
Energy-Efficient Server Consolidation for
Multi-threaded Applications in the Cloud

Can Hankendi
ECE Department

Boston University, Boston, MA
Email: hankendi@bu.edu

Ayse K. Coskun
ECE Department

Boston University, Boston, MA
Email: acoskun@bu.edu

Abstract—Cloud services have been actively used for trans-
actional and batch workloads. Recently, multi-threaded high-
performance computing (HPC) workloads have started to emerge
on the cloud as well. Unlike most traditional data center loads,
HPC workloads highly utilize the servers. The energy efficiency
and performance of HPC loads, however, vary strongly as
a function of the amount of allocated resources. This paper
proposes an autonomous resource allocation technique for multi-
threaded compute-intensive HPC workloads with the goal of
creating tunable energy cost-performance tradeoffs for the cloud
administrators and users. The proposed technique adjusts the
available resources for the virtual machines (VMs) based on appli-
cation energy efficiency while delivering the desired performance
guarantees. Experiments on a real-life multi-core server show that
the proposed technique improves the system throughput-per-watt
by 17% on average compared to existing techniques.

I. INTRODUCTION

Energy-related costs are among the major contributors
to the total cost of ownership in today’s data centers and
HPC clusters [1]. As a result, energy-efficient operation is
one of the prerequisites in achieving sustainable computing.
Another important challenge for large computing clusters
arises from the fact that as the number of servers increase,
cluster management incurs higher complexity. In fact, server
management costs have increased 3 times from 2000 to 2012
[1]. This increase motivates the design of automated energy
and resource management policies.

While many modern data centers running enterprise work-
loads successfully implement energy and resource management
techniques today, multi-threaded workloads are emerging as
new candidates for the cloud. As the hardware resources are
designed to provide high levels of parallelism, HPC domain, as
well as an increasing number of applications in other domains,
employ multi-threaded applications to efficiently utilize the
underlying hardware resources. Some of these multi-threaded
HPC-type loads are expected to leverage the cloud resources,
as the cloud provides comparable performance to native (not
virtualized) systems for HPC workloads [5]. As a result,
cloud providers (e.g., Amazon, SGI) have already started
providing HPC resources for their customers. In addition to
delivering high performance, cloud offers cost-efficient and
highly elastic computing resources compared to the traditional
grid infrastructures [6].

Virtualized cloud resources also provide opportunities to
improve the energy efficiency through server consolidation.
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Fig. 1. Virtualized server illustration for a) enterprise workloads and b)
HPC-type workloads.

Consolidating workloads on the same physical node reduces
the number of active servers and increases the utilization of
individual nodes, improving the energy efficiency. However,
the energy efficiency of a consolidated system considerably
varies depending on the potential resource contentions on the
physical node. An additional challenge with multi-threaded
loads is the significance of application-specific needs and con-
straints while determining the resource allocation strategies [7].
Multi-threaded workloads also differ from enterprise loads, as
the system utilization is generally higher even in absence of
consolidation.

In Figure 1, we show two potential virtualization scenarios
for a typical multi-core server node. In Figure 1.a, we illustrate
a server node that predominantly runs transactional workloads
with low CPU utilization. For such cases, consolidating server
nodes with a high VM density (number of VMs per physical
CPU) is a common practice. On the other hand, in Figure
1.b, we illustrate the virtualization case for HPC-type multi-
threaded workloads, which highly utilize the CPU resources.
Thus, the number of VMs per node in HPC clouds is expected
to be much fewer than the traditional cloud setting. The higher
utilization trends together with the multi-threaded application
characteristics (e.g., scalability) make the decisions about how
much resource to allocate per application a crucial part of
consolidation. In addition, providing energy-efficient consol-
idation strategies for multi-threaded loads enables tuning the
energy cost and performance of the applications. For example,
through consolidation, administrators can offer a wider range
of cost-performance tradeoffs to the users, who then could
select the most desirable operating point for their applications.

In this paper, we propose a novel, autonomous resource
allocation strategy for consolidating multi-threaded HPC-type
workloads on multi-core servers. While some of the prior
approaches targeting multi-threaded loads select which appli-
cations to co-schedule together for reducing resource con-
tention (e.g., [3], [8]), we find that performance isolation
in VMs reduces the significance of co-runner application978-1-4799-0623-9/13/$31.00 © 2013 IEEE



selection. Thus, our technique focuses on adaptively deciding
how much resource to allocate for each VM in a consolidated
environment. The performance change due to increasing or
decreasing the amount of resources depend on the application
characteristics. Therefore, our technique favors the applications
that benefits more from additional CPU resources to improve
the energy efficiency of the server node. Our technique uses
runtime performance polling to identify application phases.
Our specific contributions are as follows:

• Performance isolation in consolidated environments min-
imizes the impact of a co-runner application on the other
applications’ performance and achieves better performance
predictability. We analyze the performance isolation on
consolidated virtual environments. We show that the vir-
tual environments provide comparable performance and on
average 60% higher performance isolation in comparison to
native OS environments.

• Following our observations in performance isolation, we
propose a runtime policy that makes resource allocation
decisions proportionally to the energy efficiency of the
applications. For the PARSEC benchmark suite [9] running
on a multi-core server, we show that our technique can be
jointly used with application-selection policies to improve
the throughput-per-watt by 17% on average and up to 21%
compared to using only co-runner application selection
policies.

• To provide performance guarantees to the user under
consolidation, we propose a feedback technique that adjusts
the resource allocation decisions to meet the performance
constraints. We demonstrate that our policy is able to
seamlessly track application phases and varying resource
needs while maintaining the desired performance.

• We provide a practical implementation strategy for our
technique. We implement and evaluate the energy efficiency
and performance of the proposed approach on a real multi-
core based virtualized server.

The rest of the paper starts with an overview of the related
work in virtualized system management. Section III provides
the details of our experimental setup on a real-life server.
Section IV evaluates application selection based co-scheduling
policies and investigates performance isolation in consolidated
environments. Section V explains the proposed resource alloca-
tion policy and the runtime implementation details. Section VI
presents the experimental results and Section VII concludes the
paper.

II. RELATED WORK

A number of the existing energy and resource manage-
ment techniques target optimization of an entire computing
cluster. We call such techniques “cluster-level”. For power
management of clusters, Fan et al. study power provisioning
strategies for large scale data centers [10]. Wang et al. propose
a feedback controller to optimize the cluster-level performance
while meeting the power constraints [11]. Nathuji et al.
propose a VM-aware power allocation technique to improve
performance for a given power budget [12]. Their proposed
technique allocates power budgets proportionally across VMs
by favoring applications that are service level agreement (SLA)
critical.

Cluster-level resource management techniques can be
divided into two groups: VM migration and consolidation
techniques. The goal of cluster-level resource management
techniques is mainly to provide service availability guarantees
(e.g., [13], [14]). Consolidation and migration policies target
balancing the activity on various server components such as
CPU, memory, or disk to improve energy efficiency (e.g, [15]).
Modern virtualization environments such as Xen, KVM and
vSphere provide resource management mechanisms to improve
the efficiency of the server nodes mainly through scheduling
techniques. While KVM relies on default Linux resource man-
agement, Xen and vSphere provide management options such
as Xen Management Tools and vSphere’s Distributed Resource
Scheduler (DRS), which mostly rely on VM migration to
provide balanced load distribution across server nodes [21],
[22]. Zheng et al. present an empirical infrastructure for
data center management [16]. Their proposed infrastructure
allocates a server node (i.e., sandbox) to experimentally derive
the energy/performance tradeoffs. Wang et al. propose a
framework that allows user-specified workload provisioning
policies to optimize energy efficiency on clusters [17]. Their
framework allocates threads to available cores across the
cluster depending on the user-specified performance/power
constraints. Vasic et al. propose the DejaVu framework that
makes resource allocation decisions based on the history of
the VMs to reduce the resource management overhead [18].

Node-level techniques (i.e., on a single server) provide
more visibility into workload characteristics, and this visibility
can be used to improve the overall energy efficiency of the
clusters. The goal of node-level techniques is reducing resource
contention by pairing contrasting applications or threads to
work on the same physical resources (e.g., [19], [3]). Bhadau-
ria et al. propose co-scheduling algorithms based on tracking
application characteristics such as cache misses and bus con-
tentions [4]. Their method determines the time and space (e.g.,
number of cores) share of the co-scheduled applications. The
authors propose algorithms to find the best time and space
sharing based on offline energy-delay measurements. Dhiman
et al. propose a VM scheduling technique that estimates VM-
level CPU and memory usage based on system-level metrics
to guide scheduling and migration decisions [8]. The success
of their technique depends on identifying the workloads that
have complementary characteristics. Their technique, however,
does not consider adjusting the resource allocations for the co-
scheduled applications.

Our resource sharing technique differentiates from the
previous work in the following aspects. We propose a novel
resource allocation strategy for consolidated multi-threaded
HPC workloads, whereas most of the prior work focuses on
traditional data center loads. We demonstrate that the propor-
tional allocation of the shared resources improves the energy
efficiency by taking the varying application characteristics into
account. Our technique is able to identify the applications
that benefit more from increasing CPU resources and favors
them when making resource allocation decisions. In contrast
to previous work, our technique dynamically makes resource
allocation decisions without requiring offline analysis. We
implement our technique on a real-life server and show that
our technique can be jointly used with application-selection
policies to improve the energy efficiency of multi-threaded
workloads.



III. EXPERIMENTAL METHODOLOGY

In this section, we present the details of our experimental
methodology. Our target environment is a multi-core system
that is similar to commonly used servers in virtualized HPC
clusters and data centers. As our main focus in this work is
HPC-type workloads, so our experimental setup is similar to
the case in Figure 1.b.

We perform all experiments on an AMD 12-core Magny
Cours (Opteron 6172) server, virtualized by the VMware
vSphere 5.1 ESXi hypervisor. Magny Cours is a single-chip
processor that comprises two 6-core dies attached side by side.
Each core has a 512 KB private L2-cache. Each 6-core die has
one local NUMA node and a 6 MB shared L3-cache. All cores
share a 16 GB off-chip memory. Although we perform our
experiments on a single-chip processor, our approach can be
generalized to multi-chip (i.e., multi-socket) servers as well as
to multiple server nodes, as discussed in Section V-D. For each
co-scheduled application, we create a separate VM on top of
the hypervisor. Therefore, in all of our experiments, number of
VMs is equal to the number of co-scheduled applications and
all VMs run Ubuntu Server 12.04 as the guest OS. As multi-
threaded workloads are expected to run on multiple cores and
scale well to at least 4 threads/cores, most of the results and
analyses are performed on a system with 2 VMs.

Performance counters, which are available in today’s pro-
cessors, provide visibility into the system and application
characteristics. It is possible to poll the performance counter
data from the guest OS by utilizing the virtualized performance
counters in vSphere 5.1. We use perf utility tool on the
guest OSes to poll the following performance counter data
from the physical CPUs at every second: CPU cycles, retired
instructions, and L3-cache misses. We find these as the most
relevant metrics to determine the performance and power
characteristics of the applications, in line with findings of
prior work [7], [20]. We use esxtop utility to collect VM-
level resource utilization data such as CPU, memory and disk
utilization at every 2 seconds from the vSphere hypervisor.
We configure esxtop to report data only for the VMs to
reduce the runtime overhead, as opposed to reporting the
data for all processes running on the hypervisor. We measure
system power by using a Wattsup PRO power meter with a
1 second sampling rate, which is the minimum sampling rate
provided for this meter. As the total system power determines
the electricity cost of a server, we evaluate system power rather
than component power (i.e., processor, disk, etc.).

We run PARSEC [9] multi-threaded benchmarks in our ex-
periments as a representative set of multi-threaded workloads.
We run each benchmark with 12 threads using the native input
set. fluidanimate and facesim require 2n number of
threads to run. Thus, we run these two benchmarks with 16
threads.

Parallel applications typically consist of serial I/O stages
and a parallel phase, i.e., region-of-interest (ROI). As ROI
is the power and performance hungry portion of parallel
applications, it is important to consider only the ROI phase
for evaluating the energy and performance tradeoffs during
consolidation. In fact, parallel phases of the multi-threaded
workloads occupy most of the compute cycles of the proces-
sors in real-life HPC systems. As the start and end points of

Benchmark Set CPU Memory
3x canneal, 3x ferret, 2x bodytrack, dedup, vips Low High
4x blackscholes, 2x vips, bodytrack, freqmine, streamcluster,
swaptions

High Low

3x bodytrack, 3x facesim, 2x fluidanimate, canneal, stream-
cluster

Medium Medium

TABLE I. BENCHMARK SETS AND THEIR RELATIVE CPU AND
MEMORY INTENSITIES. EACH BENCHMARK SET CONSISTS OF 10 PARSEC

BENCHMARKS.

ROI phase vary across different applications, we implement
a consolidation management interface, consolmgmt, that
synchronizes the ROIs of the co-scheduled applications. We
implement the ROI-Synchronization routine inside the existing
PARSEC HOOKS library. The VM that first reaches the ROI
phase sleeps until the second VM reaches its own ROI. The
second VM sends interrupts upon reaching ROI to resume
the execution and start data logging. We stop data collection
and terminate the applications after one of the applications
reaches the end of its ROI phase. PARSEC HOOKS library is
only used as the markers for the parallel phases. For other
applications, it is also straightforward to detect the parallel
phase by monitoring the overall utilization of the system,
without requiring additional libraries.

In order to evaluate existing techniques, we design three
benchmark sets that exhibit distinct CPU and memory charac-
teristics. Each benchmark set consists of 10 PARSEC bench-
marks, which would occupy 5 server nodes when consolidated.
In Table 1, we list the benchmark names, number of instances
of each benchmark and CPU and memory characteristics of
each benchmark set. To evaluate our technique in a cluster
setting, we also generate 50 random workload sets in a similar
way to the benchmark sets in Table 1.

IV. CO-SCHEDULING ANALYSIS IN
VIRTUALIZED ENVIRONMENTS

This section investigates the impact of co-scheduling on
application performance under virtual and native OS (i.e.,
Linux) environments. The goal is to develop an understanding
of the tradeoffs and constraints in virtualized environments to
enable better policy design for runtime management. We first
evaluate performance and performance variation on both vir-
tual and native OS environments. We then investigate whether
selecting which applications to co-schedule together on the
same resources changes the overall energy efficiency on virtual
systems.

A. Performance Isolation on Virtualized Environments

Performance isolation is a desirable feature in consolidated
environments, as poor performance isolation leads to unpre-
dictable performance for the applications sharing the same
resources. In order to quantify the performance and the per-
formance isolation on virtual environments, we first compare
performance (i.e., throughput) and performance variation on
native OS and virtual environments. We utilize throughput
(retired instructions per second) as the performance metric,
as it is a good indicator of the application progress and
can be measured without instrumenting the applications. For
ensuring that the throughput is a meaningful metric to track the
performance of PARSEC applications, we perform correlation
analysis, which shows that runtime and throughput are strongly
correlated (i.e., 0.98 Pearson coefficient with 0.99 confidence
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Fig. 2. In this experiment, a PARSEC benchmark is co-scheduled with another benchmark (only two benchmarks at a time). The experiment is repeated to
cover all possible application pairings. Figure shows the performance variation (standard deviation/mean) and the average throughput of each benchmark across
its co-scheduled runs with the other benchmarks. We report the performance and performance variation normalized with respect to the native environment.
Smaller performance variation indicates better performance isolation.

level). It is also possible to measure application-specific per-
formance metrics (e.g., frames/second (FPS)) by instrumenting
the applications. We demonstrate the runtime behavior of our
runtime policy with application-specific constraints in Section
VI.

For all the experiments on the native OS, we co-schedule 2
applications at a time, each of them running with 6 threads. For
the virtual system, we create 12 vCPUs (12 threads) per VM
and distribute the total CPU resources equally across VMs. In
Figure 2, we report the normalized performance variation and
throughput values for all the PARSEC benchmarks with respect
to native environment. As Figure 2 shows, on average virtual
environment provides 60% lower performance variation, which
implies that the application performance is significantly less
affected by the co-runner application, indicating higher perfor-
mance isolation. Virtualization causes less than 4% overhead
compared to the native OS environment. As a result, the energy
efficiency improvements due to application selection policies
are expected to be limited on virtual environments with high
performance isolation capabilities.

B. Application Selection Based Co-scheduling

Co-scheduling the application pairs that have contrasting
performance characteristics, such as co-scheduling a high
instructions-per-cycle (IPC) application with a low IPC ap-
plication, is expected to improve the energy efficiency signif-
icantly, as it leads to more balanced resource usage. Based
on this fact, application selection based co-scheduling tech-
niques are proposed to improve the energy efficiency [8],
[4]. Application selection based co-scheduling techniques first
rank the applications according to a selected metric and then
co-schedule the highest ranked benchmark with the lowest
one, and proceed through the ranked list in a similar fashion.
Energy efficiency improvements due to application selection
policies rely on the fact that co-runner applications affect each
other’s performance. However, virtual environments provide
more isolated execution environment for individual VMs (i.e.,
applications), which limits the benefits of application selection
based co-scheduling policies.

In order to quantify the energy efficiency improvements

due to application selection policies, we evaluate the through-
put-per-watt for the workload sets shown in Table 1. We
use throughput-per-watt as a metric of energy efficiency, as
it captures the useful work done per watt consumed [4].
Recall that throughput is a meaningful estimator for application
progress for PARSEC workloads.

We implement previously proposed co-scheduling policies
that determine the best application pairs to co-schedule to-
gether by ranking applications using two metrics (i.e., Memory
per cycle (MPC)*CPU Utilization and IPC*CPU Utilization)
[8]. We also evaluate the throughput-per-watt of the workload
sets when applications to be co-scheduled are selected ran-
domly. Figure 3 compares the energy efficiency of the three
distinct benchmark sets under various co-scheduling policies.
IPC*CPU Utilization provides the best results for the medium
and high CPU benchmark sets, whereas MPC*CPU Utilization
is the best policy for the highly memory intensive benchmark
set. However, on average, best performing policy improves the
energy efficiency by 4% in comparison to the random policy.

Although application selection policies improve the energy
efficiency of the virtual systems, these improvements are
limited for a system with high performance isolation moti-
vating the design of novel resource management techniques to
further improve the energy efficiency of server nodes running
multi-threaded applications. We next describe our autonomous
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Fig. 3. Throughput-per-watt for the benchmark sets in Table 1, when
co-scheduled using previously proposed application-selection policies. On
average, randomly co-scheduling applications provides comparable energy
efficiency in comparison to previously proposed policies.



resource allocation policy, which aims to improve the energy
efficiency through energy proportional resource allocation for
multi-threaded workloads.

V. ADAPTIVE RESOURCE SHARING FOR
MULTI-THREADED WORKLOADS

This section presents our adaptive resource sharing tech-
nique for multi-threaded workloads. Our technique maximizes
the energy efficiency of a server node by allocating resources
to VMs based on application-specific energy and performance
characteristics. The goal is to provide more resources to
energy-proportional applications, whose performance improves
as an increasing amount of CPU resources are allocated to
the application. Our resource sharing technique dynamically
adjusts the amount of CPU resources allocated for each VM
by evaluating the relative energy proportionality of the co-
scheduled applications.

A. Resource Management in Virtual Environments

For server level resource management, modern hypervisors
provide resource control knobs to the administrators to manage
the resources allocated for VMs. During the VM creation pro-
cess, initially CPU, memory and disk resources are allocated
for each VM. Due to varying resource requirements, these
initially configured resources can be reconfigured through the
hypervisor at runtime, without any need for restarting the
VMs. ESXi hypervisor provides various features such as vCPU
hot plugging, and adjusting resource reservations, limits and
shares. Reservation can be defined as the guaranteed minimum
resource allocation that is always available to the VMs and
resource limits restrict the resource usage of the VMs. By
adjusting the reservations and/or the limits, it is possible to
control the resource usage of individual VMs to optimize the
performance and power tradeoffs. In this work, we propose
running each VM with 12 vCPUs and using the CPU resource
limits settings for resource allocation to be able to utilize all
of the 12 physical CPUs (pCPU) when desired.

Running a larger number of vCPUs might introduce higher
overhead on the hypervisor side, as the hypervisor needs to
handle a higher number of vCPUs and multiplex them to run
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Fig. 4. Average throughput of each PARSEC benchmark when they are co-
scheduled with all other benchmarks separately in a two-VM configuration
(i.e., 12 vs. 6 vCPUs). Creating VMs with 12 vCPUs brings less than 2%
overhead, in comparison to VMs with 6 vCPUs.
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on the pCPUs. In order to quantify the overhead of running a
higher number vCPUs on the performance of the applications,
we compare two scenarios. In the first scenario we create 2
VMs with 6 vCPUs. In the second scenario we create 2 VMs
with 12 vCPUs each and we limit the resource allocation of
each VM to the level equal to running 6 vCPUs. In Figure
4, we show the average throughput (retired instructions per
second) for all PARSEC benchmarks, when each benchmark
is co-scheduled with all the others separately (i.e., 2 application
at a time). As Figure 4 shows, running a higher number
of vCPUs with resource limitations introduces less than 2%
overhead on average in comparison to VMs with 6 vCPUs.

B. Autonomous Resource Sharing

To improve the energy efficiency of the system, we pro-
pose to proportionally allocate the resources depending on
the energy efficiency levels of each co-scheduled application
by utilizing the VM resource management knobs (i.e., CPU
resource limits). In Figure 5, we show the throughput of all
PARSEC benchmarks as a function of CPU resource limits. As
Figure 5 shows, the impact of changing the CPU resource lim-
its on application performance varies significantly depending
on the application characteristics. For instance, the throughput
of vips increases dramatically as more CPU resources are
provided, while the throughput increase of canneal is min-
imal. Following our observations, we propose to improve the
energy efficiency by favoring applications that benefit more
from increased CPU resources, such as allocating more CPU
resources to vips, when it is co-scheduled with canneal.

To find the resource share of each VM at runtime, we first
compute a weight, wi, for each application, based on the ratio
of their throughput values, wi, such that wi = ti/

∑n
i=1 ti.

We then use wi to allocate (ri) amount of resources for VMi,
where ri = wi ∗ R, and R is the total amount of available
resources. On the ESXi environment, available resources are
represented in units of frequency, f (MHz). We allocate CPU
resources (ri) for VMs, such that

∑n
i=1 ri = 23940MHz,

where 23940 MHz (12 pCPUs) is the maximum available CPU
resources (R) for the VMs on our 12-core system.

C. Consolidation with Performance Constraints

Allocating fewer resources to the applications that are not
energy-efficient have negative impacts on the throughput of
some workloads. However, in a real-life scenario, users might
request performance guarantees for their specific applications.



In addition, administrator might want to consider other con-
straints, such as fairness, to achieve long-term scheduling
goals. To be able to provide performance guarantees to the
users, we implement a feedback mechanism into the resource
allocation routine. In our implementation, users can set either
maximum throughput degradation constraints or application-
specific performance constraints, such as minimum frames per
second, to guarantee a certain level of performance for their
applications.

Our resource allocation routine first stores the applications’
performance in a lookup table (LUT), when both applications
have equal resources, as a reference value to calculate the
gains and loss due to changing CPU resource allocations. At
runtime, the resource allocation routine continuously monitors
the performance changes on each application by comparing
the current performance of the application with respect to the
stored value in the LUT. The feedback mechanism takes the
maximum performance degradation as a user input, and asserts
a signal to the resource allocation routine, if there are any
performance violations. To implement the application-specific
performance constraints, we utilize the Heartbeats API to
monitor application performance in PARSEC [23]. In this case,
the feedback mechanism communicates with the Heartbeats
API to monitor the application-specific performance instead
of monitoring the throughput. Feedback mechanism is able to
send separate signals specific to each VM (i.e., VM0-alert,
VM1-alert), therefore it is possible to enforce performance
constraints on individual consolidated applications. When the
resource allocation routine receives a feedback signal, it in-
crements and decrements the CPU resources at the frequency
(MHz) granularity that is equivalent to 1 pCPU, to meet
the performance constraints. However, adjusting the CPU
resources at a finer granularity is also possible.

D. Runtime Implementation

We implement our autonomous resource sharing technique
on an AMD Magny Cours multi-core server (see Section
III). Our architecture consists of a management node (vCen-
ter terminal) and virtualized server(s). Figure 6 shows the
architecture of our implementation. Utilizing a centralized
management node is a common practice on VM environments
(e.g., VMware’s vCenter Server). VMware’s VM management
framework uses SDKs and APIs, some of which are leveraged
in our implementation. In general, data center administrators
do not always have access to the hypervisor code and man-
agement through a centralized node brings ease of implemen-
tation. Our technique, however, could be implemented within
the hypervisor as well for open-source hypervisors.

In a multiple node scenario, management node still serves
as the centralized resource manager. Each host (server node)
is then interfaced to the management node through the default
vSphere SDK. Thus, extension to multiple nodes and/or to
multi-socket chips requires no major modification to the im-
plementation. In this work, we demonstrate the capabilities of
our runtime implementation on a single server node.

We use an Intel i3 dual-core processor based machine as
our management node, which runs Ubuntu 12.04 as its OS.
Management node periodically collects runtime performance
statistics from the ESXi hypervisor. The runtime monitor polls

ESXi 5.1 

Adjust'CPU'Limits'Monitor'Applica6on'

User8defined''
Constraints'

Compute'
weights'

Check''
constraint'

Fig. 6. Runtime operation of the resource allocation technique.

VM-level performance counter readings (i.e., retired instruc-
tions, clock cycles) every second. The management node then
makes resource allocation decisions and the resource allocation
routine communicates with the ESXi through the vSphere SDK
to perform administrative tasks (i.e., VM reconfiguration) on
VMs.

VI. EXPERIMENTAL RESULTS

In this section, we first present the runtime behavior of
the resource allocation technique on a real-life server. We
then show the capabilities of the feedback mechanism that
enables user to enforce performance guarantees for selected
applications. We then report average throughput-per-watt im-
provements compared to the existing co-scheduling policies.

A. Runtime Behavior

Figure 7 demonstrates the runtime behavior of our
technique for the application pair, blackscholes and
raytrace under throughput degradation constraint. Simi-
larly, in Figure 8, we show the application pair bodytrack
and x264, under application-specific performance constraints
(i.e., minimum frames per second (FPS)). In both figures,
we show the progress (at the top) of each VM after both
applications reach their parallel phases, and the CPU resource
limits (at the bottom), which are imposed by our method.
Initially, each application is allocated equal resources and
then resource allocation decisions are enforced every second
proportionally to the throughput of the applications. User-
defined constraints are represented as dashed lines on the plot.
We test our technique with a maximum throughput degradation
constraint of 30% on raytrace for the application pair in
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Fig. 7. Runtime behavior of the resource allocation routine with throughput
constraints. CPU resources are adjusted proportional to throughput of the
applications to improve the overall efficiency of the server. At t=9, resource
allocation routine responds to the performance violation that occurred at
t=8, by increasing the CPU resources allocated to raytrace to meet the
performance constraints.
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Fig. 8. Runtime behavior of the resource allocation routine with application-
specific performance guarantees. In this case, we test our technique with a
minimum FPS constraint of 4 on bodytrack. Our technique adapts the
resource allocation at t=19 following the performance constraint violation.

Figure 7, and minimum FPS constraint of 4 on bodytrack
in Figure 8. We measure the number of frames processed
per second (FPS) as the performance metric for two of the
video processing applications (i.e., bodytrack, x264) in the
PARSEC suite.

In Figure 7, at t=8, performance of raytrace falls
below the maximum throughput degradation limit. Therefore,
feedback mechanism signals the resource allocation routine
to increase the CPU resources allocated to raytrace, and
to reduce the CPU resources allocated to blackscholes.
Similarly, in Figure 8, at t=19, FPS for bodytrack falls to
3.78, therefore the resource allocation are adjusted to meet the
minimum FPS constraint by increasing the CPU resources allo-
cated to bodytrack. The ability to fine tune the performance
as shown in these examples enables cloud providers to offer
flexible service prices with varying performance guarantees. At
the same time, by maintaining target performance at runtime,
the proposed method enables users to run their time-sensitive
jobs as part of a consolidated system.

In the results presented so far, we synchronize the parallel
phases of the applications through the consolmgmt interface
that is explained in Section III. However, our implementation
works seamlessly as applications go in and out of parallel
phases and does not disrupt the default scheduler decisions. If
we consider the entire execution of the applications including
the serial I/O phases, throughput-per-watt gains are much
higher in comparison to the ROI execution, as we have higher
gains when one application is in serial and the other is in its
parallel phase. For instance, throughput-per-watt improvements
for blackscholes-raytrace pair reaches 24% for the
entire execution and 11% for the ROI execution compared to
the baseline case without any resource controls. For all of the
other results, we report energy efficiency improvements for
the ROI only, as energy gains during parallel phases are more
valuable in real-life settings.

B. Evaluation for Various Cluster Workload Sets

To evaluate impact of our technique on the overall energy
efficiency of a cluster in a real-life scenario, we generate 50
random workload sets, each containing 10 PARSEC bench-
marks as in the three workload sets described in Section IV.
For each workload set, we evaluate the application selection
based co-scheduling policies (i.e., using MPC*Utilization and
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Fig. 9. Average throughput-per-watt, throughput, power and energy compar-
ison for randomly generated 50 workload sets, normalized w.r.t baseline case
of assigning each VM unlimited CPU resources.

IPC*Utilization metrics), the proposed technique and the com-
bination of application selection policies and the proposed
approach (i.e., Proposed+IPC, Proposed+MPC).

Figure 9 compares the average throughput-per-watt,
throughput, power and energy consumption of the workload
sets for various techniques. We normalize the values with
respect to the baseline case, where VMs do not have any limits
on CPU resources. The proposed technique alone improves
the throughput by 21% with 3% increase in power consump-
tion, which translates into 16% lower energy consumption
with respect to the baseline case. Moreover, our proposed
policy can further improve the energy efficiency by 17%,
when jointly utilized with application selection policies, while
the application selection policies alone improves the energy
efficiency by only 4%. The other important observation from
our results is the fact that energy efficiency improvements are
resulting from achieving increased throughput at a marginal
power increase. Therefore, our runtime policy lowers the total
energy consumption for executing all 50 workload sets by 14%
in comparison to only using application-selection based co-
scheduling policies.

C. Consolidation with a Higher Number of VMs

We test our research allocation technique for co-scheduling
3, 4 and 6 applications (i.e., each application on a separate
VM) on the same server. As a case study, we first create a
set of 12 applications (2x blackscholes, 2x dedup, 2x vips,
bodytrack, canneal, facesim, swaptions, streamcluster, x264).
In each experiment, we co-schedule the applications in groups
of 2, 3, 4 or 6 applications at a time. We evaluate our resource
sharing policy with various numbers of VMs by allocating
the CPU resources proportionally to the throughput of the
applications. We compare the energy efficiency improvements
with respect to the baseline case (i.e., without any limits
on CPU resources). Figure 10 shows that the 2-VM case
achieves 16% energy efficiency improvements on average with
respect to the baseline case, whereas the 3-VM case improves
the energy efficiency by 9%. The energy efficiency improve-
ments decrease with increasing the number of applications co-
scheduled at a time.

As the HPC-type multi-threaded applications already uti-
lize the resources at high levels, increasing the VM density
diminishes the energy efficiency improvements, leaving less
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Fig. 10. Normalized throughput-per-watt w.r.t. the baseline case, where each
VM is given the maximum resources, for a varying number of co-scheduled
applications. Energy efficiency improvements decrease as we increase the
number of co-scheduled VMs.

room for managing the performance/energy tradeoffs. In addi-
tion, resource contention at lower levels of cache is expected to
be higher when a larger number of vCPUs share the hardware
resources. In our experiments, we test our technique under a
fixed amount of CPU resources (i.e., single-node). Therefore, it
is expected to observe lower gains with an increasing number
of VMs, as the performance of all the PARSEC applications
scale well up to 4 threads. Even though our method works
with an arbitrary number of VMs and server nodes, each multi-
threaded application should be allocated a sufficient amount of
CPU resources to ensure high performance.

VII. CONCLUSIONS

Energy efficiency remains to be a major challenge for com-
puting clusters. As multi-threaded workloads start to leverage
cloud resources, efficient consolidation of these workloads
emerge as a novel research area. In this paper, we have
evaluated existing co-scheduling techniques that are based on
co-runner application selection. Our work shows that in the
case of multi-threaded loads running on multi-core systems, it
is more important to adjust the allocated resources depending
on the power efficiency of the applications compared to solely
selecting which applications to co-schedule. This result is
mainly due to the performance isolation advantages of the
virtualized environments.

Following our analysis, we have presented a novel policy
for autonomous resource allocation for multi-threaded loads.
Our policy proportionally allocates the resources according to
energy efficiency of the applications to efficiently utilize the
server node. Our technique includes a feedback mechanism
to set user-defined performance targets per application. Based
on our experiments on a real-life server, our policy achieves
17% higher throughput-per-watt on average compared to the
state-of-the-art co-scheduling techniques.
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