
Optimizing Communication and Cooling Costs in
HPC Data Centers via Intelligent Job Allocation

Fulya Kaplan, Jie Meng, and Ayse K. Coskun
Electrical and Computer Engineering Department, Boston University, Boston, MA

{fkaplan3, jiemeng, acoskun}@bu.edu

Abstract—Nearly half of the energy in the computing clusters
today is consumed by the cooling infrastructure. It is possible to
reduce the cooling cost by allowing the data center temperatures
to rise; however, component reliability constraints impose thermal
thresholds as failure rates are exponentially dependent on the
processor temperatures. Existing thermally-aware job allocation
policies optimize the cooling costs by minimizing the peak inlet
temperatures of the server nodes. An important constraint in
high performance computing (HPC) data centers, however, is
performance. Specifically, HPC data centers run multi-threaded
applications with significant communication among the threads.
Thus, performance of such applications is strongly affected by
the job allocation decisions. This paper proposes a novel job
allocation methodology to jointly minimize communication cost
of an HPC application while also reducing the cooling energy.
The proposed method also considers temperature-dependent
hardware reliability as part of the optimization.

I. INTRODUCTION

The computational capacities of the data centers have
been growing over the last decade. In tandem, the electricity
consumed for the computational and cooling power has also
increased. According to a recent report, the electricity used by
the data centers worldwide increased by 56% from 2005 to
2010, while the increase in the US was by 36% [1]. In 2010,
the worldwide data center electricity consumption accounted
for 1.3% of the total electricity use [1]. This number translates
to an energy cost reaching up to millions of dollars and cooling
costs reach close to half of the overall energy cost [2]. Thus,
one of the main challenges in maintaining an energy-efficient
data center is to design efficient cooling methods.

Some of the prior work addresses the cooling challenges
with various cooling-aware job allocation policies (e.g., [3],
[4], [5]). One of the key factors in efficient cooling is to keep
the computer room air conditioner (CRAC) supply temperature
as high as possible [3], while delivering sufficient cooling to
the computational nodes. Thus, a number of techniques focus
on decreasing the node inlet temperatures through workload
management. Recirculation of the heat from the servers back in
the data center has been shown to be a significant contributor
to inlet temperature; thus, some policies focus on reducing
the recirculation effect [3], [4]. Other approaches dynamically
control the number of active servers and the voltage/frequency
settings to reduce the total power [5].

Another critical aspect in data center management is perfor-
mance. In HPC clusters, highly parallel scientific, financial, or
other applications run on multiple nodes for long durations in
the range of minutes, hours or days. The threads of these appli-
cations communicate with each other through communication

infrastructures such as the message passing interface (MPI).
The running time of a communication-intensive application is
highly dependent on the location of the individual computing
units that are communicating with each other. Prior work has
demonstrated that the communication cost of communication-
intensive applications has a significant impact on system
performance in HPC data centers [6]. Existing performance-
aware job allocation algorithms focus on minimizing the
average number of communication hops between the com-
municating nodes. Some researchers propose contiguous job
allocation schemes, for which the allocated nodes are adjacent
[7], [8]. Other schemes allow discontiguous allocation to avoid
fragmentation of available processors [9], [10]. There are
also algorithms that minimize the power consumption while
satisfying the response time constraints imposed by service
level agreements [11]; however, such algorithms focus on
transactional enterprise loads rather than HPC applications
with intensive communication.

We observe that existing algorithms for job allocation in
HPC data centers address cooling efficiency and performance
separately. How to optimize the performance and cooling
energy tradeoffs achieved by these policies is currently an
open question. To the best of our knowledge, our work is the
first to propose a policy that reduces both cooling power and
communication latency in an HPC data center. We target HPC
data centers that run multi-threaded workloads with heavy
communication among the threads. Our main goal is to deliver
both the desired performance and reduce cooling energy as
much as possible. Our specific contributions are as follows:

• We introduce a job allocation methodology to jointly
optimize the communication cost of HPC applications and
the cooling energy in a data center.
• We evaluate our joint allocation policy and compare against

other cooling-aware and performance-aware job allocation
methods under both static (known) and dynamically chang-
ing workloads. We observe that the policies only targeting
cooling efficiency may cause higher communication latency,
which would then lead to high temperatures in data centers
lasting for an extended period of time due to the longer
job running times (i.e., longer active time of the data center
nodes). On the other hand, performance-aware job allocation
policies which do not consider the thermal impact may result
in higher cooling energy. Our policy combines performance-
awareness with cooling-awareness to solve this problem.
• Under dynamically changing workloads, we show that

our policy achieves 40% average cooling power savings
compared to the baseline policies when running HPC ap-
plications that spend 20% of their time in communication.

• We also provide a mechanism in our policy to enable
the administrators or users to impose target reliability con-
straints. Our policy is able to keep the temperature-related
hardware reliability over a desired value.

The rest of the paper starts with a discussion of the
related work. Section III presents the performance, temper-
ature, cooling power, and reliability models. We introduce
the performance and cooling optimization problems separately
and then describe our joint allocation strategy in Section IV.
We also explain how to optimize allocation with reliability
constraints in the same section. We provide the experimental
evaluation in Section V and conclude in Section VI.

II. RELATED WORK

This section reviews the related work on data center job
allocation algorithms for optimizing performance and cooling
energy costs. In addition, we discuss the related research on
reliability of computer systems and how it affects the job
allocation decisions.

A. Performance-Aware Job Allocation

Performance-aware job allocation algorithms for data cen-
ters and supercomputers typically focus on minimizing the
average number of communication hops between processors on
which a job is running. Some of the job allocation algorithms
allocate only contiguous (i.e., touching, in close proximity) sets
of processors to each job (e.g., [7], [8], [12]), as contiguous
node allocation provide significant reduction in execution time
for communication-intensive parallel programs. For example,
Bhattacharya et al. propose a heuristic for job allocation in
a mesh-connected parallel processor. They use a lookahead
idea by analyzing the queue of waiting jobs and propose an
algorithm to detect free submesh area for efficient allocation
[7]. However, such contiguous allocation algorithms may result
in external fragmentation of available processors (i.e., available
nodes that are separated from each other cannot be utilized)
and reduce the achievable system utilization.

A number of recent proposed algorithms on
communication-aware job allocation allow discontiguous
allocation of processors (i.e., the processors given to a job
do not need to be next to each other). For example, Mache
et al. present the MC allocation strategy for mesh-connected
parallel computers. Their method yields compact allocations
by containing the jobs in the smallest rectangular area possible
[9]. Motivated by the MC allocation strategy [9], Bender
et al. propose an MC1x1 processor-allocation algorithm,
in which the first sub-mesh is a 1X1 shell and subsequent
sub-meshes grow in the same way as in MC [10]. Walker et
al. discuss fast algorithms to allocate processors to compute
jobs in mesh-connected clusters [13], where they introduce
a curve-based allocation (processors are ordered according
to some curve) and propose several buddy-system strategies
(uses a data structure to organize free processors). Existing
performance-aware job allocation strategies solely target the
performance and communication costs without considering
the potential impact of job allocation on the cooling costs.

B. Thermal Modeling and Cooling Energy Management

As thermal management and reducing the cooling costs are
among the dominant concerns for today’s data centers, a num-

ber of thermal modeling and management techniques at data
center level have been proposed recently. Jungsoo et al. use
the linear formula with parameters ambient room temperature,
thermal resistance between die and air, and server power to find
server temperatures. However, their model does not consider
the effect of recirculation on temperature [14]. Wang et al. use
another model in which they compute the temperature of a
node as a combination of an RC-thermal model and a task-
temperature profile [15]. However, this model assumes that
the thermal map of the data center is available through input
ambient sensors and on-board sensors. Moore et al. carry out
CFD simulation to conduct thermal evaluation, which can not
be used for online real-time datacenter thermal management
[3]. Heath et al. introduce a data center temperature emulation
suite called Mercury that emulates temperatures based on the
data center layout, hardware, and component utilizations [16].
Despite its advantages of accuracy and efficiency, Mercury has
not been validated for large data center systems. Tang et al.
propose a linear model to compute data center temperatures
and cooling energy costs, and solve an optimization prob-
lem for minimizing the peak node inlet temperature (MPIT)
through job assignment [4]. They use both genetic algorithm
and sequential quadratic programming to solve the problem.

Moore et al. present two temperature-aware workload
placement algorithms: the first one assigns workloads to
servers based on location-aware discretization heuristics and
the second one minimizes the heat recirculating within the data
centers [3]. Pakbaznia et al. propose Minimum Total Data Cen-
ter Power (MTDP) algorithm to minimize the total of server
and cooling power in a data center by turning off some of
the servers and chassis and deciding on the voltage/frequency
setting for the servers [5]. However, these techniques focus on
reducing temperature and cooling cost of data centers without
considering the impact of the workload allocations on applica-
tion performance. Sansottera et al. proposes the Greedy Least
Power (GLP) algorithm to minimize the power consumption
while satisfying response time constraints imposed by service
level agreements [11]. However, their main focus is not HPC
applications with intensive communication, so their model
does not include the communication latency during allocation.

C. Reliability-Aware Workload Management

Recent work on reliability-aware job allocation and man-
agement techniques mainly targets multi-chip multicore sys-
tems. Wang et al. present a technique to optimize the lifetime
of a multicore system by utilizing a sequential quadratic
programming method while maintaining a given aggregate pro-
cessor speed [17]. Meng et al. propose a workload allocation
policy to optimize the reliability of multi-chip multicore sys-
tems considering the series/parallel connections of processors
and servers in a data center [18]. These methods perform
reliability-aware task allocation in the multi-chip multicore
systems; however, they do not investigate the temperature-
dependent reliability at the data center level. To improve the
reliability of HPC clusters, Hacker et al. propose scheduling
policies and corresponding analytical resource prediction mod-
els for estimating the size of the virtual cluster system needed
to provide a reliable service for a realistic HPC workload. They
model virtual cluster reliability as a Weibull distribution based
on the kernel logs of a cluster [19].

!"#"$
%&'#&

($()*
+

!"#!

$%&'

,
"
%
-

%).!$"/(

0)#$"/(

#

(

!

)

1
+

2
3

4

!"#"$
%&'#&

($()*
1

%).!$"/(

Fig. 1: Layout of the data center.

D. Distinguishing Aspects from Prior Work

Our work differentiates from prior research as our job
allocation policy optimizes both the application performance
(in terms of the communication cost) and the cooling energy
cost of HPC data centers. Our policy confines the communi-
cating nodes of a job in close proximity, but it also selects the
most cooling-efficient locations possible. We implement and
show the impact of prior performance-aware (MC1X1) and
cooling energy-aware job allocation policies. We demonstrate
that for jobs involving intensive communication between the
nodes, application performance becomes an important factor
in determining the cooling power. We also include processor
reliability as a constraint in our policy.

III. EXPERIMENTAL METHODOLOGY

In this paper, we model a small size data center with 2
rows of industry standard racks arranged in a layout shown in
Figure 1. In this arrangement, rack inlets where the cool air
is supplied are facing the outer aisles forming cold aisles at
the sides. Rack outlets, where the hot air exits, are facing each
other forming a hot aisle in between the two rows. Each row
is composed of 5 racks and each rack has 4 compute nodes. In
our experiments, we assume that each node includes 10 servers
and each server has 2 processors. This layout corresponds to a
total of 800 processors across the two rows of the data center.
The proposed data center setup has been widely used in prior
work and is representative of today’s data center configurations
[11]. Our methodology and proposed policy are scalable to
larger data centers.

A. Workload and Performance Model

In this paper, we target communication-intensive parallel
applications that use high-level message passing interfaces
such as MPI. For such workloads, the communication overhead
inherent in the data center is one of the major performance
bottlenecks [9]. We evaluate our job allocation algorithms
for mesh-connected HPC data centers and supercomputing
systems. Mesh-connected networks for message passing are
widely used in many experimental and commercial distributed
memory parallel computers, such as IBM BlueGene/L and
Cplant, a commodity-based supercomputer developed at San-
dia National Laboratories.

We specify our workloads as jobs that require a number
of nodes in the data centers. The performance metric for our

evaluation is the average pairwise L1 distance (Manhattan
distance) across all the communicating nodes of a job running
on the mesh-connected parallel system [10]. We employ L1
distance as our metric as it has been demonstrated to correlate
with application running time [6]. We call the total L1 dis-
tance among the nodes of a job the communication cost and
formulate it as follows:

CCjob =
1

n

∑
(s,t)∈(S,T)

[wx(s, t) + wy(s, t)] (1)

where n is the job size (the number of nodes a job requires),
(s, t) is the pair of source and destination nodes of a message
and (S, T) is the set of all the source and destination node
pairs for all the messages. In this work, we assume n > 1 for
all jobs. wx(s, t) and wy(s, t) represent the distance between
s to t along the x-axis and y-axis, respectively, as shown in
Figure 2(b). Division by n provides the normalization with
respect to job size; thus, CCjob gives the communication cost
of a job per node.

We assume all-to-all communication pattern for our work-
loads. In all-to-all pattern, each processor communicates with
all the other processors running the same job, as shown in
Figure 2(a). All-to-all is a common communication pattern in
HPC routines such as Fast-Fourier-Transform, which is part of
several applications including molecular dynamics, quantum
chemistry, and digital signal processing [20].

For our experiments, we set the one-hop distance within
a data center row as 1 and the distance between nodes of
different rows as 10. The reason for the larger distance among
rows is that nodes placed at different rows communicate
through a larger number of switches and longer interconnects
on the communication path [21]. Thus, this effect should be
included in the communication latency calculation.

In our simulations, we reflect the effect of job communica-
tion cost on job runtime. We assume that the application spends
a certain percentage of time on communication, denoted as C%
[22]. As a baseline for a job’s communication cost, we take
the minimum CCjob that can be accomplished for a given job
size. For example, for a job of size 4, the minimum achievable
communication cost is 4 using Equation 1. We then define the
ratio of the current CCjob to the best case CCjob as the latency
factor, Lf . We calculate the actual job runtime by scaling the
communication portion of the runtime by Lf .

B. Cooling Energy Model

We use a typical data center layout validated by prior work
[23] (See Figure 1). In this layout, racks and perforated vent
tiles are placed on a raised floor. Cold air enters the room

(a) All-to-all pattern (b) Distance metrics

Fig. 2: Communication pattern and distance measure.

from the floor tiles, goes into the rack inlets from the sides,
and gets hotter as it moves through the racks. Hot air exits
the rack from the back into the center aisle and the exhaust
air exists the room from the ceiling to be cooled again. This
set-up is called hot aisle/cold aisle arrangement which avoids
mixing cold supply air with exhaust air.

To be able to compare different job allocation strategies, we
need a fast and accurate data center thermal model. We use the
model proposed and validated by Tang et al [24]. Their model
combines a linear, low complexity heat recirculation model
with a linear power model. This model is more practical than
most other existing models as it requires a set of computational
fluid dynamics (CFD) simulations only once to characterize the
data center. Once we have the measured data center specific
parameters, the vector of inlet temperatures, Tin, for all the
nodes are computed using the following linear equation:

Tin = Tsup +DP (2)
D = [(K − ATK)−1 − K−1] (3)

where Tsup is the CRAC unit supply temperature vector, D is
the heat distribution matrix and P is the node power vector. K
is the thermodynamic constant matrix and A is the heat cross-
interference coefficient matrix representing the recirculation
phenomena. K is calculated as:

K = diag(Ki) (4)
Ki = ρficp (5)

where ρ=1.19 Kg/m3 is the density of air, fi=0.2454 m3/s
is the flow rate of node i (assumed fixed for all nodes), and
cp=1005 J/KgK is the specific heat of air [4].

Matrix A represents the fraction of output heat from each
node that is recirculated to the inlet of other nodes. It is an
n × n matrix for a system with n nodes with each term aij
representing the fraction of heat at node i recirculating back
into node j. It has been shown that elements of matrix A
mostly depend on the data center layout rather than the power
consumption of the nodes or the supply temperature [11].
Therefore, this matrix is obtained once for a data center. The
matrix is calculated through CFD simulations in prior work
[24]. If one has input ambient sensors mounted already, A
can be obtained using sensor measurements instead of CFD
simulations and following the same procedure in [24]. We
use the coefficients for the data center given in [11]. We
insert the colormap plot given in [11] into Matlab to extract
the coefficient value corresponding to each data point in the
image. We map RGB values to indexes, which preserve the
relationship between coefficients relative to each other. Next,
we perform calibration by scaling the matrix according to the
given temperature graph in [11]. Figure 3 shows the matrix A
for the 40-node system in a 3-D plot. For a data center with
different layout and heat flow characteristics, matrix A differs.
However, the equations to calculate the inlet temperatures are
independent of the data center; in other words, the model
applies to data centers in general.

For a node j,
∑n

i=1
aij is called the recirculation coeffi-

cient (RC) of node j and is a measure of the total recirculation
effect of that node [24]. On the other hand, for a node i, the
value of (1−

∑n

j=1
aij) is called the exit coefficient (EC) of

Fig. 3: Cross-interference coefficient matrix for our system.

node i. EC is a measure of the heat at node i’s outlet returning
back to the cooling system without recirculating back to other
nodes. EC and RC for our system are given in Figure 4. As
seen from Figure 4(a), the nodes at the bottom of the racks
and at the ends of the aisles have lower EC values, meaning
they contribute more to the recirculation effect. Moreover,
according to Figure 4(b), the nodes at the top and at the ends
of the aisle have higher RC values, which means they are
more affected (or victimized) by the recirculated heat. The
asymmetry between EC and RC values of right and left end
of the aisles is due to asymmetries in the heat flow within the
data center. Our policy considers the specific thermal behavior
of the given data center and takes the differences in EC and
RC into account during cooling optimization.

Next, we describe how the node powers are calculated
based on job allocation. These power values are used in
Equation (2) to calculate the inlet temperatures resulting from
different allocation schemes. We perform node-level allocation
in this paper, which is a reasonable hierarchical level for HPC
data centers. Once a job is assigned to a node of multiple
servers, server and core level workload allocation will follow.
Assume a given task of size n, which corresponds to the total
number of nodes a task requires, xi is an integer variable
showing whether node i is assigned a job or not and it is
either 1 or 0, respectively. Power consumption of node i can
be expressed with a linear model as follows:

Pi = Pidle + xiPutil (6)

where Pidle is the node idle power and Putil is the power
consumed by a node when running a task. We use 1000 W for
Pidle and 2500 W for Putil. Therefore, for a node (composed
of 10 servers) running a job, the total power is 3500 W. These
numbers are in line with the server power values given in [11].

We adjust the total node power according to the actual run-
time and percentage of time spent in communication. During
communication intensive phase, power consumption will be
lower due to the time spent waiting for messages. We assume
2 different power levels, 3500 W for computation phase and
2700 W during communication phase. These numbers are in
line with the values in [25]. We set the total power of a node
as the weighted sum of the computation power and communi-
cation power. Communication level (C%) or the power levels
corresponding to computation/communication phases depend

(a) Exit Coefficients (b) Recirculation Coefficients

Fig. 4: Exit and recirculation coefficients for our system.

on the workload and power characteristics of the system.
However, the policy is applicable to systems with different
power and communication levels.

Once we get the node inlet temperatures using Equa-
tion (2), we need a cooling power model to measure the power
consumed by the cooling unit at various temperatures. This
power depends on the efficiency of the CRAC unit. One of
the most common metrics used for CRAC unit efficiency is
the coefficient of performance (CoP). CoP is defined as the
ratio of the heat removed from the system to the energy spent
on cooling and has the following formula:

CoP =
Pc
PAC

(7)

where Pc is the total computing power (sum of the values in
P vector) and PAC is the cooling power. CoP increases with
higher CRAC suppy temperature (Tsup). In this work, we use
the CRAC unit CoP model given by [3] as follows:

CoP (Tsup) = 0.0068Tsup
2 + 0.0008Tsup + 0.458 (8)

where Tsup is in Celcius. The upper limit on how much
we can increase supply temperature (Tsup) depends on the
difference between redline temperature (Tred), which is the
highest allowed temperature at the node inlets, and maximum
node inlet temperature (Tin,max). In other words, we can
use this temperature slack to increase the supply temperature
and operate at higher CRAC efficiency without violating the
temperature constraints. A new supply temperature is found by
adding this difference to Tsup and cooling cost is calculated
as follows:

Tsup ′ = Tsup + Tred − Tin,max (9)

PAC =
Pc

CoP (Tsup ′)
(10)

C. Temperature Model

Node inlet temperatures are sufficient for computing the
cooling cost; however, we need to calculate the junction
temperature to estimate processor reliability. We calculate the
junction temperature in two steps using a linear model. Firstly,
we calculate the heat sink temperature as follows:

THS = THS,ref + (Tin − Tin,ref)x (11)

where THS is the heat sink temperature, THS,ref is the
reference heat sink temperature, Tin is the node inlet tem-
perature and Tin,ref is the reference inlet temperature. THS
corresponds to the typical heat sink temperature at reference
inlet temperature, Tin,ref . For example, we take Tin,ref as
the supply temperature Tsup = 15◦C and THS,ref = 45◦C,
meaning that when the inlet temperature is 15◦C, we observe
45◦C on the heat sink. x is a scaling factor determining
the effect of Tin deviation from Tin,ref on the heat sink
temperature. For example, x = 0 corresponds to the case for
which, heat sink temperature stays constant with changing inlet
temperature. We take x as 0.6 as suggested in prior work [26].
Secondly, we calculate the server junction temperature Tj as
follows:

Tj = Ta + P ×Rja (12)

where Ta is the ambient temperature and is equal to the heat
sink temperature, P is the processor power and Rja is the junc-
tion to ambient thermal resistance and is typically 0.1 ◦C/W
for a high quality heat sink. Our previous server power value
of 350 W included the total power for 2 processors, memory,
interconnects etc. To calculate the junction temperature of a
single processor, we use 120 W for processor active power.

D. Data Center Reliability Model

Hardware reliability is an important issue in data centers.
High component temperatures lead to higher failure rates,
which in turn impact both maintainability of the data center and
the job performance. Without precautionary mechanisms such
as failure prediction or redundant failover nodes, node failures
may result in job termination, which impacts the performance
of the HPC applications. Thus, our job allocation policy
considers the processor hardware reliability as a constraint.
Our main focus in this work is the processor reliability. We
assume all the processors are of homogeneous hardware, so we
assume the default failure rate is the same across processors.

We consider three main temperature-induced failure mech-
anisms, Electromigration (EM), Time Dependent Dielectric
Breakdown (TDDB), and Negative Bias Temperature Instability
(NBTI) [27], [28], [29]. They all have the general exponential
failure rate formula given as follows:

λ = λ0 × e
−Ea
kT (13)

where Ea is the activation energy for the failure mechanism, k
is the Boltzmann’s constant (8.62 · 105), T is the temperature,
and λ0 is a material-dependent constant. EaEM

= 0.7eV for Al
alloys [27]. We set EaTDDB

= 0.75eV [27]. NBTI activation
energy represents EaNBTI

×1/n, where n is the measured time
exponent. We use EaNBTI

= 0.15eV and n = 0.25, giving the
product 0.6eV [27], [28].

Using the sum of failure rates model, failure rate for a com-
ponent is the sum of failure rates for each failure mechanism
[29]. The resulting component mean-time-to-failure (MTTF)
and reliability are calculated as follows:

λc = λEM + λTDDB + λNBTI (14)
R(t) = e−λct (15)

MTTFc = 1/λc (16)

where λc, MTTFc and R(t) are component failure rate, MTTF,
and reliability at time t, respectively. We set the failure rate
constants such that per-processor MTTF is 5 years at 60◦C.

IV. OPTIMIZATION METHODOLOGY

In this section, we first formulate and solve the cooling
energy optimization and communication cost optimization
problems individually. For cooling cost minimization, we use
the Minimize Peak Inlet Temperature (MPIT) algorithm [4];
for communication cost minimization, we deploy the MC1X1
algorithm [10]. We then propose a job allocation algorithm,
which takes both cooling efficiency and communication la-
tency into consideration. We also discuss how reliability con-
straints can be included in the job allocation optimization.

A. Performance-aware Job Allocation

The objective of performance-aware (i.e., communication
cost-aware) job allocation is to assign a job to a set of available
nodes on a target system such that the average number of
communication hops between the nodes is minimized. The
target system in this paper is a mesh-connected HPC cluster, as
discussed in Section III. We formulate the performance-aware
job allocation problem in Equation (17).

minimize
Xjob

CCjob(Xjob)

subject to
N∑
i=1

xi = n xi ∈ {0, 1}
(17)

where N=40 is the number of total nodes within the data
center and n is the total number of nodes required by a job.
Xjob is a vector described as Xjob = {x1, x2, ..., xN}, where
xi (i = 1, . . . , N) represents whether node i is assigned the
current job or not. It shows the selected nodes to allocate
the current job, so n of its elements are 1 and the rest is
0. CCjob represents the communication cost of a job running
on the target system as introduced in Section III-A. Based on
Equation (1), CCjob(Xjob) can be formulated as:

CCjob(Xjob) =
1

n

∑
(xi,xj)∈Xjob

(xi · xj)[wx(xi, xj) + wy(xi, xj)]

(18)
where n is the number of nodes a job requires and (xi, xj)

(i, j = 1, . . . ,m) stands for a pair of source and destination

nodes that a message is passing through. We use the MC1X1
algorithm [10] to minimize the communication cost, as it aims
at minimizing the pairwise L1 distance across the commu-
nication nodes and provides acceptable results for all-to-all
communication pattern [6].

MC1X1 allocation algorithm tries to confine the allocated
jobs into the smallest possible area. A rectangular-shaped area,
in which all the assigned nodes are ideally confined, is called
a shell. The node located at the center of the shell is called
the shell center. For an incoming job, MC1X1 traverses the
data center layout and finds shells of different centers and
sizes among the available (idle) nodes. During this traversal,
MC1X1 records a score for each node, where the score is the
size of the smallest possible shell centered at that node. The
decision of which node to select as a shell center depends on
its score. A lower score indicates a smaller shell area, leading
to a more compact allocation with lower communication cost.

B. Cooling-aware Job Allocation Policy

Maximum cooling energy saving is achieved when the
maximum inlet temperature {Tin} in the data center is mini-
mized [4]. Therefore, a cooling-aware allocation policy assigns
jobs to nodes so that the resulting max{Tin} will be minimum;
this algorithm is called as the Minimize Peak Inlet Tempera-
ture (MPIT) algorithm in prior work [4]. We formulate the
optimization problem of allocating a job to an idle data center
with minimal cooling energy as follows:

minimize
Xdcenter

max{Tin(Xdcenter)}

subject to
N∑
i=1

xi = ndcenter xi ∈ {0, 1}
(19)

where Xdcenter is a vector described as Xdcenter =
{x1, x2, ..., xN}, where xi (i = 1, . . . , N) represents whether
node i is assigned any job or not. Vector Xdcenter shows all
of the busy nodes in the data center corresponding to currently
and previously allocated jobs. ndcenter is the sum of the sizes
of all jobs running on the data center. Rest of the parameters
are defined the same as in Equation (17). Tin represents the
inlet temperature of a system which is defined in Equation (20).

Tin(Xdcenter) = Tsup +D ·Pidle +D ·Xdcenter ·Putil (20)

where Tsup is the CRAC unit supply temperature, D is heat
distribution matrix. Pidle and Putil are the idle and dynamic
power for the nodes. Note that, in order to allocate a second job
to a busy data center, we use additional constraints to represent
the currently busy nodes. For example, if nodes 1, 2 and 3 are
busy at the time of allocation, we add the constraints x1=1,
x2=1, x3=1 to solve the problem.

As described in Section III-B, cooling cost is highly
dependent on the CRAC supply temperature Tsup. If we can
increase Tsup as much as possible without causing the nodes
to exceed the redline temperature, we can save power. The
maximum allowed Tsup increase, therefore, is limited by the
maximum inlet temperature max{Tin}. We use the Matlab
function fminimax to solve the optimization problem. The
function returns a real number solution xreal and we use the
discretization algorithm suggested in [4] to convert it to the
nearest integer solution xint which obeys the constraints.

Fig. 5: Joint optimization algorithm.

C. Joint Optimization Policy for Data Center Job Allocation

This section provides the details of our optimization policy,
which jointly optimizes cooling energy and communication
cost of applications running in an HPC data center. Cooling-
aware and performance-aware policies optimize cooling power
and communication latency independently, which means that
the resulting allocations may not be successful when both
objectives are considered simultaneously. Cooling-aware job
allocation is mostly affected by the layout of the data center
as the recirculation effect changes depending on the location of
the active nodes. In most cases, cooling-aware policy allocates
jobs to the nodes located far from each other. For example,
for a job of size 4, cooling-efficient allocation distributes
the job equally among the data center rows in order to
minimize the peak inlet temperature. This causes very high
communication latency for cooling-aware policy. On the other
hand, performance-aware MC1X1 policy confines the nodes of
each allocated job into the smallest possible shell. It follows
a regular pattern to allocate the jobs in the data center and
arbitrarily breaks ties. It does not care about whether an
allocation results in high temperature as long as the allocated
nodes are within the smallest shell possible, potentially causing
inefficient cooling.

We design a heuristic algorithm combining both policies.
Our algorithm first considers cooling-aware job allocation
solution, and then uses the resulting nodes as candidates for
shell centers to apply the performance-aware job allocation
policy. Then, we break the ties of possible performance-aware
job allocations by selecting the allocation with minimal peak
inlet temperature.

When a job arrives, our algorithm first checks which nodes
the cooling-aware policy would allocate the job to. These
nodes are called as possible shell centers. Then, we feed
the locations of these possible shell centers to the MC1X1
algorithm to minimize communication cost. We modify the
MC1X1 algorithm to make it open a shell centered at a given
input node (possible shell center) accordingly. In MC1X1,
opening a shell centered at a node refers to finding the smallest
square-shaped area to include all nodes of a job. Starting from

the smallest shell (1 square unit), the number of available
nodes in the shell are checked. If the size of the job is
larger than the available nodes, shell is expanded. When the
available node count is met, policy examines whether there are
multiple allocation options within the shell area. For example,
assume that we have a shell with 9 nodes, 3 of whom are
busy, and we will assign a job of size 4 to the rest. In this
case, we choose the 4 nodes with minimum communication
cost possible. The resulting selection is the possible allocation
corresponding to that possible shell center. For each possible
shell center, revised MC1X1 algorithm gives an allocation
vector, possible X dcenter. Among those vectors, we select
the most cooling efficient one (i.e., resulting in smallest peak
inlet temperature). For example, assume that for a job i of
size 3, cooling-aware policy assigns the job to nodes 1, 4,
and 5. We open shells centered at those nodes and select the
one with the smallest inlet temperature. For the cases where
two or more allocations result in the same inlet temperature but
different communication costs, we find and choose the smallest
communication cost allocation.

Figure 5 illustrates the flow of the joint optimization algo-
rithm. MPIT and MC1X1 revised are the cooling-aware and
revised performance-aware algorithms, respectively. X dcenter
and P are the vectors holding the current busy nodes informa-
tion and the power values. Possible sc is the possible shell
center and CC job stands for the job communication cost.
Possible X dcenter is the vector of busy nodes that will result
from the possible allocation. Possible X job vector shows
which nodes will be assigned to the job. Note that the joint
policy is scalable to larger data centers. The only parameters
to change for a different data center are the cross-interference
coefficient matrix and the power values for the nodes.

If the user or the administrator wants to add a minimum
MTTF constraint to the joint policy, we check what the re-
sulting MTTF value for each processor would be before every
allocation decision. To compute these MTTF estimates, we
first compute the resulting inlet temperatures for that allocation
using Equation (2). Next we compute junction temperatures
as described in Section III-C. Finally, we compute processor
MTTF as explained in Section III-D. If the current allocation
is expected to result in an MTTF value lower than the given
threshold for any processor, we stall the allocation and wait
for some of the existing jobs to finish.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results
for the three different allocation strategies: cooling-aware,
performance-aware and our joint optimization technique. We
first demonstrate the job allocation decision of each strategy
on a single row of the data center. We then experiment with
multiple-row allocation for our target data center with 40
nodes. We also compare our joint allocation policy against
the cooling-aware and communication-aware policies under
dynamically changing workload.

Single-row Job Allocation

In this test case, there are four jobs to be allocated sequen-
tially, which have sizes of 4, 5, 6 and 3 nodes, respectively.
Figure 6 illustrates how each policy assigns the jobs to the

Fig. 6: Allocation scheme for the three policies.

nodes. Red and blue colors respectively represent busy and
free nodes. The numbers in the circles show which jobs are
running on the nodes. Cooling-aware policy assigns jobs to the
nodes located at the right side of the data center and avoids
the nodes that are high recirculation contributors. This result is
in parallel with previous the characteristics of our data center
as shown in Figure 4. Communication-aware policy, on the
other hand, tries to confine the allocated nodes to the smallest
area possible. Therefore, the resulting allocation for each job
is more compact. Our joint allocation policy finds the cooling-
efficient areas and assigns the jobs to the nodes as close to
each other as possible without causing notable temperature
increases. Joint policy does not always result in the same
minimum inlet temperature as the cooling-aware policy, but
follows closely.

Table I shows the percentage of active nodes, maximum
inlet temperatures, individual job communication cost (CC),
and cooling power (Pac) for all the three allocation schemes.
As we can see in Table I, performance-aware policy gives the
lowest job communication cost (CC) for each job; however, it
reaches the high inlet temperatures very fast. Cooling-aware
policy keeps the temperatures low, but results in very high
communication latency for all the jobs. As expected, our joint
policy’s performance is in between the two policies.

Multiple-row Job Allocation

In order to evaluate the job allocations across the multiple
rows of the data center, we use a job sequence that is similar
to the sequence in the previous experiment. Figure 7 shows the
percentage of the active nodes and the size of each job in terms
of number of nodes required. Figure 8 shows the cooling power
over time for the three allocation policies. Joint policy follows
the cooling-aware policy closely and all policies converge
at the 100% utilization point. However, performance-aware
allocation reaches high cooling power values much faster than
the joint policy.

We present the communication cost of each job in Figure 9
and observe that cooling-aware assignment results in high com-
munication cost. The reason is that the cooling-aware assign-
ment distributes the jobs across different rows to minimize inlet

Fig. 7: Job sizes and percentage of active nodes for multiple-
row allocation.

Fig. 8: Cooling power for multiple-row allocation.

temperature. As a result, communication cost is significantly
affected by the distance between the communicating nodes.
Joint policy resolves this issue by sacrificing some cooling
efficiency. It assigns the job within a row in the most cooling-
efficient way possible, and alternates the rows as more jobs
arrive. However, if the number of available nodes in a row is
not sufficient to service an incoming job, joint allocation also
results in high communication cost. An example is seen for
jobs 8 and 9 in Figure 9, where the jobs are allocated across
the two rows.

We observe that our joint policy reduces the average
cooling power by 30.8% compared to the performance-aware
policy while increasing the power by only 0.5% compared to
the cooling-aware policy. On the other hand, in comparison
to the cooling-aware policy resulting in 2.45 times larger
average communication cost compared to the performance-
aware policy, our joint policy causes only 0.69 times larger
cost. This is expected as our joint policy sacrifices some
performance for improving cooling efficiency, and vice versa.

Note that our results for the single and multiple-row
allocation do not consider the change in application execution
time as the communication cost changes. In other words, larger
communication costs may change the power-performance char-
acteristics of jobs, hence, also affect the cooling power. Next,
we investigate such interactions between performance and
cooling power in detail.

Dynamic Job Allocation

In this section, we present the results for a dynamically
changing workload scenario and compares our joint policy
with the baseline policies. We generate a job queue with arrival
time following an exponential distribution, which has been
widely used in data center workload models [19]. We use
an arrival rate of 15 jobs/hour. In this experiment, we update
the data center status as some of the jobs finish executing.

Fig. 9: Individual job communication costs for multiple-row
allocation.

TABLE I: Simulation results for the single-row job allocation.
Policy Perf-aware Cooling-aware Joint-opt

Job Util CC MaxTin Pac(kW) CC MaxTin Pac(kW) CC MaxTin Pac(kW)
Job1 20% 4.0 25.0 9.4 4.0 19.9 6.3 4.0 19.9 6.3
Job2 45% 6.4 25.1 13.4 9.6 20.5 9.4 8.0 20.3 9.2
Job3 75% 8.3 32.1 35.8 13.3 23.3 15.6 14.7 23.3 15.6
Job4 90% 2.7 32.1 40.4 5.3 28.1 27.0 2.7 28.5 28.0

We adjust the power and runtime of the jobs according to
the communication latency to have a realistic model. The
allocation is based on a first-come-first-serve policy and when
there are no available nodes, we wait for other jobs to finish.
We simulate a total time of 4 hours and use the last 3 hours
of the simulation in which 41 jobs arrive. We record the
maximum inlet temperature at each time step and cooling cost
for each job. At each time step, the current available node list,
power values of active nodes and the finishing time of the jobs
are updated according to the model in Section III-B. We set
the communication level for all the applications, C%, as 20%.

Figure 10 shows the percentage of active nodes over time
and the cooling power for all three allocation policies. An
important observation is that, in the dynamic case, the active
node percentage is higher for the cooling-aware policy. This
is because cooling-aware allocation results in high communi-
cation latency, which means that C% part of the application is
running slower and thus results in longer runtime. Therefore,
not only the nodes dissipate power for longer time, but also the
next job is allocated in a less efficient way due to more limited
allocation freedom. On the other hand, joint optimization
policy manages to overcome this problem by following a
pattern similar to the MC1X1 algorithm. For example, during
the time between the black dashed lines (70-90 minutes),
cooling-aware case has almost 100% of its nodes active, while
for performance-aware and joint allocation cases, a job finishes
after 75 minutes and some nodes are freed. This performance
effect translates into changes in the cooling cost, as shown

Fig. 10: Percentage of the active nodes and the cooling power
traces for dynamic allocation.

in the bottom plot in Figure 10. Cooling power for our joint
policy closely follows the cooling-aware policy from time 0
to 80 minutes. However, when cooling-aware policy starts
losing its efficiency because of the performance overheads,
joint policy starts following the performance-aware policy
(see Figure 10). These results show that for a data center
running HPC applications with intensive communication, even
a cooling-aware policy may result in inefficient cooling if it
does not take into account the communication latency. The
average cooling power for the 3-hour period is 53.1 kW
for the cooling-aware policy while it is 53.3 kW and 32.2
kW for performance-aware and joint policies, respectively.
This corresponds to close to 40% cooling power savings
in comparison to both cooling-aware and performance-aware
policies. We also evaluate the energy consumption of the data
center for different allocation schemes and observe 170.7 kWh,
163.3 kWh, 98.4 kWh for cooling-aware, performance-aware
and joint allocation policies, respectively.

Figure 11 compares the communication cost for each job
allocation policy. It shows that the frequency of the occurrence
of communication costs for the total number of jobs allocated.
For the performance-aware policy, data points are confined to
the lower communication cost area and while for cooling-
aware policy it is distributed across the spectrum. For the
performance-aware policy, all the jobs have communication
costs lower than 30, while 97.6% of the jobs have CC < 30
for the joint policy.

We repeat the same experiments with a higher commu-
nication level per application of C = 30%. We observe the
average cooling power as 74.2 kW, 50.8 kW and 32.1 kW,
while the corresponding energy consumptions are 238.96 kWh,
154.96 kWh, 98.3 kWh for cooling-aware, performance-aware
and joint allocation schemes, respectively. This corresponds to
56.7% cooling power saving compared to the cooling-aware
policy and 36.8% compared to the performance-aware policy.

In order to include reliability awareness during job allo-
cation, we set a minimum MTTF constraint of 4 years and
achieve an average cooling power of 20 kW without total
runtime change. Even though the allocation stalls in order to
meet the MTTF constraint (i.e., waits for other jobs to finish
so that temperatures decrease), total runtime of the job set is
not affected under the given job arrival rate. When we increase
the arrival rate to 25 jobs/hour and compare the results with
and without reliability constraint, we observe a 63% increase
in the total runtime.

Note that our runtime job allocation policy has low over-
head. We measure the time spent on running the allocation
algorithm for each job for the dynamic queue of 41 jobs. We
have observed that the time each job allocation decision takes
is less than 1 second in our Matlab-based implementation.

Fig. 11: Histogram of the communication cost for the dynamic
allocation experiment.

VI. CONCLUSION

In this paper, we have proposed a joint job allocation
policy to optimize both cooling power and communication
latency in HPC data centers. Our policy first uses the MPIT
algorithm to find the most cooling-efficient nodes to allocate
a job. It then applies the modified MC1X1 algorithm to
allocate the job on cooling-efficient nodes while keeping the
average L1 distance at a minimum. We showed that for
static allocation, our joint policy reduces the average cooling
power by 30.8% compared to the performance-aware policy
while it increases the power by only 0.5% compared to the
cooling-aware policy. We demonstrated that for dynamically
changing workloads, solely using a cooling-aware policy does
not give the minimum cooling power due to the resulting high
communication latency. We validated our joint policy under
dynamically changing workloads and observed that, for HPC
applications with 20% communication, our policy decreases
the cooling power by 40% in comparison to cooling-aware
and performance-aware policies. At the same time, we achieve
comparable performance to that of the performance-aware
policy. Cooling power savings increase for HPC applications
that have a higher frequency of communication.

ACKNOWLEDGEMENTS

This work has been partially funded by NSF grant CNS-1149703 and Sandia
National Laboratories.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010.” http:
//www.analyticspress.com/datacenters.html, August 1 2011.

[2] R. Sawyer, “Calculating total power requirements for data centers,”
White Paper, American Power Conversion, 2004.

[3] Moore et al., “Making scheduling ”cool”: temperature-aware workload
placement in data centers,” in Proceedings of the annual conference on
USENIX Annual Technical Conference, pp. 5–5, 2005.

[4] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient
thermal-aware task scheduling for homogeneous high-performance
computing data centers: A cyber-physical approach,” IEEE Trans.
Parallel Distrib. Syst., vol. 19, pp. 1458–1472, Nov. 2008.

[5] E. Pakbaznia and M. Pedram, “Minimizing data center cooling and
server power costs,” in International Symposium on Low Power Elec-
tronics and Design, pp. 145–150, 2009.

[6] V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal,
J. Mitchell, C. Phillips, and S. Seiden, “Processor allocation on cplant:
achieving general processor locality using one-dimensional allocation
strategies,” in IEEE International Conference on Distributed Computing
Systems, pp. 296–304, 2002.

[7] S. Bhattacharya and W.-T. Tsai, “Lookahead processor allocation in
mesh-connected massively parallel multicomputer,” in International
Parallel Processing Symposium, pp. 868 –875, apr 1994.

[8] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnston, and P. Sa-
dayappan, “Selective buddy allocation for scheduling parallel jobs on
clusters,” in IEEE International Conference on Cluster Computing
(CLUSTER), pp. 107–, 2002.

[9] J. Mache, V. Lo, and K. Windisch, “Minimizing message-passing
contention in fragmentation-free processor allocation,” in International
Conference on Parallel and Distributed Computing Systems, pp. 120–
124, 1997.

[10] M. A. Bender, D. P. Bunde, E. D. Demaine, S. P. Fekete, V. J.
Leung, H. Meijer, and C. A. Phillips, “Communication-aware processor
allocation for supercomputers: Finding point sets of small average
distance,” Algorithmica, vol. 50, pp. 279–298, Jan. 2008.

[11] A. Sansottera and P. Cremonesi, “Cooling-aware workload place-
ment with performance constraints,” Performance Evaluation, vol. 68,
pp. 1232–1246, nov 2011.

[12] P.-J. Chuang and N.-F. Tzeng, “An efficient submesh allocation strategy
for mesh computer systems,” in IEEE International Conference on
Distributed Computing Systems, pp. 256–263, May 1991.

[13] P. W. D. Bunde and V. Leung, “Faster high-quality processor allocation,”
in Proceedings of the 11th LCI International Conference on High-
Performance Clustered Computing, 2010.

[14] J. Kim, M. Ruggiero, and D. Atienza, “Free cooling-aware dynamic
power management for green datacenters,” in International Conference
on High Performance Computing and Simulation (HPCS), pp. 140 –
146, july 2012.

[15] L. Wang, G. von Laszewski, J. Dayal, X. He, A. Younge, and T. Furlani,
“Towards thermal aware workload scheduling in a data center,” in Inter-
national Symposium on Pervasive Systems, Algorithms, and Networks
(ISPAN), pp. 116 –122, dec. 2009.

[16] T. Heath et al., “Mercury and freon: temperature emulation and man-
agement for server systems,” in ASPLOS, pp. 106–116, 2006.

[17] S. Wang and J.-J. Chen, “Thermal-aware lifetime reliability in multicore
systems,” in International Symposium on Quality Electronic Design
(ISQED), pp. 399–405, 2010.

[18] J. Meng, F. Kaplan, M. Hsieh, and A. K. Coskun, “Topology-aware
reliability optimization for multiprocessor systems,” in International
Conference on VLSI and System-on-Chip, pp. 243–246, 2012.

[19] T. J. Hacker and K. Mahadik, “Flexible resource allocation for reliable
virtual cluster computing systems,” in SC, pp. 48–48, 2011.

[20] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization
of all-to-all communication on the blue gene/l supercomputer,” in
International Conference on Parallel Processing, pp. 320 –329, 2008.

[21] “Belden incorporation, data center design guidelines.” http://www.
belden.com/pdfs/techbull/datacenterguide.pdf, 2007.

[22] M. Crovella, R. Bianchini, T. Leblanc, E. Markatos, and R. Wisniewski,
“Using communication-to-computation ratio in parallel program design
and performance prediction,” in IEEE Symposium on Parallel and
Distributed Processing, pp. 238 –245, dec 1992.

[23] P. Rad, K. Karki, and T. Webb, “High-efficiency cooling through
computational fluid dynamics,” Dell Power Solutions, February 2008.

[24] Q. Tang, T. Mukherjee, S. Gupta, and P. Cayton, “Sensor-based
fast thermal evaluation model for energy efficient high-performance
datacenters,” in International Conference on Intelligent Sensing and
Information Processing, ICISIP., pp. 203 –208, 15 2006-dec. 18 2006.

[25] C. Lively et al., “Energy and performance characteristics of different
parallel implementations of scientific applications on multicore sys-
tems,” J. High Perform. Comput. Appl., vol. 25, Aug 2011.

[26] E. Walsh et al., “From chip to cooling tower data center modeling:
Part ii influence of chip temperature control philosophy,” in IEEE In-
tersociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems (ITherm), pp. 1 –7, june 2010.

[27] JEDEC, “Failure mechanisms and models for semiconductor devices,
technical report jep122c.” http://www.jedec.org, March 2006.

[28] M. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, “A compre-
hensive model for pmos nbti degradation: Recent progress,” Microelec-
tronics Reliability, vol. 47, no. 6, pp. 853 – 862, 2007.

[29] J. Srinivasan et al., “Ramp: A model for reliability aware microproces-
sor design,” Tech. Rep. IBM-RC23048(W0312-122), Dec. 2003.

