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loads utilize the systems at lower levels [13]. Another challenge 
with multi-threaded workloads is the significance of application-
specific needs and constraints while determining the resource 
allocation and consolidation strategies. Resource requirements 
exhibit significant variations across and within application domains. 
Therefore, runtime monitoring and adaptive techniques would 
enable (1) workloads to operate at more e!cient settings, and  
(2) the administrators to o"er users various levels of performance-
energy cost pairs to operate on. 

In this paper, we propose a novel, autonomous resource-sharing 
strategy for consolidating multi-threaded workloads on multi-core 
servers. While some of the prior approaches targeting multi-threaded 
loads select which applications to consolidate together for reducing 
resource contention (e.g., [1] [3]), we find that performance isolation 
in VMs reduces the significance of co-runner application selection. 
We argue that we can improve the overall server throughput and 
energy e!ciency by shifting resources from applications that cannot 
utilize the processors e!ciently towards applications that make 
more e!cient use of the resources. As shrinking CPU resources 
might cause performance degradation, the proposed technique 
also enables the user to request performance guarantees for 
individual VMs, and meets the desired performance by utilizing  
a feedback mechanism to guide the resource allocation decisions.

Our technique uses runtime performance monitoring to identify 
application characteristics and to guide the resource allocation 
decisions by utilizing VM control knobs (i.e., CPU resource limits) 
and virtualized performance counters that are available on the 
ESXi hypervisor. We implement and demonstrate the benefits of 
our technique on two commercial multi-core based virtualized 
servers and show that our proposed technique improves the 
energy e!ciency up to 21% in comparison to previously proposed 
consolidation strategies. 

The rest of the paper is organized as follows. Section 2 presents 
our experimental methodology. Section 3 explains the proposed 
resource allocation technique. Section 4 discusses the experimental 
results, and Section 5 provides an overview of the related work. 
Section 6 concludes the paper. 

Abstract
Multi-threaded applications from many application domains have 
started to appear on the cloud resources. Multi-threaded applications 
bring additional challenges to the management of the cloud resources, 
due to characteristics such as inter/intra-thread communication. In 
tandem, as the energy spent on computing continues to increase, 
the ability to provide energy-performance tradeo"s has become 
essential for both users and the data center administrators. 

This paper proposes an autonomous resource sharing technique 
for multi-threaded workloads with the goal of creating tunable 
energy cost-performance tradeo"s for cloud administrators and 
users. The proposed technique adjusts the resources allocated to 
each virtual machine (VM) based on the energy e!ciency of the 
applications running on the VMs, while providing the desired 
performance guarantees. The success of the proposed technique 
is evaluated on commercial multi-core servers. The final results show 
that the proposed technique improves the energy e!ciency of the 
virtualized servers by up to 21% in comparison to existing methods. 

1. Introduction
Energy-related costs are among the major contributors to the total 
cost of ownership for today’s data centers and high performance 
computing (HPC) clusters [9]. Thus, energy-e!cient management 
of the cloud resources has become one of the main prerequisites of 
achieving sustainable computing. Due to the increasing number of 
servers installed in data centers, management of the cloud resources 
has become increasingly complex and costly [9]. Virtualization enables 
elastic management of a large number of physical resources and 
provides isolated execution environment for individual VMs. As a 
result, the number of virtualized servers has exceeded the number 
of native (not virtualized) servers [4]. 

In recent years, multi-threaded applications also start to emerge 
on cloud resources from various application domains, such as HPC 
applications (e.g., molecular dynamics) and scale-out applications 
(e.g., Hadoop). Multi-threaded workloads have several distinct 
characteristics that distinguish them from traditional data center 
workloads. Unlike most traditional data center loads, multi-threaded 
workloads highly utilize the servers, whereas traditional enterprise 
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2. Methodology
We perform all experiments on two typical commercial servers 
found in data centers. One of the servers includes an AMD Opteron 
6172 (Magny Cours) single-chip processor that comprises two 
6-core dies attached side by side (i.e., 12 cores in total). Each core 
has a 512 KB private L2 cache. Each 6-core die has one local NUMA 
node and a 6 MB shared L3 cache. All cores share 16 GB o"-chip 
memory. The other server is a multi-socket system that includes 
two 4-core Intel Xeon E5-2603 processors (i.e., 8 cores in total). 
Each core has 32 KB of private L1 and 256 KB of private L2 cache, 
each processor (i.e., 4 cores) shares 10 MB of L3 cache, and all 
processors (i.e., 8 cores) share 32 GB o"-chip memory. We 
virtualize both servers with VMware ESXi™ 5.1 hypervisor  
and create VMs with Ubuntu Server 12.04 guest OS. 

As our technique utilizes runtime performance monitoring to  
guide the resource allocation decisions, we utilize the virtualized 
performance counters that have become available with the latest 
release of the ESXi hypervisor. Virtualized performance counters 
enable measuring hardware events at each guest OS [17]. We 
monitor retired instructions, CPU cycles, and last level cache 
misses for each VM every second using the default performance 
counter monitoring tool, perf, at the guest OS level. We use esxtop 
to collect VM-level CPU usage data every 2 seconds. To be able to 
evaluate the energy e!ciency of the server node, we measure the 
total system power by using a Wattsup PRO power meter with a 
1-second sampling rate, which is the minimum sampling rate 
provided for this meter. As total system power determines the 
electricity cost of a server, we choose to evaluate system power 
rather than individual component power (i.e., processor, disk, etc.).

We run seven benchmarks from the PARSEC [8] multi-threaded 
benchmark suite (blackscholes, bodytrack, canneal, dedup, 
streamcluster, vips and x264) and three benchmarks from 
Cloudsuite [7] (hadoop, cassandra and faban) in our experiments as 
a representative set of multi-threaded workloads in the cloud. We 
run each benchmark with 12 threads using the native input sets. 

Parallel applications typically consist of serial I/O stages and a 
parallel phase, i.e., region-of-interest (ROI). As parallel phases of 
the multi-threaded workloads occupy most of the compute cycles 
of the processors in real-life data centers, it is important to focus 
on the ROI of the parallel workloads. As the start and end points of 
the ROI phases vary across di"erent applications, we implement a 
consolidation management interface, consolmgmt, that synchronizes 
the ROIs of the co-scheduled applications. We implement the ROI-
Synchronization routine inside the existing PARSEC HOOKS library, 
which marks the start and end points of the application ROIs. The 
VM that first reaches the ROI phase sleeps until the second VM 
reaches its own ROI. The second VM sends interrupts upon reaching 
its own ROI to resume the execution and start data logging. We 
stop data collection and terminate the applications after one of  
the applications reaches the end of its ROI phase. 

In order to evaluate our technique on a larger set of consolidation 
cases, we randomly generate 10-workload sets, each of which 
consists of 10 benchmarks that are chosen from seven PARSEC 

and three Cloudsuite benchmarks. For example, each workload  
set consists of five application pairs running on five servers when 
two VMs are consolidated at a time. 

For performance evaluation, we use two metrics: (1) throughput 
(retired instructions per second) and (2) Application Heartbeats [6]. 
Throughput is an accurate metric to measure the application progress 
for the PARSEC and Cloudsuite benchmarks we experiment with. We 
also evaluate our technique using application-specific performance 
metrics, such as frames-per-second (fps) for an image processing 
applicationß by utilizing the Application Heartbeats framework. 

3. Autonomous Resource Sharing  
under Performance Constraints
Resource allocation strategies have a significant impact on the 
energy e!ciency of the server nodes. As applications utilize the 
available hardware resources in di"erent ways, allocating equal 
resources for consolidated applications is not the most energy-
e!cient way to distribute the limited amount of hardware resources. 
In order to improve the energy e!ciency of the system, we propose 
to proportionally allocate the resources depending on the energy 
e!ciency level of each of the consolidated multi-threaded 
applications by utilizing the VM resource management knobs  
(i.e., CPU resource limits). 

Figure 1 shows the throughput of the PARSEC and Cloudsuite 
benchmarks as a function of CPU resource limits for our AMD 
system. Depending on the application characteristics, the impact 
of the CPU resource limits on the performance varies significantly. 
Therefore, favoring the applications that are more e!ciently 
utilizing the CPU resources improves the energy e!ciency of the 
server nodes. For instance, allocating more resources to vips, when 
it is consolidated with canneal, would improve the throughput and 
the energy e!ciency of the server, as vips utilizes the hardware 
resources more e!ciently. 

Favoring applications that are more e!ciently utilizing the available 
hardware resources might cause degradation on the performance of 
the co-runner VMs. Therefore, it is also essential to provide additional 
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Figure 1. Throughput of the PARSEC and Cloudsuite benchmarks as a function of CPU 
resource limits for AMD Opteron based server. Throughput of the system exhibits 
significant variations depending on the application
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and gains due to resource allocation decisions. We first store the 
baseline throughput for each application, which is the throughput 
when VMs are allocated equal amount of resources. We compare 
the current throughput of the application with the baseline 
throughput to compute the throughput gains and losses. We  
then adjust the resource allocations if the user performance 
constraints are violated.

3.3. Application Selection for Consolidation
As consolidating multiple VMs on the same physical resources 
causes increased resource contention, previous studies propose to 
reduce the resource contention by consolidating applications that 
have complementary characteristics (e.g., consolidating the most 
memory-intensive benchmark with the least memory-intensive 
one) [2]. However, on a highly isolated execution environment, the 
impact of co-runner VMs on each other’s performance is minimal. 

We utilize NUMA scheduling capabilities of the ESXi hypervisor 
[15] to create highly isolated execution environment to reduce the 
negative performance impact of the co-runner VMs. On the virtual 
environment, we dedicate one NUMA node to each VM to reduce 
the contention on the memory. We compare native and virtualized 
executions to investigate the impact of performance isolation. For 
all experiments on the native OS, we co-schedule two applications 
at a time, each of them running with six threads. For the virtual 
system, we create 12 vCPUs (12 threads) per VM and distribute the 
total CPU resources equally across the VMs. Figure 3 shows the 

performance variation and throughput for the PARSEC and Cloudsuite 
benchmarks, when each application is consolidated with all the other 
benchmarks in pairs of two. We report the average of all consolidation 
pairs and normalize the performance variation and throughput with 
respect to the native environment. Higher performance variation 
implies that the performance of the application is significantly 
a"ected by the co-runner VM, and therefore indicates poor 
performance isolation. Note that, for consolidated servers,  
it is preferable to have low performance variation and high 
performance. For both Intel and AMD servers, virtualized 
environment provides 65% lower performance variation with less 
than 3% performance (i.e., throughput) degradation on average. 
These results are also in line with the findings of prior work [10]. 
We observe that the impact of the co-runner VMs is minimal for 

knobs to the users, such that the users can request performance 
guarantees. Our runtime policy continuously monitors the 
performance of the individual applications and utilizes a closed-
loop controller to satisfy the user performance requirements.

3.1. Runtime Policy
The goal of our runtime policy is to allocate CPU resources 
proportionally with the throughput of each consolidated VM, for 
utilizing the available hardware resources more e!ciently. In order 
to find the amount of CPU resources that should be allocated to a VM, 
we monitor the throughput of the applications using the virtualized 
performance counters. We distribute the total amount of available 
CPU resources, Rtot, by computing a weight for each VM, which is 
the ratio of the throughputs of the consolidated VMs. The amount 
of CPU resources, Ri that is allocated to VMi is equal to wi * Rtot. 
On the ESXi environment, the amount of computational capacity is 
represented in units of frequency (MHz), for each server, and Rtot 
is calculated by multiplying the number of cores and the frequency 
of each core. Therefore, we use two di"erent Rtot values for our AMD 
and Intel systems. Our policy allows the users to set minimum 
throughput or Application Heartbeats constraints, which are  
then used in adjusting the resource allocation decisions. 

3.2 Implementation of the Runtime Policy  
on VMware vSphere® Environment
We evaluate our autonomous resource sharing technique on Intel and 
AMD based servers. Our implementation consists of a management 
node (VMware vCenter™ terminal) and the virtualized server(s). 
Figure 2 shows the architecture of our implementation. We use  

an Intel i3 dual-core processor based machine as the vCenter 
management node. The runtime monitor polls the VM-level 
performance counter readings (i.e., retired instructions, clock 
cycles) every second; then, the vCenter management node  
makes resource allocation decisions and adjusts the CPU resource 
limits of the VMs. The resource allocation routine communicates 
with the ESXi through the vSphere SDK to perform administrative 
tasks (i.e., VM reconfiguration) on VMs [16]. For meeting the user 
performance constraints, we design a closed-loop feedback 
mechanism, which periodically evaluates the throughput losses  
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Figure 2. A feedback control mechanism monitors the performance of the 
consolidated applications and makes resource allocation decisions to improve  
the energy e$ciency while meeting user-defined performance constraints.

Figure 3. Performance isolation and throughput comparison normalized with respect 
to the results in native environment. Virtualized AMD and Intel servers provide better 
performance isolation (i.e., lower performance variation) and comparable throughput 
to the native case.
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the resource allocation routine responds to the performance 
constraint violation by increasing the amount of resources 
allocated to dedup. Similarly, for bodytrack, resource allocation 
routine readjusts the CPU resource limits at t=36 to satisfy the 
performance constraints.

4.2 Energy E!ciency Evaluation for Workload Sets
We compare our technique with previously proposed consolidation 
techniques that target reducing the resource contention by matching 
application pairs that have complementary characteristics [1]. We 
evaluate two previously proposed metrics—memory operations per 
cycle (MPC) and instructions per cycle (IPC)—to guide the application 
selection policy. In order to choose the application pairs, we first rank 
the applications according to the selected metric (i.e., IPC or MPC), 
then pair the application at the top of the list with the application 
at the bottom of the list, and repeat the same process for the other 
applications in the list. This way, applications that have complementary 
characteristics are consolidated together, and we allocate equal 
resources to each VM. We report our results for the cases where we 
first use the application-selection policies to determine the application 
pairs, and then apply our resource-sharing policy at runtime to 
dynamically adjust the CPU resources allocated to each VM.  
Figure 5 shows the throughput-per-watt for various policies.  
We normalize the throughput-per-watt values with respect to  
the baseline case, where VMs have no CPU resource limits and 
consolidated VMs are selected randomly. Consolidating more  

most of the benchmarks on a virtualized environment with high 
performance-isolation capabilities. Thus, the benefits of consolidation 
techniques that focus on selecting which VMs (i.e., applications) to 
co-schedule are expected to be limited for our environment running 
multi-threaded loads. As resource-sharing decisions have a bigger 
impact on the energy e!ciency of the virtualized servers that 
provide highly isolated execution environments, utilizing the 
proposed resource sharing technique with application selection 
policies would further improve the energy e!ciency.

4. Experimental Results
Our experimental work focuses on evaluating the proposed 
resource allocation technique for two main aspects, (1) ability  
to meet the performance constraints, and (2) energy e!ciency 
improvements for randomly generated workload sets. We perform 
all of our experiments on two commercial multi-core servers, and 
we compare our technique with previously proposed consolidation 
techniques for randomly generated 10-workload sets, as explained 
in Section 3. In order to measure the energy e!ciency of the 
server, we use throughput-per-watt, as it measures the useful  
work done per watt. 

4.1. Runtime Behavior under Performance Constraints
We evaluate our technique under various performance constraints 
from the users. We evaluate both the throughput and an application-
specific performance metric (i.e., frames-per-second (FPS)) for two 
image processing applications (i.e., bodytrack and x264). Figure 4 
shows the runtime behavior of our technique under performance 
constraints. We show both the performance (top) and the resource 
adjustment decisions for individual VMs (bottom). On the AMD 
system, we consolidate two VMs that are running blackscholes and 
dedup and on the Intel system we consolidate bodytrack and x264. 
We test our technique with the minimum performance constraint of 
70% for dedup, and 4 FPS for bodytrack. At t=14, the performance 
of dedup falls below the 70% of its baseline throughput, which is 
the throughput when all VMs are allocated equal resources. Thus, 
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Figure 4. Runtime behavior of the proposed technique on two di%erent systems under 
user-defined performance constraints.

Figure 5. Energy e$ciency comparison for various consolidation techniques. The 
proposed technique provides the highest improvements when jointly utilized with  
the application-selection policies on both Intel and AMD servers.
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6. Conclusions and Future Work
Energy e!ciency is one of the major challenges for future data 
centers. The emergence of multi-threaded applications on the 
cloud resources introduces new challenges for energy-e!cient 
management of hardware resources. In this work, we propose an 
adaptive solution to energy-e!cient management of multi-core 
servers. The proposed technique takes the energy e!ciency of  
the consolidated applications into account to adjust the amount  
of CPU resources that are allocated to each VM. We implemented 
our technique on a vCenter management node and evaluated two 
commercially available Intel- and AMD-based servers. Our results 
show that our policy can be jointly utilized with previously proposed 
consolidation techniques to further improve the energy e!ciency 
by up to 21%. 

Open problems in this area include designing scalable management 
techniques for larger-scale computing clusters, understanding the 
interference impact of applications from various application domains, 
and optimizing the performance of power-constrained systems. We 
plan to extend our work to be more applicable to larger-scale systems 
by introducing additional capabilities (e.g., VM migration) to our 
current technique. We also plan to investigate the performance-
energy tradeo"s across a wider range of application domains. 
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