
Dynamic Cache Pooling for Improving Energy
Efficiency in 3D Stacked Multicore Processors

Jie Meng, Tiansheng Zhang, and Ayse K. Coskun
Electrical and Computer Engineering Department, Boston University, Boston, MA, USA

{jiemeng, tszhang, acoskun}@bu.edu

Abstract—Resource pooling, where multiple architectural
components are shared among multiple cores, is a promising
technique for improving the system energy efficiency and re-
ducing the total chip area. 3D stacked multicore processors
enable efficient pooling of cache resources owing to the short
interconnect latency between vertically stacked layers. This paper
introduces a 3D multicore architecture that provides poolable
cache resources. We propose a runtime policy that improves
energy efficiency in 3D stacked processors by providing flexible
heterogeneity of the cache resources. Our policy dynamically
allocates jobs to cores on the 3D stacked system in a way
that pairs applications with contrasting cache use, while also
partitioning the cache resources based on the cache hungriness
of the applications. Experimental results demonstrate that the
proposed policy improves system energy-delay product (EDP) and
energy-delay-area product (EDAP) by up to 39.2% and 57.2%,
respectively, compared to 3D processors with static cache sizes.

I. INTRODUCTION

3D integration is a promising design technique for enabling
heterogeneous integration of different technologies, increasing
the transistor density per chip footprint, and improving system
performance [1], [2]. Most of the prior work on multicore
3D systems exploits the performance or energy efficiency
benefits of 3D systems by considering fixed, homogeneous
computational and memory resources (e.g., [3]). Heteroge-
neous multicore design, however, can bring substantial benefits
in reducing the energy consumption and cost. This is because
applications have varying resource requirements (e.g., different
cache uses), which can be addressed by including cores with
different architectural resources in a single chip [4], [5].

Resource pooling, where architectural components of a
core are shared by other cores, allows implementing flexible
heterogeneity in a multicore system. In 2D multicore sys-
tems, resource pooling among the cores and accompanying
scheduling techniques have been proposed (e.g., [6], [7]).
However, the efficiency of resource pooling in 2D is limited
by the large latency of accessing remote shared resources in
the horizontal direction; thus, resource pooling in 2D is not
scalable to a large number of cores. 3D stacked systems enable
efficient resource pooling among different layers, owing to the
short communication latency achieved by vertically stacking
and connecting poolable resources using through-silicon-vias
(TSVs). A recent technique proposes pooling performance-
critical microarchitectural resources such as register files in
a 3D system [8]. Their work, however, does not address
the cache requirements of applications. The significance of
the memory latency in determining application performance
motivates investigating resource pooling of the caches. Cache
pooling can provide additional low-cost heterogeneity of the
resources available to the cores and bring substantial energy
efficiency improvements.

This paper presents a runtime policy for improving energy
efficiency of 3D stacked systems using cache resource pooling.
Prior work on 3D system management mostly focuses on
optimizing the energy efficiency or balancing the temperature
(e.g., [9], [3]). In 3D systems with resource pooling, it is
necessary to design policies that are aware of the application
cache requirements. The runtime management policy should
manage the poolable resources according to the characteristics
of workloads that are running on the system, while considering
the interplay between performance and energy. To address this
need, we design an integrated cache management and job allo-
cation policy that dynamically maximizes the energy efficiency
of 3D systems. Our experimental results demonstrate that,
using minimal architectural modifications complemented with
an intelligent management policy, 3D stacked systems achieve
higher energy efficiency through cache resource pooling. Our
specific contributions are as follows:
• We introduce a 3D stacked architecture with cache resource

pooling. The proposed architecture requires minimal additional
circuitry and architectural modifications in comparison to using
static cache resources. Leveraging this resource pooling design,
we are able to achieve higher performance, lower power, and
smaller chip area compared to 3D stacked systems with static
cache resources.
• We propose a novel application-aware job allocation and

cache pooling policy. Our policy predicts the resource require-
ments by collecting the performance characteristics of each
application at runtime. It then allocates jobs with contrasting
cache usage in adjacent layers and determines the most energy-
efficient cache size for each application.
• We evaluate dynamic cache resource pooling for both high-

performance and low-power 3D multicore systems. For a 4-
core low-power system, 3D cache resource pooling reduces
system EDP by up to 39.2% and system EDAP by 57.2%
compared to using fixed cache sizes. For a larger 16-core
3D system, our technique provides 19.7% EDP reduction and
43.5% EDAP reduction in comparison to a 3D baseline system
with 2MB L2 caches.

The rest of the paper starts with an overview of the related
work. Section III introduces the proposed 3D architecture with
cache resource pooling. Section IV presents our application-
aware workload allocation and cache pooling policy. Sec-
tions V and VI provide the evaluation methodology and the
experimental results. Section VII concludes the paper.

II. RELATED WORK

This section discusses the prior work on (1) runtime
management, (2) cache design and reconfiguration, and (3)
resource sharing and pooling for both 2D and 3D systems as
well as how our research differentiates from them.

Recent research on job allocation in 2D systems generally
focuses on improving performance and reducing the commu-
nication, power, or cooling cost. For example, Das et al. [10]
propose an application-to-core mapping algorithm to maximize
system performance by separating network-latency-sensitive
applications from network-bandwidth-intensive applications.
Dynamic job allocation on 3D systems mostly targets power
density and thermal challenges induced by vertically stacking.
For example, dynamic thermally-aware job scheduling tech-
niques use the thermal history of the cores to balance the
temperature and reduce hot spots [3], [9]. As resource pooling
in 3D systems is a novel design technique, prior work has not
considered the sharing of cache resources among the cores
during runtime management.

Cache sharing and partitioning have been well studied
in 2D systems. Varadarajan et al. propose a concept of
molecular caches which creates dynamic heterogeneous cache
regions [11]. Qureshi et al. introduce a low-overhead runtime
mechanism to partition caches between multiple applications
based on the cache miss rates [12]. Chiou et al. propose a
dynamic cache partitioning policy that restricts the replace-
ments into a particular subset of columns [13]. However, the
benefits of cache sharing in 2D systems are highly limited by
the on-chip interconnect latency. Kumar et al. [14] demonstrate
that sharing the L2 cache among multiple cores is significantly
less attractive when the interconnect overheads are taken into
account. Cache design and management in 3D stacked systems
have also emerged as research topics recently. Sun et al.
study the architecture-level design of 3D stacked L2 caches
[15]. Prior work on 3D caches and memories, however, either
considers integrating heterogeneous SRAM or DRAM layers
into 3D architectures (e.g., [16], [17]), or involves major
modifications to conventional cache design (e.g., [15]).

Prior work on resource pooling has mainly focused on 2D
systems. Ipek et al. propose a reconfigurable architecture to
combine the resources of simple cores into more powerful
processors [4]. Ponomarev et al. introduce a technique to
dynamically adjust the sizes of the performance-critical mi-
croarchitectural components, such as the reorder buffer or the
instruction queue [5]. Homayoun et al. are the first to explore
microarchitectural resource pooling in 3D stacked processors
for sharing resources at a fine granularity [8]. None of the prior
work investigates cache resource pooling in 3D systems.

To the best of our knowledge, our work is the first to
propose a 3D stacked architecture complemented with a novel
dynamic job allocation policy to enable energy-efficient cache
resource pooling in 3D multicore systems. In comparison to
3D systems with static cache resources, our design requires
minimal hardware modifications. Our dynamic job allocation
and cache pooling policy differentiates from prior work as it
partitions the available cache resources from adjacent layers
in the 3D stacked system in an application-aware manner and
utilizes the existing cache resources to the maximum extent.

III. PROPOSED 3D STACKED ARCHITECTURE WITH
CACHE RESOURCE POOLING

In this section, we describe our 3D architecture that enables
vertical cache resource pooling. As shown in Figure 1, we
explain the architecture on a four-layer 3D system, which has

one core on each layer with a private L2 cache. Figure 1 (a)
and (b) are the baseline 3D systems with 1MB and 2MB static
private L2 caches, respectively. In our 3D architecture design
shown in Figure 1 (c), each core has a 1MB private L2 cache
and the vertically adjacent caches are connected using TSVs
for enabling cache resource pooling.

A. Design Overview

We next describe the modifications compared to the con-
ventional cache architecture to enable cache resource pooling
in 3D systems. The modified cache architecture allows cores in
the 3D stacked system to increase their private L2 cache sizes
by utilizing the cache resources from the other layers with
negligible access latency penalty. The objectives of our design
are: (1) to increase performance by increasing cache size when
needed, and (2) to save power by turning off un-used cache
partitions. We focus on pooling L2 caches as L2 cache usage
varies significantly across applications. It is possible to extend
the strategy to other levels of data caches.

Cache size is determined by the block size, the number of
sets, and the level of associativity. We adjust the cache sizes
in this design by changing the cache associativity. We leverage
the selective way cache architecture introduced in prior work
[18], which turns off unnecessary cache ways for saving power
in 2D systems. We call each cache way a cache partition. Each
partition is independently poolable to one of its adjacent layers.
In order to maintain scalability of the design and provide
equivalent access time to different partitions, we do not allow
cores in non-adjacent layers to share caches. We also do not
allow a core to pool partitions from both upper and lower
layers at the same time to limit design complexity. In fact, we
observe that for most of the applications in our experiments
pooling cache resources from two adjacent layers at the same
time does not bring considerable performance improvement.

B. 3D Cache Data Way Management Implementation

In order to implement cache resource pooling in 3D
systems, we propose minimal modifications to the cache ar-
chitecture. As shown in Figure 2 (a), we make modifications
to (1) cache status registers and (2) cache control logic.

For 3D cache resource pooling, the cores need to be able
to interact with cache partitions from different layers. We
introduce a Local Cache Status Register (LCSR) for each local
L2 cache partition (e.g., there are four partitions in a 1MB
cache in our design) to record the status of the cache partitions.
We also introduce Remote Cache Status Registers (RCSR) for
the L1 cache so that the L1 cache is aware of its remote cache
partitions. RCSR and LCSR logics are illustrated in Figure 2
(a), (b), and (c). The values of these registers are set by the
runtime management policy, which we discuss in Section IV.

Core

L2 Cache

(a) Static 2MB L2 Cache (b) Static 1MB L2 Cache (c) 1MB Cache Pooling

256KB

Layer1

Layer2

Layer3

Layer4

2MB

TSVs

Cache
1MB

Cache

Fig. 1: Proposed 3D system with cache resource pooling versus
3D systems with static 1MB and 2MB caches. In (c), cores are
able to access caches on the adjacent layers through the TSVs.

data_sel

LCSR_0
LCSR_1
LCSR_2
LCSR_3

out_location

cache
cntrl

L2_req

cache
cntrl

LCSR_0

LCSR_1

LCSR_2

LCSR_3

Partition_0

local_layerL2_req

RCSR_0

RCSR_1

upper_layer

lower_layer

lower_layer

local_layer

upper_layer

local_hit

sel_way

remote_hit

RCSR

out_location
data_sel

Cache

Used by local layer

Used by upper layer
Used by lower layer

00
01
10
11

Turned off
LCSR Cache Patition Status

Partition_1

Partition_2

Partition_3

(a)

(b) (c) (d)

Fig. 2: Cache resource pooling implementation: (a) Logic
for cache resource pooling (b) L2 request generation logic
(b) Output location generation logic (c) Local cache status
registers.

There are four possible situations for each local cache
partition: used by local, used by upper or lower layer, or turned
off. Each LCSR keeps two bits to indicate the current status
of the corresponding partition as listed in the table in Figure 2
(d). In addition, we maintain two 1-bit RCSR in L1 caches
for each core to be aware of its remote cache partitions. L1
I- and D-caches can use the same RCSR bits as both caches’
misses are directed to the L2. If both RCSRs of an L1 cache
are set to 0, it means there is no remote cache partition in
use. In contrast, an RCSR bit is set to 1 if the core is using
cache partitions from corresponding adjacent layers. RCSR 0
denotes the lower layer and RCSR 1 denotes the upper layer.

Using the information from LCSRs and RCSRs, the cores
are able to communicate with cache partitions from multiple
layers. When there is an L2 request, the core sends this request
and the requested address based on the values of RCSRs. Once
the requests and addresses arrive at the cache block, the tag
from the requested address will be compared with the tag array.
At the same time, the entries of each way will be chosen
according to the index. The output destinations of data and hit
signals are determined by the LCSR value of the corresponding
cache partition after a cache hit. We add a multiplexer to select
the output destination, as shown in Figure 2 (c). When there
is a L2 cache hit, the hit signal is sent back to the cache at
the output destination according to the value in LCSR. When
both the local hit signal and the remote hit signal are 0, this
indicates an L2 miss.

As the cache partitions can be dynamically re-assigned by
the runtime policy, we need to maintain the data integrity of
all the caches. In case of a cache partition re-allocation (e.g.,
a partition servicing a remote layer is selected to service the
local core), we flush all blocks from a cache way before it
is re-allocated. We use the same cache coherence protocol in
our design as in the conventional 2D caches. When a cache
line is invalidated, both LCSRs and RCSRs are reset to 0 to
disable the access from the remote layers while data entries in
the local caches are deleted.

C. Area and Performance Overhead

Each 1-bit register requires up to 12 transistors and each
1-bit multiplexer requires up to 24 transistors. Thus, the total
number of transistors needed by the extra registers and logic in

our design is limited to 2568 (10×1-bit registers + 2×64-bit
demux + 1×30-bit mux + 1×2-bit mux + 1×1-bit demux).
We assume there are 128 TSVs for two-way data transfer
between caches, 64 TSVs for the memory address bits, and
additional 4 TSVs for transferring L2 requests and hit bits
between the caches on vertically adjacent layers. TSV power
has been reported to be low compared to the overall power
consumption of the chip; thus, we do not take TSV power
into account in our simulations [19]. We assume that TSVs
have 10µm diameters and a center-to-center pitch of 20µm.
The total area overhead of TSVs is less than 0.1mm2, which is
negligible compared to the total chip area of 10.9mm2. Prior
work shows that the layer-to-layer delay caused by TSVs is
1.26ps [8], which has no impact on the system performance
as it is much smaller than the CPU clock period at 1GHz.

IV. RUNTIME APPLICATION-AWARE JOB ALLOCATION
AND CACHE POOLING POLICY

In this section, we introduce our runtime job allocation
and cache resource pooling policy for improving the energy
efficiency of target 3D systems. We explain the details of our
policy for the 3D system shown in Figure 1 (c), where each
layer has a single core and a 1MB L2 cache; however, the
policy is applicable to larger 3D systems as well.

Overview and Motivation

The fundamental motivation of our policy is that differ-
ent workloads require different amounts of cache resources
to achieve their highest performance. Figure 3 shows the
instructions per cycle (IPC) of the SPEC benchmarks when
running on systems with various L2 cache sizes (from 512KB
to 2MB). Among all the workloads, soplex has the largest
throughput improvement at larger L2 cache sizes. We call
such benchmarks cache-hungry workloads. On the other hand,
benchmarks such as libquantum barely have any performance
improvement at larger L2 cache size. This observation moti-
vates allocating the cache-hungry jobs in adjacent layers in the
3D stack with less cache-hungry jobs so that they can share a
pool of cache resources efficiently (i.e., the cache-hungry job
would use a larger number of cache partitions). We present the

assign a single cache
partition to each job Ji

pi > t?

Stage 1:
Job Allocation

predict perf. improvement (pi)

sort jobs based on pi

allocate J1 & J4, J2 & J3 on
adjacent layers (see Figure 5)

assign 1 or 4 partitions
to each job Ji based on pi

increase # of partitions
for each job Ji

revert to previous
partitions

has job Ji reached
max. # of partitions?pi > pj? keep current

partitions*

e.g., p1 > p2 > p3 > p4

regression-based
predictor

perf. counters

Stage 2: Pair-wise
Cache Pooling

Yes
Yes

No

No

Fig. 4: A flow chart illustrating our runtime job allocation and
cache resource pooling policy. * condition checked only if Ji
and Jj are competing for the same partition.

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 IP
C

to
 2

56
K

B
Ca

ch
e

Si
ze

astar
bwaves

bzip2

cactusADM
calculix

gamess gcc
gobmk

gromacs
h264ref

hmmer lbm
leslie3d

libquantum mcf
milc

namd
omnetpp

soplex
zeusmp

512KB 768KB 1024KB 1280KB 1536KB 1792KB 2048KB

Fig. 3: IPC of SPEC benchmarks for increasing L2 cache size. The IPC values are normalized w.r.t using a 256KB L2 cache.

flow of our runtime job allocation and cache resource pooling
policy in Figure 4. The policy contains two stages: (1) job
allocation, which decides on which core each job should run
on, and (2) cache resource pooling, which distributes a pool
of cache partitions among a pair of applications.

Stage 1: Job Allocation across the Stack

In the first stage, we allocate the jobs to the 3D system with
energy efficiency and thermal considerations. The allocation is
based on an estimation of the jobs’ IPC improvement (pi) when
running with 4 partitions compared to running with 1 partition.
The estimation of pi is conducted using an offline linear
regression model which takes runtime performance counter
data as inputs. We first assign n jobs to n cores in the 3D
systems in a random manner, and start running the jobs for an
interval (e.g., 10ms) using the default reserved cache partition
(each core has a single reserved L2 cache partition of 256KB
that cannot be pooled). The performance counters that we
use in our estimation are L2 cache replacements, L2 cache
write accesses, L2 cache read misses, L2 cache instruction
misses, and number of cycles. The linear regression model
is constructed by their linear and cross items. We train the
regression model with performance statistics from simulations
across 15 of our benchmarks and validate the model using
another 5 benchmarks. The prediction error is less than 5% of
the actual performance improvement on average.

We then sort all the jobs with respect to their predicted
performance improvements and group them in pairs by se-
lecting the highest and lowest ones from the remaining sorted
list. For example, in Figure 5, there are four jobs sorted as
(J1 ≥ J2 ≥ J3 ≥ J4) according to their pi. We group these
jobs into two pairs (J1, J4, and J2, J3). It is possible to in-
tegrate our allocation strategy with thermally aware heuristics
(e.g., [3]) by placing job pairs with higher IPC closer to heat
sink. In this case, we allocate the job pair with higher average
IPC to the available cores closest to heat sink as shown in
Figure 5. The reason for this decision is that the cores on layers
closer to the heat sink can be cooled faster in comparison to
cores farther from the heat sink [3].

Rank w.r.t. cache needs:
J1 ≥ J2 ≥ J3 ≥ J4

J3

Li: Layer i

J2

J1

J4

J3

J2

J4

J1L1

L2

L3

L4

L1

L2

L3

L4

Ji: Job i

Rank w.r.t. IPC:
J3 ≥ J1 ≥ J2 ≥ J4

Pair J1 J4 J2 J3

Heat Sink

Fig. 5: An example to illustrate the job allocation stage.

Stage 2: Cache Resource Pooling Among Application Pairs

In the second stage of our policy, we propose a method
to manage the cache resources within each job pair. In order
to determine whether a job needs more cache partitions, we
first introduce a performance improvement threshold (t). This
threshold represents the minimum improvement that results in
a lower EDP when the job uses an additional partition.

The key to derive t is based on the following assumption:
The EDP of cache-hungry workloads decreases when the
number of cache partitions available to the job increases. Thus,
the following inequality should be satisfied:

Power

IPC2
>

Power +4Power

(IPC +4IPC)2
(1)

IPC and Power refer to performance and power values before
we increase the number of cache partitions, while 4IPC and
4Power are the variations in IPC and power when the job
uses an additional partition. From this inequality, we obtain:

4IPC

IPC
> t =

√
1 +
4Power

Power
− 1 (2)

When performance improvement is larger than t, increasing
the number of partitions reduces the EDP of the job. We
compute t as 3% on average based on our experiments with
20 SPEC benchmarks.

We compute how many cache partitions to assign to each
job by utilizing the threshold and pi. If pi of one job is greater
than 9%, we assign 4 cache partitions to it; otherwise, we keep
1 partition for the job. The 9% is obtained from the threshold
of increasing the partition from 1 to 4. Then, we iteratively
increase the cache partitions for each job if three conditions are
satisfied: (1) pi > t, (2) the job has not reached the maximum
number of partitions, and (3) pi > pj . The maximum number
of partitions is 7 for jobs that are assigned with 4 partitions,
while 4 for jobs that are assigned with 1 partition. If pi < t,
we revert the job to previous partitions. And we keep the job
with current partition once it reaches the maximum number of
partitions. The last condition only checked if jobs Ji and Jj
are competing for the same partition.

We illustrate an example cache assignment where one job
in a job-pair is assigned 1 partition and the other job is
assigned 4 partitions in Figure 6. In step i, the performance
improvements of both jobs are greater than the threshold, we
increase one cache partition for both Core1 and Core2 as
shown in step ii. Then, since they are completing the last
available cache partition, we assign the cache partition to the
job with higher performance improvement (Core1).

Core1's partitions (#PAR1) Core2's partitions (#PAR2)

Core1

Core2

Core1

Core2

Available partitions

Layer1

Layer2

#PAR1++

#PAR2++

#PAR1++

#PAR2 no change
ii. iii.

Core1

Core2

#PAR1=4

#PAR2=1
i.

p1 > t

p2 > t

p1 > p2

p2 > t

Layer1

Fig. 6: An example that illustrates the cache resource pooling
among a job-pair in our runtime policy. #PAR demonstrates
the number of partitions.

Job Allocation on Larger 3D Systems
When there are multiple cores in one layer in the 3D

system, we call all the cores vertically stacked in the 3D
architecture a column. For such cases, we add an extra step
after sorting the jobs to balance the cache-hungriness among
the columns using a load balancing policy. For example, in a
16-core 3D system with 4 layers, we have 4 columns namely
C1, C2, C3, and C4. Columns C1 and C4 initially have 4 and
3 cache-hungry jobs, while columns C2 and C3 only have 1
cache-hungry job each. After the inter-column job reallocation,
two jobs in C1 are swapped with two jobs in C2 and C3,
thus balancing the cache-hungriness. Using this inter-column
job allocation, the cache needs are balanced and the cache
resources can be utilized more efficiently.

In order to improve the energy efficiency of the 3D system
in presence of workload changes, we repeat our runtime
policy every 100ms. We re-allocate the cache partitions among
application pairs and flush the cache partitions whenever there
is a re-allocation. In the worst case, we decrease the number
of cache partitions for a job from 4 to 1, which results in the
cache partitions flushed 3 times. The performance overhead is
from both the job migrations in the job allocation stage and
the cache partitions in the cache resource pooling stage, which
is dominated by the cold start effect in caches. Prior work
estimates the cold start effect of a similar SPEC benchmark
suite as less than 1ms [20]. Thus, the performance overhead
of our policy is negligible for SPEC type of workloads.

V. EXPERIMENTAL METHODOLOGY

We evaluate our results on both high-performance and low-
power multicore 3D systems that have 4 to 16 cores. The core
architecture for low-power system is based on the cores in Intel
SCC [21]. For the high-performance system, we model the core
architecture based on the AMD Family 10h microarchitecture
used in the AMD Magny-Cours processor. The architectural
parameters for cores and caches are listed in Table I.

We use the Gem5 simulator [22] to build the performance
simulation infrastructure for our target systems, and use the
system-call emulation mode in Gem5 with X86 instruction
set architecture. We conduct single-core simulations in Gem5
with various L2 cache sizes. We estimate the performance
results of the 4-core 3D system with cache resource pooling

TABLE I: Core Architecture Parameters
Parameter High-Perf Low-Power
CPU Clock 2.1GHz 1.0 GHz
Issue Width out-of-order 3-way out-of-order 2-way
Reorder Buffer 84 entries 40 entries
BTB/RAS size 2048/24 entries 512/16 entries
Integer/FP ALU 3/3 2/1
Integer/FP MultDiv 1/1 1/1
Load/Store Queue 32/32 entries 16/12 entries
L1 I/DCache 64KB, 2way 16KB, 2way
L2 Cache 1MB, 4way 1MB, 4way

TABLE II: Workload compositions
Workload Benchmarks

non-cache-hungry1 bwaves gamess libquantum zeusmp
non-cache-hungry2 calculix milc namd leslie3d
low-cache-hungry1 leslie3d libquantum gamess omnetpp
low-cache-hungry2 zeusmp hmmer namd bzip2
med-cache-hungry1 astar h264ref soplex mcf
med-cache-hungry2 bzip2 cactusADM hmmer omnetpp
high-cache-hungry1 gromacs bzip2 omnetpp soplex
high-cache-hungry2 h264ref bzip2 omnetpp soplex
all-cache-hungry1 soplex soplex omnetpp bzip2
all-cache-hungry2 soplex bzip2 soplex bzip2

by configuring the memory bus width in the single-core case
as one-fourth of the 4-core system’s bus width. We compare
our estimation of using single-core simulation results against
running the 4-core simulation in Gem5 and observe that
the average IPC error is limited to 1.7%. We fast-forward
each benchmark for 2 billion instructions for warm up and
execute with the detailed out-of-order CPUs for 100 million
instructions. We use McPAT 0.7 [23] for 45nm process to
obtain the dynamic power of the cores. The L2 cache power
is calculated using CACTI 5.3 [24], and the dynamic power
is scaled using L2 cache access rate. We calibrate the McPAT
dynamic core power using the published power value for Intel
SCC and AMD. We also model the temperature impact on
leakage power using an exponential formula [25].

We select 20 applications from the SPEC 2006 benchmark
suite as listed in Figure 3. We further compose 10 groups
of multi-program workload sets with 4 threads, by combining
cache-hungry applications with other applications that are not
cache-hungry as shown in Table II.

VI. RESULTS

This section presents the experimental results for our cache
resource pooling design and runtime job allocation policy. In
our 3D architecture with cache resource pooling (3D-CRP),
each core has a 1MB private L2 cache. We use two 3D systems
with homogeneous layers as baselines, on which each core has
static 1MB and 2MB private L2 cache respectively.

Figure 7 (a) presents the energy efficiency benefits of the
3D-CRP for the low-power system. We see that for all the
workloads, 3D-CRP provides lower EDP in comparison to the
1MB baseline. For all-cache-hungry workload, 2MB baseline
provides the best EDP because of the larger cache size. Our
results show that 3D-CRP reduces EDP by up to 36.9% and
39.2% compared to 1MB and 2MB baselines, respectively.

Area is a very important metric for evaluating the 3D
systems because die costs are proportional to the 4th power
of the area [26]. We use EDAP as a metric to evaluate the

non low med high all
0.6

0.8

1

1.2

1.4

1.6

Workload cache hungriness

N
or

m
al

iz
ed

 E
D

P
to

 2
M

B
ba

se
lin

e

1MB baseline CRP

(a) Normalized EDP

non low med high all0.2

0.4

0.6

0.8

1

1.2

Workload cache hungriness

N
or

m
al

iz
ed

 E
D

AP
 to

 2
M

B
ba

se
lin

e

1MB baseline CRP

(b) Normalized EDAP

Fig. 7: EDP and EDAP of low-power 3D system with cache resource
pooling and its 3D baseline with 1MB static caches, normalized to
its 2MB baseline.

non low med high all

1

1.5

2

2.5

3

Workload cache hungriness

N
or

m
al

iz
ed

 E
D

P
to

 2
M

B
ba

se
lin

e

1MB baseline CRP

(a) Normalized EDP

non low med high all

1

1.5

2

2.5

Workload cache hungriness

N
or

m
al

iz
ed

 E
D

AP
 to

 2
M

B
ba

se
lin

e

1MB baseline CRP

(b) Normalized EDAP

Fig. 8: EDP and EDAP of high-performance 3D system with
cache resource pooling and its 3D baseline with 1MB static caches,
normalized to its 2MB baseline.

energy area efficiency [23]. As shown in Figure 7 (b), 3D-
CRP outperforms both baseline systems for all workload sets,
reducing EDAP by up to 57.2% compared to the 2MB baseline.

We also evaluate our 3D-CRP design and runtime policy
on a high-performance 3D system. Figure 8 presents the EDP
and EDAP results for the high-performance 3D systems with
cache resource pooling and its 3D baseline with 1MB static
caches, in comparison to the 2MB baseline. We observe that
the EDP and EDAP reduction when applying cache resource
pooling and our runtime policy are lower than that in the low-
power system. 3D-CRP achieves up to 6.1% EDP and 21.3%
EDAP reduction in comparison to its 2MB baseline.

In order to investigate the scalability of our policy, we
evaluate our runtime policy on the 16-core low-power 3D-CRP
system. The 16-core 3D system has 4 layers with 4 cores on
each layer, and each core has 1MB private L2 cache. The core
and cache architectures are the same as in the 4-core 3D-CRP
systems. We combine 16 SPEC benchmarks as a low-cache-
hungry workload and use it to evaluate the EDP and EDAP of
the 16-core lower-power 3D-CRP system. We observe that,
the low-power 3D-CRP system running our runtime policy
provides 19.7% EDP reduction and 43.5% EDAP reduction in
comparison to the 3D baseline system with 2MB L2 caches.

We also investigate 3D systems with microarchitectural
resource pooling (MRP) as proposed in [8]. In order to evaluate
the performance improvement with MRP, we run applications
with four times of the default sizes of the performance-
critical components (ROB, instruction queue, register file, and
load/store queue), and compare the IPC results with the results
with default settings. For applications running on a single core,
our experiments show that MRP improves system performance
by 10.4% on average, and combining MRP and CRP provides
additional performance improvement of 8.7% on average in
comparison to applying MRP alone.

VII. CONCLUSION

In this paper, we have introduced a novel design for 3D
cache resource pooling that requires minimal circuit and archi-
tectural modification. We have then proposed an application-
aware job allocation and cache pooling policy to improve
the energy efficiency of 3D systems. Our policy dynamically
allocates the jobs to cores on the 3D stacked system and
distributes the cache resources based on the cache hungriness
of the applications. Experimental results show that by utilizing
cache resource pooling we are able to improve system EDP
and EDAP by up to 39.2% and 57.2% in comparison to 3D
systems with static cache sizes.

ACKNOWLEDGEMENTS

This work has been partially funded by NSF grant CNS-1149703 and Sandia
National Laboratories.

REFERENCES

[1] B. Black et al., “Die stacking (3D) microarchitecture,” in International
Symposium on Microarchitecture (MICRO), pp. 469–479, 2006.

[2] G. H. Loh, “3D-stacked memory architectures for multi-core proces-
sors,” in ISCA, pp. 453–464, 2008.

[3] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici,
“Dynamic thermal management in 3D multicore architectures,” in
DATE, pp. 1410–1415, 2009.

[4] E. Ipek et al., “Core fusion: accommodating software diversity in chip
multiprocessors,” in ISCA, pp. 186–197, 2007.

[5] D. Ponomarev, G. Kucuk, and K. Ghose, “Dynamic resizing of super-
scalar datapath components for energy efficiency,” IEEE Transactions
on Computers, vol. 55, pp. 199–213, Feb. 2006.

[6] S. Zhuravlev et al., “Addressing shared resource contention in multicore
processors via scheduling,” in ASPLOS, pp. 129–142, 2010.

[7] J. Martinez and E. Ipek, “Dynamic multicore resource management: A
machine learning approach,” in IEEE Micro, vol. 29, Sept 2009.

[8] H. Homayoun et al., “Dynamically heterogeneous cores through 3D
resource pooling,” in HPCA, pp. 1–12, 2012.

[9] C. Zhu et al., “Three-dimensional chip-multiprocessor run-time thermal
management,” TCAD, vol. 27, August 2008.

[10] R. Das et al., “Application-to-core mapping policies to reduce memory
interference in multi-core systems,” in PACT, pp. 455–456, 2012.

[11] K. Varadarajan et al., “Molecular caches: A caching structure for
dynamic creation of application-specific heterogeneous cache regions,”
in MICRO, pp. 433–442, 2006.

[12] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, pp. 423–432, 2006.

[13] D. Chiou and et al., “Dynamic cache partitioning via columnization,”
in TechReport, Massachusetts Institute of Technology, 2000.

[14] R. Kumar, V. Zyuban, and D. Tullsen, “Interconnections in multi-core
architectures: understanding mechanisms, overheads and scaling,” in
ISCA, pp. 408–419, June 2005.

[15] G. Sun et al., “A novel architecture of the 3D stacked MRAM L2 cache
for CMPs,” in HPCA, pp. 239–249, 2009.

[16] J. Meng, K. Kawakami, and A. Coskun, “Optimizing energy efficiency
of 3-d multicore systems with stacked dram under power and thermal
constraints,” in DAC, pp. 648–655, 2012.

[17] J. Jung, K. Kang, and C.-M. Kyung, “Design and management of 3D-
stacked NUCA cache for chip multiprocessors,” in GLSVLSI, 2011.

[18] D. Albonesi, “Selective cache ways: on-demand cache resource alloca-
tion,” in MICRO, pp. 248–259, 1999.

[19] X. Zhao, J. Minz, and S.-K. Lim, “Low-power and reliable clock
network design for through-silicon via (TSV) based 3D ICs,” IEEE
Transactions on Components, Packaging and Manufacturing Technol-
ogy, vol. 1, no. 2, pp. 247–259, 2011.

[20] A. K. Coskun et al., “Evaluating the impact of job scheduling and
power management on processor lifetime for chip multiprocessors,” in
SIGMETRICS, pp. 169–180, 2009.

[21] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in ISSCC, pp. 108–109, 2010.

[22] N. L. Binkert et al., “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, pp. 52–60, July 2006.

[23] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
pp. 469–480, 2009.

[24] S. Thoziyoor et al., “CACTI 5.1,” tech. rep., April 2008.
[25] J. Srinivasan et al., “The case for lifetime reliability-aware micropro-

cessors,” in ISCA, pp. 276–287, 2004.
[26] J. Rabaey, A. Chandrakasan, and B. Nikolic., Digital Integrated Cir-

cuits: A Design Perspective, 2nd edition. 2003.

