
shows that as workload dynamics change at runtime, choosing
the flow rate setting dynamically to meet the cooling demand
while preventing over-cooling saves significant energy [5].
Combining various control knobs in a single low-overhead
optimum controller is a highly challenging task, as the control
parameters differ in their time constants, performance and
energy overheads, and benefits. For example, changing DVFS
settings has typically an overhead on the order of several tens
to hundreds of microseconds, while flow rate changes may
take several hundreds of milliseconds. Also, the overhead for
workload scheduling is typically low [8]; however when the
system is highly utilized, job scheduling is not sufficient to
control the temperature, requiring more aggressive techniques
such as DVFS or applying a higher flow rate for the liquid.

In this paper, we propose a novel integrated DVFS and
liquid flow rate fuzzy controller, which is able to run in
conjunction with temperature-aware job scheduling methods.
The controller combines the flow rate setting and DVFS de-
cisions to simultaneously minimize the hot spots, the thermal
imbalance across the system, and system-level energy. Our
experimental results on 2- and 4-layered 3D systems show that
our fuzzy controller prevents the system to go over the given
threshold temperature while achieving up to 50% reduction
in cooling energy and up to 21% reduction in system-level
energy in comparison to setting the flow rate at the maximum
value to handle the worst-case temperature.

The rest of the paper starts with an overview of the prior
work in Section II. Section III describes the thermal model for
liquid-cooled 3D systems. In Section IV, we provide details
on the proposed fuzzy controller. The experimental results are
presented in Section V, and finally Section VI summarizes the
main conclusions of this work.

II. RELATED WORK

Accurate thermal modeling is critical in the design
and evaluation of temperature-aware systems and policies.
HotSpot [20] is an automated thermal model that calculates

transient temperature response given the physical and power
consumption characteristics of the chip. To reduce simulation
time for large multicore systems, a thermal emulation frame-
work for FPGAs is proposed in [1]. Latest versions of HotSpot
include 3D modeling capabilities. Recent work has extended
HotSpot to model liquid-cooled systems as well [6]. Finally,
3D-ICE [22] is a new thermal modeling tool specifically
designed for 3D stacks, and includes interlayer liquid cooling
modeling capabilities.

Dynamic thermal management in microprocessors has been
introduced by Brooks et al. [3], where the authors explore
performance trade-offs among various dynamic thermal man-
agement mechanisms. Activity migration [11] and fetch tog-
gling [20] are other examples of dynamic management tech-
niques. Kumar et al. propose a hybrid method that combines
clock gating and software thermal management [13]. The
multicore thermal management method introduced by Donald
et al. [9] combines distributed DVFS with process migration.
For multicore systems, temperature-aware task scheduling [8]
achieves desirable thermal profiles at low performance cost.

Most of the prior work in thermal management of 3D
systems address design stage optimization, such as thermal-
aware floorplanning (e.g. [10]) and integrating thermal via
planning [15]. In [28], the authors evaluate several poli-
cies for task migration and DVFS. A recent paper proposes
a temperature-aware scheduling method specifically for air-
cooled 3D systems [7]. This method takes into account the
thermal heterogeneity among the different layers of the system.
In our recent work, we have proposed a methodology to model
liquid-cooled systems, and we have shown that dynamic flow
rate control is able to reduce cooling energy [5]. This work is
the first to integrate DVFS and variable liquid flow rate control
for 3D systems to achieve more aggressive energy savings
while maintaining a reliable and balanced thermal profile.

III. 3D STACK THERMAL MODELING OVERVIEW

Modeling the temperature dynamics of liquid-cooled 3D
stacked architectures consist of forming the grid-level thermal
R-C network, detailed modeling of the interlayer material
between the tiers including the through-silicon-vias (TSVs)
and the microchannels, and modeling the pump and the
coolant flow rate. This section discusses the thermal modeling
infrastructure for liquid-cooled 3D systems.

Fig. 1 shows the 3D systems targeted in this paper. The 3D
system consists of two or more stacked layers (with cores,
L2 caches, crossbar, and other units for memory control,
buffering, etc.), and microchannels are built in between the
vertical layers for liquid flow. In this work, we deploy forced
convective interlayer cooling with water [4]. The microchan-
nels are distributed uniformly, and fluid flows through each
channel at the same flow rate. The liquid flow rate provided
by the pump can be dynamically altered at runtime.

A. Grid-Level Thermal Model for Liquid-Cooled 3D Systems

Similar to thermal modeling in 2D chips, 3D thermal
modeling is performed using an automated model that forms
the R-C circuit for given grid dimensions. In this work, we
utilize the 3D-ICE thermal model proposed in [22], which

Fig. 1. Layouts of the 3D multicore systems.

Upper Stack

Lower Stack

Fig. 2. Cross section of the 3D layers and the resistive network [5].

includes 3D stack modeling capabilities, with interlayer-liquid
cooling.

To model the heterogeneous characteristics of the interlayer
material including variable flow rate in microchannels, we
introduce the ability to change the resistivity value of the cell
can vary at runtime, to enable modeling the liquid coolant and
dynamically changing flow rate. Thus, the interlayer material
is divided into grid cells, where each grid cell except for the
cells of the microchannels has a fixed thermal resistance value
depending on the characteristics of the interface material. The
thermal resistivity of the microchannel cells is computed based
on the liquid flow rate through the cell at runtime. We set the
width of grid cells to the width of a microchannel, which is
100µm.

In a 3D system with liquid cooling, we compute the local
junction temperature using a resistive network, as shown in
Fig. 2. In this figure, the thermal resistance of the wiring layers
(RBEOL), the thermal resistance of the silicon slab (Rslab),
and the convective thermal resistance (Rconv) are combined
to model the 3D stack. In the figure, the heat flux values (q̇)
represent the heat sources. This R-network is solved to get
the junction temperature (Tj). Note that the figure shows the
heat sources and the resistances of only one layer, and heat
will be dissipated to both opposing vertical directions (i.e.,
up and down) from the heat sources. For example, if there is

another layer above the two heat-dissipating layers shown in
the figure, q̇1 will also be dissipating heat toward the upper
stack. Also, the network in Fig. 2 assumes isothermal channel
walls; i.e., top and bottom of the microchannel have the same
temperature.

The junction temperature (Tj) response at uniform chip
heat flux and convective cooling is a sum of the following
three components: (1) the thermal gradient due to conduction
(∆Tcond); (2) the coolant temperature, which increases lin-
early with position along the channel due to the absorption
of sensible heat (∆Theat); and (3) the convective (∆Tconv)
portion, which increases until fully developed hydrodynamic
and thermal boundary layers have been reached [4]. The
total temperature rise on the junction, ∆Tj , can therefore be
computed as the following:

∆Tj = ∆Tcond + ∆Theat + ∆Tconv (1)

Thermal gradient due to heat conduction through the BEOL
layer, ∆Tcond is computed with Equations 2 and 3. Note that
∆Tcond is independent of the flow rate. Fig. 2 demonstrates
tB , and kBEOL is the conductivity of the wiring layer.

∆Tcond = Rth−BEOL · q̇1 (2)

Rth−BEOL =
tB

kBEOL
(3)

Temperature change due to absorption of sensible heat is
computed using Equations 4 and 5. Aheater is the area of
the heater (i.e., total area consuming power), cp is the heat
capacity of the coolant, ρ is the density of the coolant, and V̇
is the volumetric flow rate in the microchannel (in l/min).

∆Theat = (q̇1 + q̇2) · Rth−heat (4)

Rth−heat =
Aheater

cp · ρ · V̇
(5)

Such a temperature change is also defined by the temper-
ature difference between the inlet and outlet temperatures of
this cell. Hence, the change in temperature with respect to the
fluid inlet temperature is computed using Equation 6, where
Qn is the total heat flux at cell i.

∆Theat =

n∑
i=0

Q̇i

cp · ρ · V̇
(6)

Finally, Equation 8 shows how to calculate ∆Tconv . Note
that ∆Tconv is independent of flow rate in case of developed
boundary layers. h is dependent on hydraulic diameter, Nusselt
number, and conductivity of the fluid [4]. As ∆Tconv is
not affected by the change in flow rate, we compute this
parameter prior to simulation and use a constant value during
experiments. Fig. 2 demonstrates wc, tc, and p parameters on
the cross-section of the 3D system.

∆Tconv = (q̇1 + q̇2) · heff (7)

heff = h
2 · (wc + tc)

p
(8)

Table I lists all the parameters used in the computations, and
provides the values we assume for the constants. The constants
are taken from prior liquid cooling work [4]. Note that the
flow rate (V̇) range provided in the table is per cavity (i.e.,
the interlayer cavity consisting of all the microchannels), and
this flow is further divided into the microchannels.

TABLE I. PARAMETERS FOR COMPUTING EQUATION 1
Parameter Definition Value

Rth−BEOL Thermal resistance Eqn.(3)
of wiring levels

tB See Fig. 2 300µm
kBEOL Conductivity of wiring levels 130W/(m · K)

Rth−heat Effective thermal resistance Eqn.(5)
Aheater Heater area Area of grid cell

cp Coolant heat capacity 4183J/(kg · K)
ρ Coolant density 998kg/m3

V̇ Volumetric flow rate per cavity 0.01-0.0323 l/min
h Heat transfer coefficient 371323W/(m2 · K)
wc See Fig. 2 50µm
tc See Fig. 2 100µm
ts See Fig. 2 150µm
p See Fig. 2 150µm

Considering the dimensions and pitch requirements of mi-
crochannels and TSVs, we assume there are 66 microchannels
in between each two layers (in each cavity), and there are
cooling layers on top of each tier. Thus, there are 66 and 198
microchannels in the 2- and 4-layered systems, respectively. In
this work, we assign a uniform TSV density for the interlayer
material. Based on the TSV density, we compute the joint
resistivity of the interlayer material combining the resistivity
values of the glue material and Cu. We assume 128 TSVs
representing a 128-bit bus connecting the layers. We do not
alter the capacitance of the interlayer material, as the TSV
insertion to the heat capacity of the interface material is very
small [6].

B. Modeling the Pump and Liquid Flow Rate
All the microchannels are connected to a pump to receive

the coolant. In a high-performance computing cluster, several
stacks are typically included in multiple racks. In a such a
set-up, using a different pump for each stack is impractical
and costly. Therefore, we assume that a central pump, such
as a centrifugal pump EMB MHIE [18], is responsible for
the fluid injection to the whole system. This pump has the
capability of producing large discharge rates at small pressure
heads. Liquid is injected to the stacks from this pump via
a pumping network. To enable using different flow rates for
each stack, the cooling infrastructure includes valves in the
network. We assume normally closed (NCV) valves provided
by Festo group [19]. NCVs use external power to reduce the
pressure drop and to increase the flow rate. Fig. 3 shows the
pump and valve power consumption for three flow rate settings
in a system with 60 stacks. All the pump and flow rate values
provided are per each stack; e.g., the total pump power is 60X
of the displayed power value.

Fig. 3. Power consumption and flow rates of the cooling infrastructure.

IV. FUZZY CONTROLLER FOR JOINT DVFS
AND FLOW RATE MANAGEMENT

Fuzzy controllers take a control action through the use of
linguistic variables. An input value to a fuzzy controller has a
level of uncertainty within a specific range. This structure and
flexibility make fuzzy controllers very adaptive to dynamic
conditions, as they can effectively adjust a portion of or all
the control knobs. This section provides the details of our
fuzzy controller, which combines DVFS and dynamic flow
rate management to achieve thermal balancing and energy
efficiency.

A. Controller Architecture

Our fuzzy controller is a Takagi-Sugeno fuzzy model [25],
which defines the output(s) as a function of the inputs for a
proper stability analysis. In this fuzzy model, the rules are
given in the form:

IF x1 is Ai1 AND x2 is Ai2 ... AND xk is Aik

THEN Y = f(x1, x2,, xk), i = 1, 2, ..., n;

where xk parameters are the inputs, Aik values refer to
the pre-defined ranges, and Y is the output function. In our
controller, the fuzzified inputs are: current temperature of
the core, the recent utilization for the core, and the relative
distance of the processing element from the nearest liquid inlet
port. A schematic diagram of the building blocks of the fuzzy
controller is shown in Fig. 4.

Rule base (IF then rules)

Fuzzification Inference Engine Defuzzification

T-norm, S-norm,
Implication type

Membership Functions

Fig. 4. Schematic diagram of the fuzzy-based thermal controller.

B. Fuzzifier

The fuzzifier is the interface between the fuzzy controller
and the outside world, as it transforms any numerical input

to its corresponding fuzzy value. For any variable (x =
xo, xo ∈ R) where R is the range of x, a fuzzy function
µo(x) is generated to be used with the rules-base in order
to infer the proper output. In our controller we deploy a
singleton fuzzifier [16], which is one of the most frequently
used fuzzifiers in fuzzy control systems and very appropriate
in our context due to its low implementation complexity. A
fuzzy function has the form:

µo(x) = 1 when x = xo, 0 otherwise.

C. Fuzzy Membership Functions

Membership functions are used to transfer a variable numer-
ical range R to a linguistic one, such that {∀x ∈ R,µ(x) ∈
[0, 1]}. This transformation is essential in fuzzy systems since
the membership functions are used in the rule base. Moreover,
one of the most important aspects in such a selection is the
full coverage of the input variable range R with N fuzzy
functions [16], such that {∀ x ∈ R,

⋃N
i=1 µi(x) > 0}.

In our fuzzy-based thermal controller, each variable has full
range coverage through three membership functions. We use
triangular and trapezoidal-based memberships in the controller
to minimize its execution complexity, as it is illustrated in
Fig. 5. In particular, this figure shows the range coverage of
thread utilization rate by the three functions used: low (L),
medium (M), and high (H).

20%
75%0

1

µM
edium

µHighµlow

µ(x)

Utilization rate (%)

Fig. 5. An example of membership functions for thread utilization.

D. Rule-Base Derivation

Knowledge acquisition is an important block in the design
of any fuzzy controller, since it is used to derive the most
appropriate rule base for the fuzzy inference engine. This
acquisition can be achieved by utilizing expert knowledge
or by other techniques such as genetic algorithms [24]. In
our derivation, we rely on offline thermal response analysis
to observe how each processing element is affected by each
control variable.

Our controller uses three input variables to deduce the
appropriate control action: the relative distance from the inlet
port (D), the temperature (current or forecast) of the processing
element (T), and the core utilization percentage (U). Then,
the generated outputs are: the flow rate (FL) and the DVFS
settings (VF). Each of these variables has three membership
functions covering their full range, similar to Fig. 5 (the
function symbols are: low (L), medium (M), and high (H)).

TABLE II. FUZZY DERIVED RULE BASE. X IS A “DON’T CARE”.
IF THEN

D is AND T is AND U is VF is AND FL is
L X X H L
M L X H L
M M L L L
M M M M M
M M H M M
M H L L L
M H M M M
M H H M H
H L X H L
H M L L L
H M M M L
H M H H M
H H L L M
H H M L H
H H H M H

We analyzed 2- and 4-layered 3D systems using the 3D-ICE
thermal simulator running various workloads, and we observed
that the architectural blocks with closer to the inlet port (D is
L) experience the lowest temperature, and they do not require
DVFS changes (i.e., VF is always H) or the liquid flow rate
(FL is always L). However, when the processing elements are
located in a further location (D is M) to the input port, we
need to monitor their current state and adapt accordingly. For
instance, if the temperature of a core is low (T is L), no change
is required in either VF or FL settings (VF is High, FL is Low).
On the contrary, if the temperature reaches the medium range
(T is M), the utilization rate plays a role in the controller
decision. If the utilization is low (U is L), the VF and FL
should be reduced to the minimum setting to minimize energy
and thermal variations (VF is L AND FL is Low).

Increasing the flow rate could reduce the temperature of
any core at any state, but using such method implies a large
energy consumption which is not the optimal control action
for an energy efficient controller. Increasing the flow rate
should be applied if it is the only solution to reduce the hot
spots, without jeopardizing the performance. In addition to
that, the appropriate VF setting should be selected at every
state to enable fine-grained thermal control along with minimal
performance degradation.

In summary, by observing the similarities in a large set
of different workload and temperature scenarios, we have
derived the complete Takagi-Sugeno fuzzy rules base shown
in Table II. In our case, the rules functions are constant values
where such values are expressed as follows: H corresponds to
the maximum value applicable to a certain variable, M is the
mean value, and L is the minimum value of the range of this
variable.

V. EXPERIMENTAL RESULTS

The 3D multicore systems we use in our experiments are
based UltraSPARC T1 (i.e., Niagara-1) processor manufac-
tured at 90nm node. The power consumption, area, and the
floorplan of UltraSPARC T1 are available in [14]. UltraSPARC
T1 has 8 multi-threaded cores, and a shared L2-cache for every
two cores.

Our simulations are carried out with 2-, and 4-layered
stacks, where the 4-layered system is the duplicated version of

the 2-layered stack and therefore has 16 cores. We place cores
and L2 caches of the UltraSPARC T1 on separate layers (see
Fig. 1). Separating logic and memory layers is a preferred
design scenario for shortening interconnections between the
cores and their caches and achieving higher performance.

We use workload traces collected from real applications
running on an UltraSPARC T1. We record the utilization
percentage for each hardware thread at every second using
mpstat for several minutes for each benchmark. We use
various real-life benchmarks including web server, database
management, and multimedia processing. The web server
workload is generated by SLAMD [21] with 20 and 40 threads
per client to achieve medium and high utilization, respectively.
For database applications, we experiment with MySQL using
sysbench for a table with 1 million rows and 100 threads.
Finally, we run several instances of the mplayer (integer)
benchmark with 640x272 video files as typical examples of
multimedia processing. A detailed summary of the benchmarks
workloads is shown in Table III. The utilization ratios are av-
eraged over all cores throughout the execution. The workload
statistics collected on the UltraSPARC T1 are replicated for
the 4-layered 16-core system.

TABLE III. WORKLOAD CHARACTERISTICS

Benchmark Avg L2 L2 FP
Util (%) I-Miss D-Miss instr

1 Web-med 53.12 12.9 167.7 31.2
2 Web-high 92.87 67.6 288.7 31.2
3 Database 17.75 6.5 102.3 5.9
4 Web & DB 75.12 21.5 115.3 24.1
5 MPlayer 6.5 9.6 136 1
6 MPlayer&Web 26.62 9.1 66.8 29.9

The peak power consumption of SPARC is close to its
average value [14]. Thus, we assume that the instantaneous
dynamic power consumption is equal to the average power at
each state (active, idle). The active state power is taken as 3.3
Watts [14]. The cache power consumption is 1.92W per each
L2, as computed by CACTI [26] and verified by the values
in [14]. We model the crossbar power consumption by scaling
the average power value according to the number of active
cores and the memory accesses.

We compute the leakage power of processing cores as a
function of their area and the temperature. We assume a base
leakage power density of 0.25W/mm2 at 383K for 90nm as
in [2]. To account for the temperature effects on leakage power,
we use the model provided in [23], [11]. The leakage power
at a temperature T oK is given by: P (T) = Po · eβ·(T−383),
where Po is the leakage power at 383K, and β is a technology-
dependent coefficient. We set β = 0.017 [11].

To account for DVFS, three voltage and frequency settings
are used in the simulations {V (in Volts), f (in MHz)}=
{(1.2, 1200), (1.1, 1000), (1.0, 800)}. When a change in the
assigned frequency occurs, the thread utilization U on a core is
modified to U ′ using a worst-case performance hit assumption:
U ′ = U

˙fold

fnew
.

We assume that each core has a temperature sensor, which
is able to provide temperature readings at regular intervals
(e.g., 100ms). Modern OSes have a multi-queue structure,
where each CPU core is associated with a dispatch queue,

TABLE IV. THERMAL MODELING PARAMETERS.
Parameter Value
Silicon conductivity 130W/(m · K)
Silicon capacitance 1635660J/(m3 · K)
Wiring layer conductivity 130W/(m · K)
Wiring layer capacitance 2174502J/(m3 · K)
Water conductivity 0.6W/(m · K)
Water capacitance 4183J/(kg · K)
Heat sink conductivity 10W/K
Heat sink capacitance 140J/K
Heat sink thickness 0.7mm
Heat sink side length 60mm
Die Thickness (one tier) 0.15mm
Area per Core 10mm2

Area per L2 Cache 19mm2

Total Area of Each Layer 115mm2

Interlayer material thickness 100µm
Interlayer material conductivity 130.8W/(m · K)

and the job scheduler allocates the jobs to the cores according
to the current policy. In our simulator, we implement a similar
infrastructure, where the queues maintain the threads allocated
to cores and execute them.

In the thermal modeling tool, we use a sampling interval of
100 ms, and all simulations are initialized with steady state
temperature values. The model parameters are provided in
Table IV. This table contains the thermal conductance and
capacitance values of the various materials used in modeling
the stack. In our experiments, we compare air-cooled and
liquid-cooled 2- and 4-layered 3D systems.

We implement various thermal management techniques to
evaluate the thermal and energy efficiency of the proposed
fuzzy-thermal management technique. Dynamic load balanc-
ing (LB) balances the workload by moving threads from a
core’s queue to another if the difference in queue lengths
is over a threshold. Temperature-triggered task migration
(TTMig) moves tasks from a core if that core exceeds the
threshold temperature (85oC in our case). TTMig has an im-
pact on performance resulting from the time overhead required
to move tasks between the cores (e.g., context switch overhead
and cold start effects). In this work we assume a 1ms overhead
when a thread is migrated to a new core. In temperature-
triggered DVFS (TDVFS) the voltage and frequency settings
of a core are reduced when the core’s temperature exceed
the 85oC threshold value. In our implementation, as long as
the temperature is above the threshold and there is a lower
setting, we reduce the voltage frequency level at every DVFS
interval. When the temperature falls below another threshold
value (82oC), we increase the voltage frequency setting by
one step. TTMig and TDVFS can also be combined into a
joint policy.

We experiment with both air-cooled (AC) and liquid-cooled
(LC) systems for comparison purposes. In LC LB, we apply
the maximum flow rate (0.0323 l/min per cavity), while the
jobs are scheduled with LB. Thermal impact of all the policies
on the 2-layered system is shown in Fig. 6. This figure com-
pares the % of time spent above the threshold temperature for
the average case across all the workloads (marked as hot spots
avg) and also for the benchmark with hottest temperatures,
Web-high. TTMig and TDVFS help reduce the hot spots
in air-cooled systems, while the integration of liquid-cooling

Fig. 6. Percentage of time we observe hot spots for all the policies, both
for the average case across all workloads and for Web-high, the hottest
benchmark. For both avg and Web-high, the figure shows the % values
averaged per core and the % of time hot spots are observed across the SoC.

Fig. 7. Left-axis shows the energy consumption in the whole system (chip
and cooling network) for Web-high, averaged per stack. The right-axis shows
the % delay for each policy. Note that air cooling also includes fan power
consumption, which is not included in the figure.

removes all the hot spots. The peak temperature with LB is
87oC, and the peak temperatures of TTMig and TDVFS are
85− 86oC in the air-cooled system. LC LB reduces the peak
temperature to 56oC. Fuzzy controller pushes the system into
a higher peak of 68oC, but still avoids any hot spots. This
way, it enables using a lower flow rate without creating any
thermal problems.

Fig. 7 shows the total energy consumed and the performance
overhead when running the various policies on the 2-tier
stack for the Web-high workload. Energy consumption values
are normalized with respect to the load balancing policy on
a system with air cooling. The delay percentage refers to
the delay in completion time of the job in comparison to
running the default LB policy. The fuzzy controller achieves
major reduction in both the coolant and the overall system
energy consumption: LC Fuzzy reduces system energy by
21% and cooling energy by 50% at high-utilization workloads
in comparison to LC LB. The reason LC Fuzzy outperforms
all other techniques in energy savings is due to the joint control
of flow rate and VF settings at run time based on each core’s
thermal and utilization status. At lower utilization levels and
lower temperatures, the integrated system leaks less energy
than that of a higher thermal profile. On average, the proposed
controller achieves 35% and 8% of coolant and overall system
energy savings, respectively.

For our multicore 3D systems, we compute throughput as
the performance metric. Throughput is the number of threads
completed per given time. As we run the same workloads in
all experiments, when a policy delays execution of threads,
the resulting throughput drops. The performance degradation
of Web-high under a set of policies is shown in Fig. 7. Liquid
cooling-based systems do not suffer from any performance
degradation since the temperature of such systems does not
rise to a value where another thermal management technique

should be applied. Although our proposed fuzzy controller
uses DVFS, as we apply DVFS based on the core utilization,
the performance degradation results do not exceed 0.01%. This
overhead negligible in comparison to the degradation observed
in other scenarios (air-cooling).

In the 4-layered experiments, we observe that similar to
the 2-tier stack, inter-layer liquid cooling fully eliminates
the hot spots in the 4-tier stack. Simulation results show
that the minimum temperature in the air-cooling stack exceed
85oC at all times, leaving little opportunity for any thermal
management technique to successfully control the hot spots
without severely degrading the performance. On the contrary,
liquid-cooling stack is able to maintain the temperature below
the thermal boundaries (no hot spots exist above 85oC). Our
proposed fuzzy controller maintains the benefit of liquid-
cooling in addition to the reduction of energy consumption. In
the 4-tier scenario, the proposed fuzzy controller achieves 48%
and 15% average coolant and overall system energy savings,
respectively, with 60% and 31% peak savings in comparison
to setting the highest flow rate. The substantial increase in
energy savings with respect to the 2-tiered system is due to
the increased amount of cavities in the stack. With 3 existing
cavities (as in Fig. 1), a flow rate of 3 × 0.0323 l/min is
required, which in turn increases the pumping and valving
power required.

VI. CONCLUSION

Microchannel-based liquid cooling is a promising solu-
tion to overcome the pressing thermal challenges of high-
performance 3D multicore architectures. As workload sig-
nificantly changes over time and results in highly variant
thermal profiles. Thus, we need intelligent control of the
coolant flow rate to avoid the wasted energy consumption for
over-cooling the system when the system is under-utilized.
In fact, achieving high reliability, performance, and energy
efficiency simultaneously in a liquid-cooled 3D stack requires
joint control of a number of knobs in addition to adjusting the
flow rate setting.

In this paper we have presented a novel fuzzy controller
that adjusts the liquid flow rate and the DVFS settings to
balance temperature across the 3D stack and to minimize
system energy consumption while preventing thermal hot
spots. Our experimental results with 2- and 4-tier 3D multicore
case studies illustrate that our fuzzy controller maintains the
temperature below the desired levels, while reducing cooling
energy by up to 50% and achieving overall energy savings up
to 21% with respect to setting the highest coolant flow rate to
match the worst-case temperature.

ACKNOWLEDGEMENT

This research has been partially funded by the Nano-Tera
RTD project CMOSAIC (ref.123618), financed by the Swiss
Confederation and scientifically evaluated by SNSF, and the
PRO3D EU FP7-ICT-248776 project.

REFERENCES

[1] D. Atienza, P. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli,
and J. M. Mendias. A fast HW/SW FPGA-based thermal emulation
framework for multi-processor system-on-chip. In DAC, 2006.

[2] P. Bose. Power-efficient microarchitectural choices at the early design
stage. In Keynote Address on PACS, 2003.

[3] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA, pages 171–182, 2001.

[4] T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle,
H. Oppermann, and H. Reichl. Interlayer cooling potential in vertically
integrated packages. Microsyst. Technol., 15(1):57 – 74, 2009.

[5] A. K. Coskun, D. Atienza, T. Simunic Rosing, T. Brunschwiler, and
B. Michel. Energy-efficient variable-flow liquid cooling in 3D stacked
architectures. In Design Automation and Test in Europe (DATE), 2010.

[6] A. K. Coskun, J. Ayala, D. Atienza, and T. Simunic Rosing. Modeling
and dynamic management of 3D multicore systems with liquid cooling.
In IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC’09), 2009.

[7] A. K. Coskun, T. Simunic Rosing, J. Ayala, D. Atienza, and Y. Leblebici.
Dynamic thermal management in 3D multicore architectures. In Design
Automation and Test in Europe (DATE), 2009.

[8] A. K. Coskun, Tajana Simunic Rosing, and Kenny Gross. Utilizing
predictors for efficient thermal management in multiprocessor socs.
IEEE Transactions on CAD, 28(10):1503–1516, 2009.

[9] J. Donald and M. Martonosi. Techniques for multicore thermal man-
agement: Classification and new exploration. In ISCA, 2006.

[10] M. Healy, M. Vittes, M. Ekpanyapong, Ch. Ballapuram, S. K. Lim, H. S.
Lee, and G. H. Loh. Multiobjective microarchitectural floorplanning for
2-d and 3-d ICs. IEEE Transactions on CAD, 26(1), Jan 2007.

[11] S. Heo, K. Barr, and K. Asanovic. Reducing power density through
activity migration. In ISLPED, pages 217–222, 2003.

[12] W.-L. Hung, G.M. Link, Y. Xie, N. Vijaykrishnan, and M.J. Irwin.
Interconnect and thermal-aware floorplanning for 3d microprocessors.
In ISQED, pages 98–104, 2006.

[13] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. HybDTM: a coordinated
hardware-software approach for dynamic thermal management. In DAC,
pages 548–553, 2006.

[14] A. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schumacher. A
power-efficient high-throughput 32-thread SPARC processor. ISSCC,
42(1):7 – 16, 2007.

[15] Z. Li, X. Hong, Q. Zhou, Sh. Zeng, J. Bian, H. Yang, V. Pitchumani,
and Ch. Cheng. Integrating dynamic thermal via planning with 3D
floorplanning algorithm. In ISPD, pages 178–185, 2006.

[16] H. T. Nguyen and N. R. Prasad. Fuzzy modeling and control, selected
works of M. Sugeno. CRC press, 1999.

[17] K. Puttaswamy and G. H. Loh. Thermal analysis of a 3D die-stacked
high-performance microprocessor. In ACM Great Lakes Symposium on
VLSI (GLSVLSI 2006), pages 19–24, 2006.

[18] WILO MHIE centrifugal pump.
http://www.wilo.com/cps/rde/xchg/en/layout.xsl/3707.htm.

[19] Festo electric automation technology. http://www.festo.com.
[20] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,

and D. Tarjan. Temperature-aware microarchitecture. In ISCA, 2003.
[21] SLAMD Distributed Load Engine. www.slamd.com.
[22] A. Sridhar, A. Vincenzi, M. Ruggiero, D. Atienza, and T. Brunschwiler.

3d-ice: Fast compact transient thermal modeling for 3D-ICs with inter-
tier liquid cooling. In International Conference on Computer-Aided
Design (ICCAD’10), 2010.

[23] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for lifetime
reliability-aware microprocessors. In ISCA, page 276, 2004.

[24] M. Su and H. Chang. Application of neural networks incorporated with
real-valued genetic algorithms in knowledge acquisition. Fuzzy Sets and
Systems, 112(1):85 – 97, 2000.

[25] T. Takagi and M. Sugeno. Fuzzy identification of systems and its
applications to modeling and control. IEEE Transactions on Systems,
Man, and Cybernetics, 15(1):116 – 132, 1985.

[26] D. Tarjan, Sh. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical
Report HPL-2006-86, HP Laboratories Palo Alto, 2006.

[27] X. Zhou, J. Yang, Y. Xu, Y. Du, and Y. Zhang. Thermal management
for 3D processors via task scheduling. In 37th International Conference
on Parallel Processing (ICPP), 2008.

[28] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph. Three-dimensional
chip-multiprocessor run-time thermal management. IEEE Transactions
on CAD, 27(8):1479–1492, August 2008.

