
Topology-Aware Reliability Optimization for

Multiprocessor Systems

Jie Meng†, Fulya Kaplan†, Mingyu Hsieh∗, and Ayse K. Coskun†

†Electrical and Computer Engineering Department, Boston University, Boston, MA – {jiemeng, fkaplan3, acoskun}@bu.edu
∗Sandia National Labs, P.O.Box 5800, Albuquerque, NM – myhsieh@sandia.gov

Abstract—High on-chip temperatures adversely affect the
reliability of processors, and reliability has become a serious
concern as high performance computing moves towards exascale.
While dynamic thermal management techniques can effectively
constrain the chip temperature, most prior work has focused on
temperature and reliability optimization of a single processor.
In this work, we propose a topology-aware workload allocation
policy to optimize the reliability of multi-chip multicore systems
at runtime. Our results show that the proposed policy improves
the system reliability by up to 123.3% compared to existing
temperature balancing policies when systems have medium to
high utilization. We also demonstrate that the policy is scalable
to larger systems and its performance overhead is minimal.

I. INTRODUCTION

As the number of cores and power density per processor

increase, reliability is becoming a significant concern in high

performance systems. High temperatures jeopardize the relia-

bility of the chips and significantly impact performance, while

increasing the cooling costs.

In modern processors, temperature and reliability challenges

are addressed by management techniques such as clock-gating

and dynamic voltage-frequency scaling. Recent methods rely

on OS-assisted workload scheduling to regulate chip temper-

ature at reduced performance cost [1, 2, 3, 4, 5]. The main

idea behind thermally-aware workload allocation is to exploit

temperature variations resulting from executing jobs with

different CPU usage profiles. “Hot” jobs, such as computation-

intensive algorithms, cause the chip to run at a higher temper-

ature than “cool” jobs, for which most work involves data

transfers between memory and processor. Through intelligent

scheduling of such hot and cool jobs, we can reduce thermal

hot spots and variations. Such temperature-aware workload

management approaches have been proposed for both single-

core [6, 7] and multicore processors [1, 2, 4, 5].

Among temperature-aware workload management policies,

temperature balancing has been shown to be effective at the

processor level (e.g., [1]). However, reliability benefits of

thermal balancing for systems with multiple nodes (or chips)

have not been clear. In this work, we first demonstrate that for

systems with multiple chips, clustering jobs with higher power

consumption can result in higher system reliability compared

to aggressively balancing the temperature. The reason for this

potential benefit lies in the inherent parallelism in multi-chip

systems, where failure of a node does not cause the failure

of the entire system. Therefore, instead of equally stressing

all nodes, clustering higher temperature loads together and

maintaining some of the nodes at lower thermal stress levels

can extend overall system reliability. This observation is par-

ticularly interesting considering many future high-performance

systems will be built using multiple multicore chips.

Following an analysis of the tradeoffs between balanc-

ing and clustering, we propose a novel policy to optimize

system reliability at runtime. Our policy is aware of the

parallelism provided by the system topology and selects among

workload clustering and balancing approaches to maximize

system reliability, while adhering to temperature thresholds

as well as cooling and performance constraints. Our specific

contributions are as follows:

• Using a detailed reliability modeling approach to accu-

rately model temperature-induced wear-out failure mech-

anisms and various system topologies, we analyze the

reliability of a real-life multi-chip multicore system. Our

analysis quantifies the tradeoffs between clustering higher

power jobs and thermal balancing at various operating

temperatures. We show that clustering can improve system

reliability by up to 4.85X for systems with a processor-level

parallel topology and 80oC peak temperature.

• We introduce a topology-aware job allocation policy to op-

timize the system reliability, targeting systems with medium

to high utilization (e.g., as in high-performance clusters). We

design low-cost predictors to estimate application power and

chip peak temperature during allocation. Our policy adapts

to workload changes while respecting thermal constraints.

• We provide an experimental validation using a large set

of workload mixes representing different utilization levels

and CPU usage profiles. Our policy improves the system

reliability by up to 123.3% compared to temperature bal-

ancing policies. We also demonstrate the scalability of the

proposed policy to larger systems.

II. RELATED WORK

A number of approaches on reliability management focus

on microarchitectural optimization [8, 9]. Recent work has

also introduced reliability management techniques specifically

targeting multicore systems. Hanumaiah et al. [10] optimize

the reliability of a multicore processor running tasks with hard

deadline constraints by solving a quasiconvex optimization

problem. Wang et al. maximize the lifetime of multicore

systems while maintaining a given aggregate processor speed

by applying sequential quadratic programming [11]. Coskun

et al. propose a simulation framework to evaluate the impact

978-1-4673-2658-2/12/$31.00 ©2012 IEEE

of management policies on processor lifetime and demonstrate

benefits of temperature balancing [1].

Several reliability management techniques consider both

the wear-out mechanism and the system topology. Huang et

al. [12] use the Weibull distribution to model aging effects.

RAMP uses Monte Carlo simulations and lognormal distribu-

tions to compute reliability, and a simple MIN-MAX approach

to model series-parallel topologies [13].

Recent research has also introduced temperature-aware job

allocation policies. Moore et al. develop a temperature-aware

workload placement algorithm through establishing a priori-

tized list of servers for saving energy in data centers [14].

Coskun et al. design adaptive scheduling policies that leverage

thermal sensor readings for reducing temporal and spatial

temperature variations [15]. Wang et al. propose a thermally-

aware job scheduling algorithm for data centers to allocate

workloads based on their task-temperature profiles [16].

Our work differentiates from prior research as we focus on

the impact of system topology on reliability. Following our

analysis that shows clustering may provide better reliability

than balancing depending on the topology, we propose a

job allocation method to optimize reliability for multi-chip

multicore systems.

III. RELIABILITY MODELING METHODOLOGY

In this work, we consider three major intrinsic wear-out

failure mechanisms for processors: Electromigration (EM),

Time Dependent Dielectric Breakdown (TDDB), and Negative

Bias Temperature Instability (NBTI) [13, 17, 18]. Failure rates

for these three failure mechanisms can be expressed in the

following general form:

λ = λ
0 × e

−Ea
kT (1)

where Ea is the activation energy for the failure mechanism, k
is the Boltzmann’s constant (8.62 · 105), T is the temperature,

and λ0 is a material-dependent constant. EaEM
= 0.7eV

for Al alloys [17]. We set EaT DDB
= 0.75eV [17]. NBTI

activation energy represents EaNBT I
× 1/n, where n is the

measured time exponent. We use EaNBT I
= 0.15eV and

n = 0.25, giving the product 0.6eV [17, 18].

To determine the constants for λ0

EM , λ0

TDDB , and λ0

NBTI ,

we assume the contributions of EM, TDDB, and NBTI are

similar to each other at a base temperature. We calibrate the

constants in each failure rate equation to satisfy a per-core

MTTF of 5 years at 60oC [19].

A. Lognormal Distributions for Lifetime Reliability

Recent work has shown that lognormal distribution consti-

tutes a more accurate model of wear-out failure mechanisms

compared to exponential distribution [13, 20]. Lognormal

distribution provides the ability to model the dependence of the

failure mechanisms on time. The probability density function

for lognormal distribution is given by:

f(t) =
1

tσ
√

2π
e
−

(ln t−µ)2

2σ2 (2)

where µ and σ are the mean and the standard deviation of

the underlying normal distribution, respectively. Reliability at

time t can be computed by integrating f(t) from 0 to t. We use

σ = 0.5 based on experimental data from prior work [13].

In order to obtain the reliability of a processor at a certain

time, we need to calculate the reliability of each wear-out

failure mechanism using lognormal distribution. However,

since there is no closed-form solution for the integration of

f(t), it is difficult to find an explicit solution for the failure

rate or reliability. To address this issue, we use Monte Carlo

simulations to calculate the processor reliability. Specifically,

we make use of Monte Carlo simulations to combine the

effects of the individual failure mechanisms and find the

reliability of a single core.

Using Monte Carlo simulations, we first generate a

normally-distributed random number, rnormal, with mean 0

and standard deviation of 1 using two independent uniformly

distributed random numbers r1 and r2. Then, we obtain a

scaled normally-distributed random number rsnormal with

mean µ and standard deviation of σ from the normally-

distributed random number as follows:

rnormal = sin(2πr1)
p

−2 ln (r2) (3)

rsnormal = µ + rnormalσ (4)

Then, a random lognormal distribution number rlognormal

representing a random lifetime for each failure mechanism can

be generated from the scaled normal random number:

rlognormal = e
rsnormal (5)

Mean of the normal distribution rsnormal (µ) and the mean

of the lognormal distribution rlognormal (MTTF) are related

to each other as follows:

µ = ln (MTTF) −
σ2

2
(6)

In order to compute the reliability of a processor which

is composed of lognormally distributed failure mechanisms,

we generate rlognormal distributions (i.e., random lifetimes)

for each failure mechanism. To compute rlognormal, we first

calculate MTTF values using Eqn. 1 for each failure mecha-

nism and calculate µ using Eqn. 6. We conduct the experiment

for 106 iterations to generate random lifetimes for failure

mechanisms. At each iteration, the lifetime of the processor is

set to the minimum of the generated numbers. MTTF of the

processor is then calculated by averaging the minimums. To

convert the MTTF value to reliability, we generate the cumula-

tive distribution function (CDF) of lognormal distribution. The

reliability over time t for the lognormal distribution is then

determined by Eqn. 7, where F (t) is the CDF of lognormal

distribution at time t.
Rt = 1 − F (t) (7)

B. System Reliability Modeling

Most prior work on system reliability modeling considers

series systems [8, 20], where the first failure on any unit

on the chip causes the entire processor to fail. Real-life

computer systems, however, may have different levels of

series-parallel topologies. In a series system of n components,

the system fails if any of its components fails. On the other

hand, a parallel system with n components fails if all of

its components fails. Assuming failure rates are statistically

independent, the overall system reliability of a series/parallel

topology containing n cores can be computed as follows:

Series : Rsystem(t) =

n
Y

i=0

Ri(t) (8)

Parallel : Rsystem(t) = 1 −

n
Y

i=0

(1 − Ri(t)) (9)

IV. TOPOLOGY AND SYSTEM RELIABILITY ANALYSIS

To explore the effects of system topology on reliability, we

consider an 8-core system that has two processors (each with

4 cores) in two separate sockets. Each processor has two chips

put together in a single package. Figure 1 provides a diagram

of the target system, which is based on Intel Clovertown.

We investigate the following reliability topologies: (a) all

8 cores connected in series; (b) cores in series within each

processor, parallel across processors (processor-level parallel);

(c) cores in series within each chip, parallel across chips (chip-

level parallel); and (d) all cores in parallel.

An all-parallel system incurs higher design cost as addi-

tional hardware is needed to detect runtime core failures and

initiate the recovery process for continued execution. The OS

should also be equipped to safely reconfigure the system on

failure. Additional design cost would be reduced with scenario

(c), where the parallelism is at the chip-level. Processor-

level parallelism, as in (b), can be implemented in today’s

clusters through using sockets that allow replacement of failed

processors or using multiple server nodes.

We next compare thermal balancing (e.g., [1, 22]), where

high-power loads are distributed across the chip, against clus-

tering, where power-hungry loads are allocated on neighboring

cores. For each scenario, cores are assigned high (TH) or low

(TL) temperatures. In clustered mode, cores 0, 1, 2 and 3 have

TH and cores 4, 5, 6 and 7 have TL. In balanced mode, cores 0,

2, 4 and 6 have TH and the rest of the cores have TL. However,

in balanced mode, heat transfer between adjacent cores should

be taken into account; thus, we assign TB , the average of TH

and TL, to all cores. This approximation has a few degrees

error compared to detailed temperature simulations, but is

sufficient to demonstrate the trends.

Figure 2 compares the system reliability of clustered and

balanced modes for each topology. High temperature is set

as 80◦C and low temperature is swept from 40◦C to 70◦C.

Clustering degrades system reliability for all series scenario

Fig. 1: Layout of the Intel Clovertown System [21].

due to higher core temperatures. However, clustering improves

reliability significantly for processor-level parallel system and

moderately for chip-level parallel system. For processor-level

parallel case, clustering provides system reliability of 0.999

and 0.995 for TL values of 40◦C and 50◦C, respectively. For

TL of 60◦C, it increases the system reliability from 0.2 to 0.8.

Maximum increase in reliability (from 0.073 to 0.429) is seen

at TL of 65◦C, which corresponds to 4.85X improvement. As

the level of parallelism increases, system reliability for both

clustered and balanced modes gets higher. Therefore, for chip-

level parallel case, clustering is advantageous only at higher

TL values; while for all parallel case, it provides almost no

improvement. In the rest of the paper, due to its ease of real-

life implementation compared to other parallelism scenarios,

we focus on processor-level parallel systems.

V. RELIABILITY OPTIMIZATION POLICY

Section IV shows that clustering provides considerable

reliability improvements in processor-level parallel and chip-

level parallel systems compared to thermal balancing. Moti-

vated by this analysis, we propose a topology-aware reliability

optimization policy, Globally Clustering Locally Balancing

(GCLB), where global refers to decisions across parallel

nodes, and local refers to allocation decisions among a set

of series nodes (e.g., cores within a processor). In this work,

we focus on the processor-level parallel scenario, as it is

commonly employed in real-life multi-chip multicore systems.

We present a flow chart illustrating the GCLB optimiza-

tion policy in Figure 3. The policy periodically polls the

performance counters and predicts the power consumption

of each application using counter data. Then, we assign the

jobs to cores according to their predicted power following the

GCLB algorithm. The main idea of the algorithm is globally

clustering high-power applications among parallel multicore

processors and performing thermal balancing locally within

a processor. This is because clustering across parallel nodes

improves reliability; whereas for a set of series components,

balancing results in higher reliability.

We check new job arrivals at every 10ms, which is the the

typical scheduler tick in today’s OSes. We select a larger inter-

val for GCLB, i.e., 50ms, to limit the performance impact of

the policy. At 10ms intervals, we make intermediate heuristic

decisions for job allocation. At 50ms intervals, the policy re-

arranges the load across the processors if needed by migrating

Fig. 3: A flow chart for illustrating the GCLB reliability optimization
policy for processor-level parallel systems.

H=80 L=40 H=80 L=50 H=80 L=60 H=80 L=70
0

0.2

0.4

0.6

0.8

1

S
y
s
te

m
 R

e
lia

b
ili

ty

clustered
balanced

(a) All series

H=80 L=40 H=80 L=50 H=80 L=60 H=80 L=70
0

0.2

0.4

0.6

0.8

1

(b) Processor-level parallel

H=80 L=40 H=80 L=50 H=80 L=60 H=80 L=70
0

0.2

0.4

0.6

0.8

1

(c) Chip-level parallel

H=80 L=40 H=80 L=50 H=80 L=60 H=80 L=70
0

0.2

0.4

0.6

0.8

1

(d) All parallel

Fig. 2: System reliability for different series-parallel scenarios with TH=80◦C and per-core MTTF of 5 years at 60◦C.

applications. Prior work has reported that cold-start overhead

dominates the migration cost for SPEC benchmarks, and the

total migration overhead is less than 1 ms [1]. Assuming a

similar overhead in our system, a scheduling interval of 50ms

causes maximum 2% performance cost.

At every 10ms, we assign newly arriving jobs to the idle

cores on the system. To cluster higher power loads, we first

assign new jobs to processors with a higher average power.

If there is a thermal constraint, we predict the maximum

processor temperature for the processor running the new job.

If the maximum temperature is exceeded, we assign the new

job to the processor with the next highest average power.

At every 50ms, we apply the GCLB policy. Assuming the

system has m cores, l parallel processors, and there are n
jobs to be allocated (we assume n ≤ m), we first estimate the

power consumption for each job on the system. Then, we sort

the power values for all the jobs. We group the sorted jobs

into l groups: jobs with the highest power values are assigned

to the first processor, the group with the second largest power

values in the queue are assigned to the second processor, etc.,

until all the jobs are allocated.

Once the jobs are clustered across parallel processors, within

each processor, we locally balance the temperature across the

cores (i.e., across series components). The balancing method

is based on thermal balancing policies in prior work [1], where

high power jobs are assigned to expected cool locations on the

chip, such as corner or side cores. Cooler jobs run in the central

area, which is generally hotter. Figure 4 demonstrates the

global clustering and balancing policies. Thermal balancing

is applied to each processor locally.

Power Prediction:

To estimate power consumption of each job, we collect

performance statistics. We track instructions per cycle (IPC),

number of floating-point instructions, and number of integer

instructions, as these metrics are strongly correlated with

power consumption [23]. We collect the performance data

using a simulator in our evaluation, while in a real system

the statistics are collected through performance counters. We

build a linear equation of the three performance counters

using regression, and predict power consumption based on

the equation. Experiments with 17 SPEC benchmarks show

Fig. 4: An illustration of the clustering and balancing job allocations
on the target system under 75% utilization. P represents power
consumption, and P1 > P2 > ... > P6.

4% prediction error using this method. Performance impact

of power prediction is negligible, since computing a simple

equation has very low computational cost.

Working with Thermal Constraints:

Several recent techniques focus on accurate runtime tem-

perature prediction (e.g., [24]). In this work, we choose a

simple temperature prediction method using a linear model

as we solely want to estimate the maximum temperature on a

processor. For inputs to the predictor, we use power estimates

for each core and absolute power differences between adjacent

cores to take the heat sharing and core locations into account.

We collect 100 sets of simulation results from the SPEC 2006

workloads, and validate the predictor against HotSpot simu-

lations. Our peak temperature prediction results in maximum

8% error in comparison to HotSpot simulation results, with

less than 2oC error for most cases.

GCLB algorithm can work with temperature constraints

using the thermal predictor. This is important as clustering

high-power workloads may result in high peak temperatures

on a processor. In addition to critical thermal thresholds

determined by the manufacturer, thermal constraints could

be imposed by user-defined target per-core MTTF values or

by cooling optimization policies. During allocation, if the

thermal constraints are not satisfied, we adjust job allocation

by swapping the hottest jobs across processors and locally

balance temperature after swapping. This process is repeated

(a job moved once is not moved again) until the thermal

constraint is met. In this paper, we assume we can always

find a schedule that meets thermal constraints, which is a

reasonable assumption for most commercial systems.

The proposed GCLB policy can also be integrated with

DVFS policies. Integration with DVFS can provide energy

savings as well as fine tuning of the operating conditions to

meet temperature or performance constraints. Hybrid policies

integrating various DVFS and job allocation strategies have

been designed in prior work [1].

VI. EXPERIMENTAL RESULTS

We model the target system based on the core microar-

chitecture of Intel Clovertown. The architectural parameters

for cores and caches are listed in Table I. We use M5 [25]

to build the performance simulation infrastructure. We use

the system-call emulation mode in M5 with X86 instruction

set architecture (ISA). We fast-forward each benchmark for 1

billion instructions for warm up and execute with the detailed

out-of-order CPUs for 100 million instructions.

We select 17 applications from the SPEC 2006 benchmark

suite, among which 10 applications are integer (INT) bench-

marks (astar, bzip2, gcc, gobmk, h264ref, hmmer, libquan-

TABLE I: Core Architecture Parameters.

CPU Clock 2.66 GHz
Issue Width 4-way out-of-order
Functional Units 3/2 Int/FP ALU, 1/1 Int/FP Mult
Physical Regs 128 Int, 128 FP
RAS / ROB size 16 /96 entries
Load /Store Queue 32 / 20 entries

L1 I/DCache 32 KB, 8-way, 64B-block
L2 Cache(s) 4 MB, 16-way, 64B-block

tum, mcf, omnetpp, specrand int) and 7 applications are

floating point (FP) benchmarks (bwaves, cactusADM, dealII,

GemsFDTD, lbm, namd, specrand fp). We further classify

these benchmarks according to their performance and memory

boundedness. They are named INT-Hmem, INT-Lmem, INT-

HIPC, INT-LIPC, FP-Hmem, FP-Lmem, FP-HIPC, FP-LIPC,

and Mixed, where Hmem or Lmem means workloads with high

or low memory access rates, HIPC or LIPC means workloads

with high or low IPC.

We use McPAT 0.7 [26] for 65nm process to obtain the

runtime dynamic power of the cores. We set Vdd to 1.1V

and operating frequency to 2.66GHz. The L2 cache (4 MB)

power is calculated using Cacti 5.3 [27] as 5.06W. We calibrate

the McPAT run-time dynamic core power using the published

power for Intel Xeon Processor X5355. At 343K, we assume

the leakage power for the cores is 35% of the total core power.

We also model the temperature impact on leakage power using

an exponential formula [8].

We run HotSpot 5.0 [28] for thermal simulations. We set the

chip and package parameters using the default configuration in

HotSpot to represent efficient packages in high-end systems.

All simulations use the HotSpot grid model for higher accu-

racy and are initialized with the steady-state temperatures. The

chip and core areas are obtained from the published data for

Intel Clovertown systems. The L2 cache area is estimated by

using Cacti 5.3 [27].

We next evaluate GCLB on the target Intel Clovertown

system for different utilization scenarios. High performance

computing clusters are examples of computer systems with

high utilization. Figure 4 compares the clustering and balanc-

ing allocation policies at 75% utilization. System reliability

of the clustering and balancing policies for all the workloads

running on the target system with 75% workload utilization is

shown in Figure 5. We observe that the proposed GCLB policy

provides up to 123.3% improvement in system reliability

compared to the thermal balancing policy. Among all the

workloads, the HIPC and Lmem applications have higher

system reliability improvement. This is because the HIPC
and Lmem applications have higher power densities causing

Fig. 5: System reliability with GCLB (clustering) and thermal bal-
ancing allocation policies for the target system under 75% utilization.

Fig. 6: System reliability with GCLB and thermal balancing alloca-
tion policies for the target system under 50% utilization.

higher temperatures. Local thermal balancing has up to 27.2%
reliability improvement compared to not balancing allocation

within a processor. As local balancing always outperforms

locally imbalanced scenarios, we do not report results for

locally imbalanced cases in the rest of the results.

Figure 6 shows the system reliability for the clustering

and balancing allocation policies on the target system with

50% workload utilization (utilization level similar to data

centers). The job allocations for the 50% workload utilization

is similar to the illustration shown in Figure 4, while the P5
and P6 change to idle cores. We see that with 50% workload

utilization, we achieve up to 14.3% improvement in the system

reliability in comparison to thermal balancing policy. We also

conduct the same analysis on the target system with 25%
workload utilization. The low workload utilization scenario

happens when data centers run fewer jobs (e.g., at night). In

this case, clustering and balancing achieve similar reliability.

When GCLB is applied without considering thermal con-

straints, peak temperature at 75% utilization is between

63.8oC and 76.33oC. Figure 7 illustrates the system reliability

with GCLB optimization policy compared to the thermal

balancing policy at 75% utilization, using a thermal constraint

of 75oC. We notice that the reliability improvement of GCLB

decreases for some workloads, such as FP HIPC. This is

because GCLB moves some of the higher power jobs to lower

power processors to meet the constraint, and becomes more

similar to balancing.

We also explore the GCLB policy for dynamically changing

workloads. We generate a random workload utilization scheme

which changes every 10ms with a total simulation time of

one second. The average workload utilization is 68%. The

jobs running on the system are randomly selected among the

17 SPEC benchmarks. Figure 8 shows that allocating jobs

according to GCLB policy improves reliability by 27.3% on

average compared to random workload allocation. Figure 8

also shows that, if the GCLB optimization policy is applied

every 10ms without considering thread migration overhead, the

Fig. 7: System reliability for GCLB optimization policy compared
to thermal balancing for systems with 75% utilization, considering a
thermal constraint of 75oC.

Fig. 8: System reliability of GCLB compared to random job alloca-
tion for dynamically changing workload utilization.

average system reliability improvement is 32.9%. However,

as discussed in Section V, migrating threads every 10ms

would cost up to 10% system performance overhead. Our

reliability optimization policy achieves comparable reliability

improvement with less than 2% performance cost.

We extend our analysis to a 16-core system with 4 parallel

processors and 4 cores (in series) on each processor. System

reliability for the 16-core system running GCLB compared

to thermal balancing is presented in Figure 9. We observe

that GCLB policy provides system reliability of close to 1

for all the benchmarks, and improves reliability by up to

101.7% in comparison to thermal balancing. This is because

scaling to a higher number of processors provides increased

parallelism and higher degree of freedom for more efficient

task scheduling. For example, for the 16-core system with

75% utilization, using “clustering” assigns all the “idle” cores

in one processor, which increases system reliability.

VII. CONCLUSION

In this paper, we have proposed a topology-aware job

scheduling policy that optimizes the reliability of multi-chip

multicore systems. We have shown that thermal balancing

policies improve the reliability for systems with series compo-

nents. When reliability topology is considered in systems with

parallel components, clustering high power jobs outperforms

balancing. Our GCLB policy clusters jobs globally in a system

across parallel nodes and balances jobs locally within a

processor. It is also able to consider thermal constraints and

adapts to workload changes.

We have evaluated our policy under various workload

scenarios. HPC systems and data centers are typically under

medium to high utilization. Under such conditions, our policy

improves the reliability of multi-chip systems by up to 123.3%
compared to thermal balancing. We have also shown that un-

der dynamically changing workloads, GCLB improves system

reliability by 27.3%. Finally, we have studied our policy’s

Fig. 9: Exploration of 16-core system reliability with GCLB and
thermal balancing allocation policies under 75% utilization.

scalability. When the size of the target system is doubled,

GCLB improves system reliability by up to 101.7%.

ACKNOWLEDGEMENTS

This work has been partially funded by NSF grant CNS-1149703 and Sandia
National Laboratories.

REFERENCES

[1] A. K. Coskun, R. Strong, D. M. Tullsen, and T. Simunic Rosing,
“Evaluating the impact of job scheduling and power management on
processor lifetime for chip multiprocessors,” in SIGMETRICS, 2009,
pp. 169–180.

[2] J. Donald and M. Martonosi, “Techniques for multicore thermal manage-
ment: Classification and new exploration,” in ACM SIGARCH Computer

Architecture News, vol. 34, no. 2, 2006.
[3] Z. Lu, J. Lach, M. Stan, and K. Skadron, “Improved thermal manage-

ment with reliability banking,” IEEE Micro, vol. 25, no. 6, 2005.
[4] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling

and power management for chip multiprocessors,” ACM SIGARCH

Computer Architecture News, vol. 36, no. 3, 2008.
[5] J. Winter and D. Albonesi, “Scheduling algorithms for unpredictably

heterogeneous cmp architectures,” in DSN, 2008, pp. 42–51.
[6] H. Hanson et al., “Thermal response to dvfs: Analysis with an intel

pentium m,” in ISLPED, 2007, pp. 219–224.
[7] A. Kumar et al., “Hybdtm: a coordinated hardware-software approach

for dynamic thermal management,” in DAC, 2006, pp. 548–553.
[8] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for

lifetime reliability-aware microprocessors,” in International symposium

on Computer Architecture (ISCA), 2004, pp. 276–287.
[9] S. Biswas et al., “Fighting fire with fire: modeling the datacenter-scale

effects of targeted superlattice thermal management,” in ISCA, 2011.
[10] V. Hanumaiah and S. Vrudhula, “Reliability-aware thermal management

for hard real-time applications on multi-core processors,” in Design,

Automation Test in Europe Conference (DATE), March 2011, pp. 1–6.
[11] S. Wang and J.-J. Chen, “Thermal-aware lifetime reliability in multicore

systems,” in ISQED, 2010, pp. 399–405.
[12] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation

and scheduling for mpsoc platforms,” in DATE, 2009, pp. 51–56.
[13] J. Srinivasan et al., “Exploiting structural duplication for lifetime relia-

bility enhancement,” in ISCA, 2005, pp. 520–531.
[14] J. Moore et al., “Making scheduling ”cool”: temperature-aware workload

placement in data centers,” in USENIX, 2005, pp. 5–15.
[15] A. K. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Static and

dynamic temperature-aware scheduling for multiprocessor socs,” IEEE

Trans. VLSI Systems, vol. 16, no. 9, pp. 1127–1140, 2008.
[16] L. Wang et al., “Towards thermal aware workload scheduling in a data

center,” in I-SPAN, 2009, pp. 116–122.
[17] “Failure mechanisms and models for semiconductor devices, jedec

publication jep122e.” [Online]. Available: http://www.jedec.org/
[18] M. Alam et al., “A comprehensive model for pmos nbti degradation:

Recent progress,” Microelectronics Reliability, vol. 47, no. 6, 2007.
[19] K. Ferreira et al., “Evaluating the viability of process replication

reliability for exascale systems,” in SC, 2011, pp. 1–12.
[20] Y. Xiang et al., “System-level reliability modeling for mpsocs,” in

CODES/ISSS, 2010, pp. 297–306.
[21] Q. Teng, P. F. Sweeney, and E. Duesterwald, “Understanding the cost

of thread migration for multi-threaded java applications running on a
multicore platform,” in ISPASS, 2009, pp. 123–132.

[22] F. Mulas et al., “Thermal balancing policy for streaming computing on
multiprocessor architectures,” in DATE, 2008, pp. 734–739.

[23] T. Li and L. K. John, “Run-time modeling and estimation of operating
system power consumption,” in SIGMETRICS, 2003, pp. 160–171.

[24] R. Z. Ayoub and T. S. Rosing, “Predict and act: dynamic thermal
management for multi-core processors,” in ISLPED, 2009, pp. 99–104.

[25] N. Binkert et al., “The M5 simulator: Modeling networked systems,”
IEEE Micro, pp. 52–60, 2006.

[26] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[27] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI
5.1,” HP Laboratories, Palo Alto, Tech. Rep., April 2008.

[28] K. Skadron, M. R. Stan, W. Huang, V. Sivakumar, S. Karthik, and
D. Tarjan, “Temperature-aware microarchitecture,” in ISCA, 2003.

