vCap: Adaptive Power Capping for
Virtualized Servers

Can Hankendi
ECE Department
Boston University, Boston, MA
hankendi@bu.edu

Abstract—Power capping on server nodes has become an
essential feature in data centers for controlling energy costs and
peak power consumption. More than half of the server nodes are
virtualized in today’s data centers; thus, providing a practical
power capping technique for consolidated virtual environments
is a significant research problem. This paper proposes a power
capping technique, vCap, which makes resource allocation deci-
sions to maximize the Quality-of-Service (QoS) while meeting the
power constraints in virtualized servers that run multi-threaded
applications. For a given set of applications, vCap first decides
which applications to co-schedule based on application scalability
and then optimizes the QoS in an application-aware manner for
each VM by adaptively adjusting the CPU resources. Experiments
on real-life multi-core servers show that vCap provides 12%
higher energy efficiency in comparison to the state-of-the-art
power capping techniques, while adhering to the power cap 92%
of the time within a 2W error margin.

I. INTRODUCTION

The total cost of ownership of modern data centers is
increasingly dominated by the power and cooling costs. As
the computational demands continue to grow in the cloud
era, efficient management of power consumption is even more
critical to enable sustainable operation of the data centers.
Constraining the peak power consumption of the servers in
data centers has become a common practice for managing
the energy costs and to comply with the power delivery
limitations [1]. In addition, wholesale energy markets offer
new incentives for dynamic regulation of data center power.
Specifically, it is possible to significantly reduce the energy
costs by closely following the power consumption signals
provided by the independent system operators, who need to
match power supply and demand in the grid [2]. Providing
fine granularity power capping capabilities for servers is a
necessary step in designing data centers that can benefit from
such opportunities in the emerging energy markets.

Virtualizing the data center resources has become another
common practice in modern data centers. Virtualization re-
duces the hardware and power requirements by enabling seam-
less consolidation of multiple applications on a smaller set of
physical resources. In addition, virtualization provides features
such as performance isolation, flexible resource management,
and virtual machine (VM) migration across physical servers
to facilitate energy-efficient operation. As a result, the number
of virtualized servers started to outnumber the native (not
virtualized) servers in recent years [3]. Designing dynamic
power capping techniques that meets the QoS demands in
virtualized servers is, therefore, a significant research problem.

Sherief Reda
School of Engineering
Brown University, Providence, RI
sherief_reda@brown.edu

Ayse K. Coskun

ECE Department
Boston University, Boston, MA

acoskun@bu.edu

This paper proposes a dynamic power capping technique
for virtualized servers, specifically targeting multi-threaded
applications. As virtualized cloud environments provide com-
parable performance to native execution, multi-threaded work-
loads from various applications domains (e.g., high perfor-
mance computing, scale-out applications) are commonly de-
ployed in virtualized data centers. VMs that run multi-threaded
workloads, Symmetric Multi-Processing (SMP) VMs, exhibit
significantly different power-performance tradeoffs compared
to the VMs that run traditional enterprise loads with low
system utilization. In addition, the energy efficiency of SMP
VMs varies because of the multi-threaded application charac-
teristics such as inter-thread communication and performance
scaling. Therefore, optimizing the performance of the vir-
tualized servers under power constraints requires sufficient
understanding of the application characteristics [4].

The proposed technique, vCap, monitors the performance
characteristics of the VMs and dynamically adjusts the re-
source allocation decisions to improve the energy efficiency
of the virtualized server nodes, while adhering to the power
caps. Our specific contributions are as follows:

e We propose a co-scheduling technique that finds the best
VM pairs to consolidate together based on the scalability of
the multi-threaded applications to maximize the achievable
performance. We show that scalability-based co-scheduling
outperforms prior co-scheduling methods that solely con-
sider application resource use.

e We propose a fine-grained power capping technique,
vCap, that is able to meet the performance objectives such
as maximizing the total QoS or achieving a minimum
QoS level for specific VMs. We also propose a fast and
accurate runtime QoS estimation methodology for the VMs
without requiring any offline training. Based on the QoS
estimations, vCap distributes the resources among VMs to
optimize the energy efficiency of the server node.

e We demonstrate the benefits of vCap on a real-life multi-
core server. vCap is able to meet dynamically changing
power constraints with high accuracy while improving the
overall QoS provided to the user by 17% and the QoS/watt
by 12% in comparison to the state-of-the-art techniques
for workload sets created out of PARSEC [5] and Cloud-
suite [6] benchmarks.

The rest of the paper starts with an overview of the related
work in power capping. Section III explains our experimental
setup. Section IV discusses multi-threaded application charac-
teristics that are relevant to the design of our policy. Section V

explains the details of vCap. Section VI presents our results
on a real-life server and Section VII concludes the paper.

II. RELATED WORK

Most of the modern processor cores support dynamic
voltage-frequency scaling (DVES) and power gating capabil-
ities. Therefore, DVFS and core power gating have become
traditional power management knobs [7]. Recent commercial
servers also provide power capping capabilities [8]. For ex-
ample, Intel Sandybridge provides a power estimator and a
runtime average power limiter (RAPL) [9].

Raghavendra et al. propose a global power management
technique for clusters to coordinate the power provisioning
for individual nodes under power constraints [10]. For multi-
threaded applications, Rangan et al. propose thread scheduling
policy that maps the threads to various voltage-frequency (V-
F) domains to optimize performance under power constraints.
Reda et al. propose a runtime controller to meet the peak power
constraints through DVFS and packing threads onto a smaller
number of cores, while optimizing the application performance
[11]. Ma et al. propose a power capping technique by power-
gating the cores and applying per-core DVFS for a mixture
of single and multi-threaded applications running on native
servers [12].

For capping the power in virtualized environments, Nathuji
et al. design a power allocation technique for VMs to improve
the performance for a given power budget [1] by allocating
power budgets proportionally across VMs according to the
service level agreement (SLA) requirements of individual
VMs. The proposed technique uses CPU utilization data to
distribute the available power budget. Dhiman et al. propose
a VM scheduling technique that estimates VM-level CPU
and memory usage based on system-level metrics to guide
co-scheduling and migration decisions [4]. Their proposed
technique consolidates the applications that have complemen-
tary resource usage characteristics to reduce the performance
degradation. Hwang et al. study the impact of CPU consolida-
tion in virtualized multi-core environments [13]. Their study
investigates finding the optimum VM-density for multi-core
processors for single-threaded applications that have distinct
characteristics (i.e., memory/CPU-bounded) and they propose
a consolidation policy that uses DVFS and core power gating.
Vasic et al. introduce the DejaVu framework that makes
resource allocation decisions based on the history of the VMs
to reduce the resource management overhead [14]. Another
line of work in VM resource management targets reducing the
resource contention to improve the efficiency of the virtualized
servers [15], [16].

Our power capping technique, vCap, differentiates from
previous work in the following aspects. Our technique takes
the performance scalability of the applications into account
while making co-scheduling and resource allocation decisions
to maximize the server energy efficiency. While most of the
prior work in consolidation focuses on application selection
during co-scheduling, our technique dynamically makes re-
source allocation decisions to maximize the performance under
power and performance constraints. Our analysis shows that
co-scheduling multi-threaded workloads solely based on their
resource use is not sufficient to maximize QoS under power
constraints. vCap achieves finer granularity power tracking

compared to existing DVFS or clock gating based methods,
making it a promising technique for future data centers with
dynamic power regulation capabilities.

III. EXPERIMENTAL METHODOLOGY

In this work, we target multi-core based servers that run
multi-threaded applications. Our experimental setup includes
a server containing an AMD 12-core Magny Cours (Opteron
6172) processor, virtualized by the VMware vSphere 5.1 ESXi
hypervisor. Magny Cours consists of two 6-core dies attached
together on a single chip. Each 6-core die includes a 12 MB
shared L3 cache, and each core has a 512 KB private L2
cache. All cores also share a 16 GB off-chip memory. We
create VMs with multiple vCPUs (SMP VMs) such that each
VM accommodates a multi-threaded application. Each VM is
initialized with 12 vCPUs as 12 is the maximum possible
number of vCPUs for a system with 12-cores. Each VM runs
Ubuntu 12.04 as the guest OS.

We run 7 applications from the PARSEC multi-threaded
benchmark suite [5] and 3 applications from Cloudsuite [6] in
our experiments as a representative set of multi-threaded work-
loads on the cloud resources. We track the application-specific
performance metrics for the PARSEC benchmarks by utilizing
the Application Heartbeats framework [17]. CloudSuite appli-
cations report application-specific performance without requir-
ing a modification to the source code. We choose to evaluate
application-specific performance metrics, as instruction count
based performance metrics often do not provide a meaningful
performance feedback to the user, since the performance (i.e.,
QoS) metric differs depending on the application. For instance,
for image processing applications (e.g., bodytrack) the QoS
metric is frames-per-second (FPS), whereas the QoS metric for
the option trading application (e.g., blackscholes) is the
number of options. Instead of such metrics, application-specific
performance (e.g., frames per second, requests serviced per
second, etc.) can be tracked at the cost of minimal modifica-
tions to the application source code. We report the relative QoS
for each application, where we define the maximum QoS of
an application (i.e., QoS=1) as the case where the application
is running alone with the maximum amount of available CPU
resources (e.g., maximum number of cores).

To measure VM-level CPU metrics, we utilize the esxtop
utility that is available in the ESXi hypervisor. We sample
the VM-level metrics every 2 seconds, which is the minimum
sampling rate for esxtop. We measure the system power by
using a Wartsup PRO power meter with a 1 second sampling
rate. As the total system power determines the electricity cost
of a server, we focus on the system power rather than the
component power (i.e., processor, disk, etc.). The resource
allocation decisions are handled by the hypervisor and the OS-
level tools, as described in Section V.

In all of our experiments, we only evaluate the parallel
phases of the applications, as the parallel phase of multi-
threaded applications dominates the application execution time
in real-life clusters. We implement a consolidation manage-
ment module, that synchronizes the starting point of the
parallel phases of the applications and collect performance data
only for the synchronized parallel phases.

Performance Scaling as a Function of CPU Resources

0.8
g
2
[l
? 0.6t
o
2
©
& 0.4 canneal
hadoop
0.0k bodytrack
dedup
i i
0 0.5 1 1.5 2 25
CPU Resource Limits (MHz) x 10*

Fig. 1. Performance scaling of some of the PARSEC and benchmarks and
hadoop as a function of CPU resource limits.

IV. MOTIVATION

Ideally, multi-threaded applications are designed to effi-
ciently utilize an arbitrary number of cores. However, appli-
cation characteristics such as inter-thread communication and
architectural bottlenecks such as the off-chip bus bandwidth
cause sub-linear performance improvements when the amount
of CPU resources is increased. SMP VMs that run poorly
scaling applications are not able to utilize all the available CPU
resources of a multi-core system; hence, such VMs are good
candidates for consolidation. Although consolidation might
degrade the performance of the individual VMs, the aggregate
performance of the server node and the energy efficiency can
improve significantly.

On the ESXi hypervisor, the total available computational
capacity of a server node is represented in MHz, where the
total amount of CPU resources, R, is equal to the number of
physical CPUs multiplied by the maximum core frequency.
CPU resource usage of a VM can be constrained by adjusting
the CPU resource limits on the ESXi hypervisor. Figure 1
shows the QoS scaling of 4 applications from PARSEC and
Cloudsuite as a function of the CPU resources (in MHz).
For example, as Figure 1 shows, bodytrack cannot utilize
all the available hardware resources, therefore the QoS does
not improve beyond a certain amount of CPU resources (i.e.,
15970 MHz). In addition, reducing the CPU resources has a
larger performance impact on the poorly scaling VMs (e.g.,
canneal, bodytrack) at lower CPU resource limits.

Total QoS of a consolidated server depends on the spe-
cific VMs that are co-scheduled. Figure 2 shows the QoS
breakdown of two systems, each of which are running two
distinct VMs under various power caps. We observe that the
overall QoS improvement of consolidation is much larger for

o Syetomd - VA - bodyrack JPoorly scaling pair

[l System1 - VMO - blackscholes
System1 - - canneal

-
[e2]

o
N

Quality of Service (QoS)

140W 150W 160W
Power Caps

Overall normalized QoS of two distinct co-scheduling cases under

various power caps. QoS range for the scaling VMs is much smaller than the

non-scaling VMs. Thus, selecting non-scaling VMs to co-schedule have high

potential for energy efficiency improvement.

Fig. 2.

QoS of the VM running canneal with Various Co-runners

Alone canneal
blackscholes
bodytrack
0.8 canneal
dedup
facesim
0.6 fluidanimate
(g ferret
g fregmine
0.4 raytrace
— streamcluster
swaptions
0.2 vips 4
X264
e
0 i i i i
0 0.5 1 1.5 2 25

CPU Resource Limit (MHz) x 10*

Fig. 3. QoS of the VM running canneal when consolidating with all the
other VMs in pairs of two. Performance of canneal is not significantly
affected by any of the co-runners.

the VMs running poorly scaling applications (i.e., blue bars) in
comparison to scaling applications, as these VMs are not able
to fully utilize the system when running alone. For the VMs
running dedup and bodytrack, consolidation improves the
overall QoS by 73% and QoS/watt by 68% under a 160W
power cap. Consolidating the SMP VMs that have near-linear
performance improvements as the amount of resources grow
(i.e., VMs running blackscholes and canneal) provides
7% higher total QoS and only 4% higher QoS/watt compared
to running each application alone. This observation motivates
the design of a co-scheduling policy that takes the scalability
characteristics of the applications into account while making
co-scheduling and resource allocation decisions.

Consolidating VMs that have complementary resource us-
age characteristics is expected to reduce the resource con-
tention. For example, memory-boundedness can be used as
a metric to choose which VMs to co-schedule [4]. Depending
on the requirements of the applications, it is known that
consolidation causes performance degradation due to increased
contention on the bus and the caches [4]. However, on virtual
environments it is possible to minimize the impact of the co-
runner application through isolating and balancing the memory
accesses. In order to demonstrate that, we evaluate the impact
of the co-runner VMs on performance of the most memory-
intensive application (i.e., canneal). Figure 3 shows the
QoS of the VM running canneal alone and consolidating
with all other VMs in pairs of two VMs at a time. Consol-
idating two instances of canneal has the highest negative
impact on the performance. However, in all other cases co-
runner applications do not introduce significant performance
degradation. Our experimental results discussed above imply
that when consolidating multi-threaded applications, perfor-
mance scalability has a more dominant impact on the energy
efficiency of the server. Figure 4 shows the scalability and
the memory-boundedness metrics for a selection of PARSEC
and Cloudsuite benchmarks. As Figure 4 shows, memory-
boundedness and scalability have significantly different trends
(i.e., 0.34 Pearson coefficient with 0.26 confidence level)
across benchmarks. Therefore, co-scheduling decisions based
on memory-boundedness would differ from decisions that are
based on the application scalability. Based on our analysis, we
make the following observations:

e When consolidating multiple VMs, it is beneficial to
allocate only the necessary resources to poorly scaling

Performance Scalability vs. Memory-boundedness

1.0
@ Performance Scalability L 0.015
1 @ Miss-per-cycle s
0.8 - z
r [}
L 3
o
£ 0.6 -0.0103
e B o
£ r g
3 L E]
& 0.4+ [g
E I-0.0055
r &
0.2+ L 1
0- 0
) N > . S » Qo >
& S 2 X & & R & X
é‘o\ b(b rz§\(\® 6‘?’6 QSJ@% (}\{o\ & v\\’bbo & p 'b(\b
& & © B &

Fig. 4. Memory-boundedness (last level cache misses per cycle) vs. scalability
of PARSEC and Cloudsuite applications. Scalability is measured as the
ability to utilize the 12-core system when running with 12 threads. This
experiment shows that memory-boundedness does not capture the scalability
characteristics of the applications.

VMs that reach nearly their maximal QoS with a relatively
smaller amount of resources (e.g., dedup), and to reserve
the remaining resources for the co-runner VMs.

o As the performance of the VMs are minimally affected by
the co-runner VMs, consolidation decisions based on re-
source usage (e.g., memory-boundedness) are not sufficient
to improve the energy efficiency. Scalability of a VM is a
more important factor while making consolidation decisions
when compared to resource usage metrics.

V. ADAPTIVE POWER CAPPING

In this section, we discuss the design of vCap and provide
an overview of our implementation. We first discuss our
methodology to track the power caps using the CPU resource
limits and our VM-level QoS estimation technique under
power caps. We then present our consolidation and the resource
distribution algorithm that maximizes the energy efficiency
under power caps. Virtual environments provide additional
control knobs to manage the amount of resources allocated for
each VM. ESXi hypervisor allows the administrator to limit
the maximum amount of CPU resources allocated to a specific
VM by adjusting the CPU resource limit knob, which restricts
the resource usage of the VMs. By adjusting the CPU resource
limits, it is possible to cap the peak power consumption of the
server node.

A. Dynamic Power Capping

By utilizing the CPU resource limits, it is possible to adjust
resources with a MHz granularity, instead of adjusting the
number of active threads and/or DVFS. Therefore, CPU re-
source limit knob enables us to control the performance/power
tradeoffs with a finer granularity. In order to quantify our
observation, we run experiments with power capping through
resource limits vs. DVFS and number of threads. Our results
show that, power capping with adjusting resource limits pro-
vides up to 14% higher QoS in comparison to power capping
with adjusting DVFS and active number of threads.

In this work, we propose to execute applications with the
number of threads that is equal to number of cores and then
applying CPU resource limits to meet the power caps, as
dynamically changing the thread number requires modification
to the original code. An alternative solution is packing the
threads onto smaller number of cores, which is also proposed

previously to meet the power caps [11]. However, running a
higher number of threads may introduce performance over-
heads due to increased contention and communication among
threads. In order to quantify the negative impact of running a
higher number of threads, we compare the normalized runtime
of the applications in three cases. In the baseline case, we
execute the applications with 4 threads, where there is no
overhead due to higher number of threads. We then test two
techniques: (1) Resource Limits represents the case of running
the application with 12 threads and limiting CPU resources
equal to the compute power of 4 cores; (2) GuestPacking
represents the case where VMs run with 12 threads, which
are packed onto 4 vCPUs at the guest OS level using thread
affinity settings. Figure 5 shows the normalized runtime for
running the applications with the configurations explained
above. GuestPacking reduces the number of vCPUs that simul-
taneously access the pCPUs. As a result, GuestPacking allows
us to reduce the overhead by 45% for dedup. Therefore, we
implement GuestPacking together with CPU resource limit
adjustments to minimize the negative impact of running a
higher number of threads under power caps.

In order to accurately track the power caps, our proposed
technique utilizes runtime power monitoring feedback. We
express the total power consumption P, as the sum of the
dynamic (Pgy,) and idle (FP;q.) power. At runtime, vCap
estimates the total amount of available CPU resources (Fcqp),
that meets the given power cap. For n number of VMs
consolidated, R, (M Hz) = Utilization* P.ay/ Payy, where
utilization is the percentage of the active cycles of a processor
over the total number of cycles. Based on the calculated
Rcqp, we first derive the number of active vCPUs, such that
#o0fvCPUs x CoreFreq > Reqp. We then reduce the CPU
resource limits to be equal to the R4, value.

B. Estimating QoS Degradation Under Power Caps

In order to estimate the QoS degradation due to power
constraints, we utilize the VM-level metrics provided by the
ESXi hypervisor (i.e., RUN%, READY%, COSTOP%, WAITS).
In this work, we focus on READY and RUN to identify the
CPU demand level of the applications and the QoS of the
applications at various CPU resource limits.

RUN: The percentage of total scheduled time of the VM, which
excludes the system time (%UTIL = %RUN + %SYS).

Normalized Runtime for Various Execution Settings (4 Threads)
| @ Baseline (Unlimited resources, 4 Threads)
1 @ Resource Limits (4*1995=7980 MHz Limits, 12 Threads, No Packing)
1 @ GuestPacking (No limit, 12 Threads, Packing at GuestOS level)

25

Normalized Runtime

t4

S

Fig. 5. Performance overhead for running higher number of threads under
power caps. Running applications with 12 threads and applying resource limits
introduce large overheads for some of the applications. Packing the threads
onto a smaller number of vCPUs reduces the overhead by up to 45%.

Performance Scaling w.r.t CPU Resource Limits

1.2
3 ‘ RS S
g 1 g ,’-PM |
T 0.8 7 ol
S ’_}‘"
& , P
= 0.6 - r
g 0.4 o ? :
2 2 : e=O=perf. Degradation
0.2 @ {l | ==Degradation Estimation
0 - == == Poly. (Perf. Degradation)
CPU Resource Limits (MHz) CPU Resource Limits (MHz)
a) VM-blackscholes b) VM-dedup

Fig. 6. QoS as a function of CPU resource limits for blackscholes and
dedup. Degradation estimations are derived using the Equation 1. Equation 1
provides accurate QoS prediction without requiring any offline/training phase
when compared to polynomial models.

READY: The percentage of time that the VM is ready to run,
but not scheduled. This metric implies that the application
would be able to utilize the CPU if more resources were
allocated to the VM. Therefore, READY metric can be utilized
to estimate maximum utilization level that an application can
reach, which reflects the performance scalability characteristics
of the applications.

It is possible to estimate the total CPU requirements of a
VM by using the RUN and READY metrics. Although RUN met-
ric is similar to CPU utilization metric, the additional READY
metric captures the potential performance improvements of
the VM, if more CPU resources were allocated. The total
CPU requirement of an application (C}.q) can be estimated
by Creq(MHz) = (RUN% + READYS%) * R, where R is the
total amount of resources available in the processor. For a
given CPU resource limit (Cj;,,), performance degradation of
an application with respect to the highest CPU resource limit
(i.e., QoS=1) can be calculated as,

Creq—Clim
1-— % Creq > Clim

1
C’r'eq < Clim ()

QOS(C[Z'm) ==

It is also possible to train a workload specific model for
QoS estimation, however this requires additional training and
offline data collection time for each new workload. Consider-
ing the vast number of diverse application sets that are running
on the cloud, offline training may incur large overhead. Figure
6 shows actual and predicted QoS for blackscholes and
dedup, as a function of CPU resource limits. Degradation
estimation reflects the QoS estimations using Equation 1,
while we use a second order polynomial fit as the baseline
estimation technique that requires an offline training phase for
each application. For all applications, Equation 1 provides 97%
accuracy in QoS estimation, while polynomial fit provides 95%
accuracy. These results show that the proposed QoS estimation
technique provides higher accuracy even without any training
phase, and eliminates the workload characterization overhead.

Providing QoS Guarantees: As decreasing the amount
CPU resources allocated to a VM causes degradation on the
application performance, it is essential to provide lower-bounds
for the QoS of individual VMs. In a real-life scenario, users
might request minimum QoS guarantees (Q0S,¢,) for time-
sensitive applications. In order to provide QoS guarantees for
the VMs, we can use the Equation 1 to estimate the Cl;,,
such that 1 — (Cmgfic“") = (Q0S;4. Based on this equation,

we can derive C;p, that meets the Q0Seq.

C. Consolidation Based On Performance Scalability

As discussed earlier, consolidating applications that do not
scale linearly improves the energy efficiency by improving the
overall utilization of the system, on the other hand consolidat-
ing scaling applications do not bring significant improvements
as the system is already utilized by the application. Therefore,
we run VMs that have C,., > 11 * CoreF'req alone, as those
VMs already utilize the hardware resources for a system with
12 cores. In order to choose the VMs to consolidate together,
we rank the VMs according to their C'.., values and pair the
VMs starting from the bottom of the list, with the constraint
i1 Creq; < Reap. As running more than 2 VMs for a 12-
core system imposes more than 50% performance degradation,
we evaluate our technique for the case where we consolidate
2 VMs at a time. However, the same algorithm can be applied
to a system with more than 2 SMP VMs by prioritizing the
VMs that have poor performance scalability.

In order to further improve the energy efficiency, we
propose to distribute the CPU resources to VMs by priori-
tizing the ones that reaches to its maximum QoS with the
smallest amount of CPU resources (i.e., poor scaling VMs).
Therefore, the aggregate QoS of the system can be maximized
by allocating the rest of the CPU resources to the co-runner
VM. We set C;y,=C'¢q for the VM that have lower C).., than
its co-runner and allocate the rest of the CPU resources (i.e.,
Recap — Clim) to the co-runner VM which has a higher C.,.

VI. EXPERIMENTAL RESULTS

We implement the vCap on the AMD Magny Cours
processor based server. We deploy a management node to
perform the administrative tasks on VMs. The management
node collects runtime performance statistics from the ESXi
hypervisor and power readings from the power meter. QoS
guarantees and the power constraints are implemented as user-
defined input parameters to the runtime routine. We keep
the track of power estimation errors and the runtime routine
continue to adjust the CPU resource limits by recalculating the
Rcqp, until the tracking error is smaller than 2W. QoS and R,
estimation modules are implemented as Pyhton modules on the
management node. In order to adjust the CPU resource limits,
we create Perl modules using the vSphere SDK for Perl. The
Perl module communicates with the ESXi and reconfigures
the VMs CPU resource limits based on the input from the
estimation modules in every 2 seconds, which is equal to the
minimum sampling rate of the performance monitoring tool
(i.e., esxtop). To implement the GuestPacking technique, we
use the default taskset tool at the guest OS level to pack the
threads onto smaller number of vCPUs. As vCap modules are
implemented on a separate management node, the overhead of
running vCap with 2s intervals is negligible.

In order to evaluate our technique, we randomly generate
10 workload sets, each of which consists of 10 applications
selected among PARSEC and Cloudsuite applications. In Fig-
ure 7, we evaluate both the overall QoS of the system, as well
as the QoS/watt metric to measure the energy efficiency. We
compare our technique with previously proposed consolidation
techniques that are based on CPU utilization and memory
access per cycle (MPC) metrics. For CPU utilization and MPC
based policies, we first rank the applications according to
the selected metric. We then consolidate the highest ranked

1 gos, Power and Energy Efficiency Comparison for Various Policies

“ 1@ QoS

@ QoS/Watt
@ Power

Normalized w.r.t Baseline Case

MPC Utilization vCap
Fig. 7. Comparison of QoS, QoS/watt and power consumption of the server
with various consolidation techniques. The proposed technique improves the
overall QoS by 17% when compared to the baseline case, where VMs have
no CPU resource limitations.

VM with the lowest ranked one and progress through the list
and allocate equal resources to each VM. We normalize QoS,
QoS/watt and power valus with respect to the baseline case,
where we pair the VMs randomly and do not impose any CPU
resource limits. vCap improves the QoS by 11% on average
in comparison to the best performing previous policy. The
energy efficiency of the server node also increases by 12%
in comparison to the most energy-efficient previous policy.

We also test our technique under dynamically changing
power caps to evaluate the power cap tracking accuracy. We
change the power caps in every 8 seconds between 100W and
150W, similar to the real-life power regulation signals [2]. We
compare the overall QoS for the proposed technique and the
baseline case. vCap is able to adhere to the power cap 92% of
the time within the +2W error margin, and 98% of the time
within the £5W error margin.

Figure 8 shows the runtime behavior of vCap for the VM
pair that is running blackscholes and bodytrack. We
test our technique under the minimum QoS requirement of
60% for VMO (i.e., blackscholes) and dynamically change
the power caps between 125W and 160W. vCap accurately
tracks the power cap accurately and satisfies the minimum QoS
requirement that is required for VMO by adaptively adjusting
the resources in case of a QoS violation (e.g., t=6, t=22).

VII. CONCLUSIONS

Energy-related costs are among the most significant con-
tributors to the total cost of ownership of the data centers.
Thus, constraining the peak power consumption has become
a common practice for cost management and reliable power
delivery. As more than 50% of the cloud resources are virtu-
alized, it becomes essential to design power capping solutions
for virtualized servers. In tandem, multi-threaded applications
start to emerge on the cloud resources from various applica-
tion domains. Multi-threaded applications introduce additional

160 |

¢=~_,¢—.\ j e
140 L =
120 == Power Cap

1.0 == Power Consumption
== bodytrack (QoS)

- blackscholes (QoS)
N—‘\X:s Req. (blackscholes 60%)| J

< e

Power (W)

NN

()

QoS

0.5

0 5 10 15 20 25 30
Time (s)

Fig. 8. Runtime behavior of vCap under power caps and QoS constraints
for the VM group running blackscholes and bodytrack. vCap adheres
to the power cap and ensures that the QoS guarantees are met.

challenges due to their more complex characteristics such
as performance scalability. In this paper, we have proposed,
vCap, a power capping technique for virtualized multi-core
servers that improves the energy-efficiency of the server node
by taking the applications characteristics into account. vCap
identifies the VMs that exhibits poor performance scalabil-
ity and consolidates them together. At runtime, vCap first
estimates the total amount of CPU resources that meet the
power caps. vCap then distributes the CPU resources among
VMs according to the performance scalability of the VMs.
We implemented vCap on a real-life multi-core server and
show that vCap provides 12% higher energy efficiency in
comparison to the state-of-the-art policies.

REFERENCES

[1] R. Nathuji and K. Schwan, “VPM Tokens: Virtual Machine-aware
Power Budgeting in Datacenters,” in International symposium on High
Performance Distributed Computing (HPDC), 2008, pp. 119-128.

[2] I Paschalidis, B. Li, and M. Caramanis, “A Market-Based Mechanism
for Providing Demand-Side Regulation Service Reserves,” in Decision
and Control and European Control Conference, 2011, pp. 21 -26.

[3] L. Borovick, “The Benefits of a Virtualized Approach to Advanced-
Level Network Services,” International Data Corporation (IDC),
Whitepaper, February 2011.

[4] G. Dhiman, G. Marchetti, and T. Rosing, “vGreen: A System for
Energy-efficient Computing in Virtualized Environments,” in ISLPED,
2009, pp. 243-248.

[S] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in International
Conference on Parallel Architectures and Compilation Techniques
(PACT), October 2008.

[6] M. Ferdman and et al., “Clearing the clouds: a study of emerging
scale-out workloads on modern hardware,” in International conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012, pp. 37-48.

[71 J. Li and J. Martinez, “Dynamic Power-performance Adaptation of
Parallel Computation on Chip Multiprocessors,” in International Sym-
posium on High-Performance Computer Architecture, 2006, pp. 77-87.

[8] T. Samson, “AMD Brings Power Capping to New 45nm Opteron
Line,” http://www.infoworld.com/d/green-it/amd-brings-power-capping-
new-45nm-opteron-line-906, 2009.

[9] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in International symposium
on Low power electronics and design (ISLPED), 2010, pp. 189-194.

[10] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
Power Struggles: Coordinated Multi-level Power Management for the
Data Center,” in ASPLOS, 2008, pp. 48-59.

[11] S. Reda, R. Cochran, and A. Coskun, “Adaptive power capping for
servers with multithreaded workloads,” Micro, IEEE, vol. 32, no. 5, pp.
64-75, 2012.

[12] K. Ma and X. Wang, “PGCapping: Exploiting Power Gating for Power
Capping and Core Lifetime Balancing in CMPs,” in PACT, 2012, pp.
13-22.

[13] I. Hwang, T. Kam, and M. Pedram, “A Study of the Effectiveness
of CPU Consolidation in a Virtualized Multi-core Server System,” in
ISLPED, 2012, pp. 339-344.

[14] N. Vasié, D. Novakovié, S. Miucin, D. Kostié, and R. Bianchini, “De-
jaVu: Accelerating Resource Allocation In Virtualized Environments,”
in ASPLOS, 2012, pp. 423-436.

[15] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ser. ASPLOS, 2013, pp. 77-88.

[16] J. Kim, M. Ruggiero, D. Atienza, and M. Lederberger, “Correlation-
aware virtual machine allocation for energy-efficient datacenters,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE, 2013, pp. 1345-1350.

[17] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic Knobs for Responsive Power-aware Computing,”
in ASLPOS, 2011, pp. 199-212.

