
1

Adaptive Energy-Efficient Resource Sharing for
Multi-threaded Workloads in Virtualized Systems

Can Hankendi Ayse K. Coskun

Electrical and Computer Engineering Department
Boston University, Boston, MA 02215

{hankendi, acoskun}@bu.edu

Abstract— Computational demand on today’s data centers is
continuously increasing, as computing trends are shifting towards
the cloud. The corresponding increases in energy consumption
and and management complexity remain as major challenges
for data centers. Server virtualization provides opportunities to
improve energy efficiency by reducing the number of physical
servers through workload consolidation. Efficient consolidation
of multi-threaded workloads requires a detailed understanding of
various application characteristics such as performance scaling,
inter-thread communications and memory access patterns. This
paper proposes an efficient consolidation technique for multi-
threaded workloads through adaptive resource sharing on virtual
environments. We present a virtual machine reconfiguration
algorithm that improves the overall throughput-per-watt of a
real-life multicore system by up to 25% in comparison to existing
consolidation methods.

I. INTRODUCTION

Energy-related costs are among the biggest contributors to
the total cost of ownership for today’s modern data centers
and high performance computing (HPC) clusters. Therefore,
energy efficiency is one of the major goals for achieving
sustainability in data centers. One of the main reasons for
low energy efficiency in current clusters is under-utilized
server nodes. Most server nodes are utilized between 10% to
50% on modern data centers [1]. Under-utilized server nodes
indicate a large amount of idle power spent without utilizing
the available hardware resources efficiently, leading to lower
energy efficiency. Another major challenge for data centers is
the increasing server management and administration cost. As
number of servers increase, data center management becomes
increasingly complex. Server management costs are projected
to increase by 3 times from 2000 to 2012 [2].

Server virtualization provides opportunities to improve the
energy efficiency of server nodes through consolidation. Con-
solidating multiple workloads on the same physical node
reduces the number of active servers as well as increasing
the resource utilization of individual nodes. However, energy
efficiency of a consolidated system can dramatically vary
depending on various types of resource contentions on the
physical node. Thus, reducing the resource contention through
co-scheduling techniques have been studied in recent years to
improve the energy efficiency [3], [4].

Virtualization also provides an effective centralized man-
agement for a large number of server nodes. As data center
management is becoming increasingly complex and costly,
developing adaptive management techniques is essential to

achieve efficient operation. Resource sharing across virtual
machines (VM) that reside on the same physical node is an
important knob to control the energy efficiency and perfor-
mance of the server nodes. VMs can be resized or migrated to
other server nodes to achieve better performance and energy
efficiency [5]. While practices for virtualized resource sharing
in enterprise computing have considerably advanced in recent
years, consolidation of high-performance multi-threaded loads
is an open problem. Resource sharing techniques for multi-
threaded workloads is essential to be able to continue improv-
ing the energy efficiency, as multi-threaded workloads occupy
more of the application domain of HPC clusters and data
centers. However, with increasing number of VMs per node,
energy-efficient VM reconfiguration remains to be a challenge.

In this paper, we first present an experimental infrastructure
that enables accurate performance and power evaluation of
consolidated multi-threaded workloads. We then discuss the
performance impact of co-scheduling on virtualized systems.
We show that the performance of individual VMs can be
isolated from each other on a virtualized system by controlling
resource affinities. We present an application classification
technique that is able to categorize benchmarks according to
their power efficiency levels with 97% accuracy. We propose
an adaptive resource sharing technique that performs VM
reconfiguration for multi-threaded workloads based on bench-
mark classification to improve energy efficiency of individual
server nodes in a cluster. We evaluate the throughput-per-
watt for our adaptive resource sharing technique for randomly
generated 50 workload sets based on the PARSEC suite [6].
We consider throughput-per-watt for our evaluations, as it
considers both the useful work done (i.e., throughput) and
the power consumption. We show that the proposed technique
provides 12% higher throughput-per-watt on average and im-
proves the efficiency of the server by up to 25% in comparison
to state-of-the-art co-scheduling policies.

The rest of the paper is organized as follows. Section II
gives an overview of the prior work. In Section III, we present
our methodology to evaluate the impact of co-scheduling. In
Section IV, we explore various co-scheduling and applica-
tion selection strategies on the virtualized system. Section
V presents our adaptive resource sharing technique based
on benchmark classification. In Section VI, we present the
benefits of our resource sharing technique on a real-life system
and Section VII concludes the paper.

2

II. RELATED WORK

Energy and resource management techniques for both virtu-
alized and non-virtualized systems have been widely studied in
the literature. One line of work focuses on cluster-level power
and resource management techniques that target improving
the overall efficiency of the data center. Fan et al. study
power provisioning strategies for large scale data centers
[7]. Wang et al. propose a power management technique
through a feedback controller to optimize the cluster-level
performance while meeting the power constraints [8]. Nathuji
et al. propose a VM-aware power allocation technique to
improve performance under power constraints [9]. Proposed
technique allocates power budgets proportionally across virtual
machines by favoring applications that are SLA (service level
agreement) critical.

Cluster-level resource management techniques are mainly
divided into two groups: VM migration and consolidation tech-
niques. Common goal for cluster-level resource management
techniques is to provide service availability guarantees. VM
migration techniques mostly focus on resource utilization lev-
els of the cluster to provide resource availability [5], [10]. Ku-
sic et al. propose a dynamic resource provisioning framework
based on lookahead control for virtualized server environments
[11]. In order to improve the clusters that heavily utilizes
the disk, Romosan et al. propose co-scheduling algorithms
based on load balancing frequently used files [12]. Zheng et
al. present an experiment-based management infrastructure for
data center management [13]. Their proposed infrastructure
allocates a server node (i.e., sandbox) to experimentally derive
the energy/performance tradeoffs. Bonvin et al. propose a
dynamic resource allocation algorithm to meet SLA perfor-
mance and availability guarantees by adding or removing new
resources (i.e., allocation of cores or new server nodes) [14].
However, their proposed work does not consider power and
energy aspects.

Although cluster-level techniques are valuable, node-level
analyses provide more insights about the underlying rea-
sons for lower energy efficiency of data centers. Node-level
techniques focus on workload analysis and the impact of
consolidation on individual server nodes. For MPI (message
passing interface) based parallel applications, Frachtenberg et
al. propose a co-scheduling technique based on monitoring
MPI calls to identify frequently communicating processes
[15]. McGregor et al. present scheduling algorithms that
determine best thread mixes to improve the performance
of multi-threaded applications [16]. Meng et al. propose a
joint-VM provisioning technique based on workload pattern
analysis [3]. Proposed technique selects VM combinations
with complementary workload patterns to improve the energy
efficiency.

Bhadauria et al. propose co-scheduling algorithms based
on application characteristics such as cache misses and bus
contentions [17]. Proposed algorithms determine the time
and space (e.g., number of cores) share of the co-scheduled
applications. Authors consider applications that do not scale
linearly and propose algorithms to find the best time and space
sharing by comparing energy-delay measurements. Dhiman et

al. propose VM scheduling technique based on application
characteristics to improve the energy efficiency [4]. Authors
propose a method to estimate VM-level CPU and memory
usage based on system-level metrics to make scheduling
and migration decisions. Success of the proposed technique
depends on identifying the workloads that have complemen-
tary characteristics. However, the proposed technique does
not consider adjusting resource allocations for co-scheduled
applications.

Our proposed resource sharing technique differentiates
from the previous work in the following aspects. First, we
present an experimental framework to accurately evaluate
energy/performance tradeoffs of co-scheduling multi-threaded
applications on virtualized systems. We then explore the effect
of application selection on energy efficiency. We show that
performance degradation due to resource contention can be
minimized by setting memory and NUMA affinities for con-
solidated VMs. Based on our analysis, we propose an adaptive
VM reconfiguration algorithm based on power efficiency char-
acteristics of multi-threaded workloads. We demonstrate that
the proposed resource sharing technique outperforms the state-
of-the-art co-scheduling techniques on a real-life multicore
system.

III. METHODOLOGY

In this section, we present the details of our experimen-
tal setup and explain our methodology. All experiments are
performed on an AMD 12-core Magny Cours (6172) server,
virtualized by VMware vSphere 5.0 ESXi hypervisor. Magny
Cours is a single-chip processor that comprises two 6-core
dies (similar to AMD Istanbul architecture) attached side by
side. Each core has a 1 MB private L2-cache and each 6-core
die has a 6 MB shared L3-cache. All cores share a 16 GB
off-chip memory.

AMD 12-core Magny Cours Server

VMware vSphere 5 ESXi

VM-0 VM-1

Fig. 1. Virtual server setup.

In Figure 1, we show the overall virtualization setup. We
create two virtual machines (VM), VM-0 and VM-1, on top
of the hypervisor. Each VM runs Ubuntu Server 11.04 as its
operating system. We allocate 8 GB of memory for each VM
and allow VMs to add/remove virtual CPUs during runtime
(i.e., hot-plugging).

In order to analyze the workload characteristics, we col-
lect per-core performance counter data. We utilize vmkperf
utility to poll the following performance counter data from
the physical CPUs at every 1 second: CPU cycles, retired
instructions, and L3-cache misses. We use esxtop utility
to collect VM-level resource utilization data such as CPU,
memory and disk utilization at every 2 seconds, which is the
minimum sampling rate provided. In addition to performance
related data, we measure system power by using Wattsup PRO
power meter with a 1 second sampling rate, which is the
minimum sampling rate provided.

3

Parallel applications typically consist of serial I/O stages
and a parallel phase, i.e., region-of-interest (ROI). As ROI
is the power and performance hungry portion of parallel
applications, it is important to consider only the ROI phase
for evaluating the energy and performance tradeoffs during
consolidation. We run PARSEC [6] multi-threaded bench-
marks in our experiments. As the start and end points of
ROI phase vary across different applications, we implement
a consolidation management interface, consolmgmt, that
synchronizes the ROIs of co-scheduled applications on top
of the default benchmark management interface in PARSEC,
parsecmgmt. In order to communicate across VMs, we
configure a shared network file system (NFS) across VMs.
VM that first reaches the ROI phase waits for the other VM
to reach its own ROI. As soon as both of the VMs enter the
ROI, VMs send appropriate triggering interrupts to resume the
execution and start data logging. We stop data collection and
terminate the applications after one of the applications reaches
the end of ROI phase.

PARSEC benchmarks include a wide-range of HPC type
applications. There are 13 parallel workloads in the PARSEC
benchmark suite. We do not evaluate fluidanimate, as it
is not possible to run fluidanimate with 6 threads. We
also do not run ferret and raytrace, as their internal
interrupts disrupt the consolmgmt synchronization flow. We
use the default native input set that is provided with the
PARSEC suite.

IV. PERFORMANCE IMPACT OF CO-SCHEDULING

In this section, we explore the impact of co-scheduling
on application performance and evaluate various application
selection strategies.

Depending on the resource requirements of the applications,
performance impact of co-scheduling varies dramatically. In
this work, we focus on multi-threaded HPC applications
most of which require significant CPU resources. Thus, we
configure the total number of vCPUs equal to the total number
of physical CPUs (pCPU) (i.e., total 12 vCPUs for 2 VMs).

In this setup, main sources of contention are memory,
bus bandwidth, and shared caches. Performance of CPU-
bounded applications are expected to be affected less from
co-scheduling, as the contention on CPU is eliminated by
assigning a different pCPU to each vCPU. On the other hand,
applications that have higher memory accesses generate higher
bus traffic and increase cache and memory contentions.

In Figure 2, we compare the impact of resource contention
on non-virtualized (native) and virtualized system. Non-
virtualized system runs CentOS Linux distribution with 2.6.38
kernel. We evaluate the throughput of streamcluster
benchmark, which is a memory-bounded application from
PARSEC benchmark, when co-scheduled with other PAR-
SEC benchmarks. In each experiment, only two PARSEC
benchmarks are co-scheduled on the system. For both of the
virtualized and native systems, we execute each benchmark
with 6 threads running on 6 physical cores and measure the
average throughput, which is the number of retired instruc-
tions per second. Throughput of streamcluster varies
significantly on the non-virtualized system, depending on the

co-runner application. For instance, running two instances
of streamcluster decreases the throughput by almost
50% due to increased resource contention. However, on the
virtualized system throughput varies marginally regardless of
the application pair that is co-scheduled. Virtualized system
provides more stable co-scheduling performance due to op-
timizing memory and NUMA (non-uniform memory access)
node affinities according to CPU affinities. On the other hand,
on a non-virtualized system, application pairs compete for
shared resources and OS does not always optimize memory
or NUMA node affinities as hypervisor does. Performance
variations due to co-runner application also appear on the
virtualized system when there are no memory and NUMA
affinities. VMware ESXi hypervisor allows user to assign
specific NUMA nodes to each VM. After each VM is as-
signed to the specific NUMA node and memory spaces, the
main sources of contention are eliminated with a minimal
performance degradation in comparison to the non-virtualized
system.

In Figure 3, we show the average performance deviation of
10 PARSEC benchmarks when each benchmark is separately
co-scheduled with the other benchmarks. Again, only two
benchmarks are co-scheduled on the system at a time, and
each benchmark runs on 6 vCPUs in each experiment. Lower
performance deviation implies that the performance of the
application is not affected by the co-runner application. On
the virtualized system, where memory and NUMA affinities
are optimized, performance deviation is consistently lower in
comparison to non-virtualized system. vips is the only appli-
cation that has significant deviation on the virtualized system.
vips is an image processing application with 18 pipeline
stages, which have varying performance characteristics. In the
consolmgmt setup, applications are terminated when one
of the co-runner applications complete its ROI. Thus, vips
is executed for a different number of phases depending on
the ROI completion time of the co-runner application, which
causes the higher performance deviation across co-scheduling
pairs.

0

1

2

3

4

5

6

7

8

9 x 109

bla
cks

ch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64

R
et

ire
d

In
st

ru
ct

io
ns

/S
ec

on
d

streamcluster Throughput (6 Thread)

VM
NonVM

Fig. 2. Performance impact of co-scheduling streamcluster with
the other PARSEC benchmarks on virtualized and non-virtualized systems.
Virtualized system provides stable performance regardless of the co-runner
application.

4

0

2

4

6

8

10

12

14 x 108

bla
cks

ch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64

St
an

da
rd

 D
ev

ia
tio

n
Performance Deviation Across Co−scheduling Pairs

VM
NonVM

Fig. 3. Performance deviation for each PARSEC benchmark due to co-
scheduling.

Previous studies show that co-scheduling the application
pairs that have contrasting performance characteristics (i.e.,
high/low IPC) improves the energy efficiency significantly,
as it leads to more balanced resource usage [4]. However,
we observe that it is possible to eliminate the performance
variation due to co-scheduling by optimizing memory and
NUMA node affinities. Thus, co-scheduling policies that are
based on application selection have minimal improvement
on the energy efficiency of the systems that can provide
performance isolation. In order to quantify our observation,
we generate 50 workload sets, each consisting of randomly
selected 10 applications from the PARSEC suite. We evaluate
the throughput-per-watt of the overall workload sets. We
evaluate co-scheduling policies that are similar to previously
proposed techniques [4], [17]. These techniques first rank
the applications according to the selected metric and then
co-schedule the highest ranked benchmark with the lowest
one, and proceed through the ranked list in a similar fashion.
Through application selection, these policies try to balance
the resource usage by co-scheduling applications that have
contrasting characteristics. We evaluate MPC (memory ac-
cesses per cycle), IPC (instructions per cycle), MPC*CPU
Utilization, and IPC*CPU Utilization as the metrics used in
co-scheduling policies. We also evaluate the throughput-per-
watt of the workload sets when applications are co-scheduled
randomly. In Figure 4, we show minimum, maximum and

MPC MPC*Util. IPC IPC*Util. Random
0

1

2

3

4

5

6

7

8

9 x 108 Average Throughtput/Watt for Co−scheduling Policies

Av
er

ag
e

Th
ro

ug
ht

pu
t/W

at
t

Max
Min
Average

Fig. 4. Maximum, minimum and average throughput-per-watt for 50
randomly generated workload sets when co-scheduling policies are applied.

average throughput-per-watt across the 50 workload sets for
various policies. As Figure 4 shows, random application se-
lection does not hurt the throughput-per-watt more than 1% in
comparison to previously proposed policies. This observation
motivates that rather than choosing the application pairs, it
is more important to consider how much physical resources
should be allocated for each co-runner application to improve
the energy efficiency of a virtualized system.

V. ADAPTIVE RESOURCE SHARING FOR
MULTI-THREADED WORKLOADS

In this section, we present an adaptive resource sharing
technique for parallel workloads through workload classifica-
tion. In order to maximize the energy efficiency of a server
node, it is important to allocate CPU resources depending on
the performance and power characteristics of the applications.
Increasing the number of cores allocated to a multi-threaded
workload improves the performance in all cases. However,
depending on the performance scaling of the applications, per-
formance improvements do not always justify the increasing
power consumption. Thus, the energy efficiency of the system
is significantly affected depending on the performance scaling
and the energy proportionality of the applications. Therefore,
adjusting the resource shares across VMs can improve the
overall energy efficiency of the system by favoring energy
proportional applications. To achieve efficient resource sharing
across VMs, we first present a clustering-based application
classification technique to identify the energy proportionality
of the applications. We then propose a resource sharing algo-
rithm across two VMs through dynamically adjusting number
of vCPUs for each VM.

A. Metric Selection

Application characteristics dramatically affect the efficiency
of the system. In order to improve the overall efficiency
of a consolidated system, it is important to allocate more
resources to applications that are more efficient. Thus, it is
important choose a metric that reflects the power efficiency of
the applications accurately.

IPC and CPU utilization are commonly used metrics to
evaluate the performance and power characteristics of ap-
plications. However, none of these two metrics capture the
overall characteristics of the application alone. A high-IPC
application might utilize the CPU at lower rates, as IPC is
measured over unhalted CPU cycles, which hides the effect
of cycle stalls. Similarly, an application that highly utilizes
the CPU might have lower IPC rates due to CPU resource
stalls such as stalls caused by a busy floating point unit. In
order to quantify the accuracy of each metric, we perform
linear regression analysis for each metric. For each metric,
we regress the metric value together with a constant term to
predict the throughput-per-watt of the application. In Figure
5, we show the average prediction error of each metric for 10
PARSEC benchmarks. IPC*CPU Utilization outperforms both
IPC and CPU Utilization metrics with a 6% average error rate
for predicting power efficiency of applications.

5

IPC*CPU
Utilization

IPC CPU
Utilization

Max Error
Min Error
Average Error

19% 31% 83%
0.01% 4% 11%

6% 12% 30%

0%

15%

30%

45%

60%

75%

90%

IPC*CPU Utilization IPC CPU Utilization

Prediction Error

Max Error
Min Error
Average Error

Fig. 5. Maximum, minimum and average prediction errors for candidate
metrics.

IPC*CPU Utilization metric has been previously proposed
to estimate the VM-level IPC [4]. In this work, we utilize
IPC*CPU Utilization metric to capture the power efficiency
characteristics of the applications rather than to derive a VM-
level metric. As we assign different set of cores for each
VM, we can directly associate hardware events to specific
VMs. Thus, our use of IPC*CPU Utilization is different
than previously proposed approaches. In Figure 6, we show
the strong correlation between the power efficiency and the
IPC*CPU Utilization metric. As IPC*CPU Utilization is an
accurate measure of application power efficiency, we use
IPC*CPU Utilization to classify benchmarks.

B. Density Based Clustering Classification

To classify the benchmarks according to their characteris-
tics, we utilize a cluster based classification scheme based on
the chosen metric, IPC * CPU Utilization. Commonly used
clustering algorithms such as k-mean or fuzzy c-mean requires
a priori knowledge of number of clusters. Therefore, we utilize
DBSCAN (Density-based spatial clustering of applications
with noise) clustering algorithm to classify benchmarks, which
does not require a priori knowledge of number of clusters, as it
discovers the clusters on the fly based on a density reachability
threshold, ε [18]. Neighbour node, q, is density reachable from
node p, if the distance between q and p is less than the density
reachability threshold, ε. Density reachability test essentially
determines whether two nodes belong to the same cluster or
not, based on their distance.

DBSCAN starts from an arbitrary point, p, and discovers all
neighbor nodes that are density-reachable. Distance between

IPC*Utilization Thrput/Watt
blackscholes
bodytrack
canneal
dedup
facesim
freqmine
streamcluster
swaptions
vips
x264

109.75832 31625376.77
77.36877162 26875228.19
14.16106315 4364696.563
53.22770152 16534745.92
88.13496793 25213810.47
131.9615894 35710647.75
59.50449389 16130142.44
122.1601657 34136368.26
117.3495333 35302886
109.5156509 28443194.6

0

25

50

75

100

125

150

blac
ksc

holes

bodytr
ack

can
neal

ded
up

fac
esi

m

fre
qmine

str
eam

clu
ste

r

sw
ap

tio
ns

vip
s

x264
0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07
Power Efficiency Prediction

IP
C

 *
C

PU
 U

til
iza

tio
n

Th
ro

ug
hp

ut
/W

at
t

IPC*Utilization
Thrput/Watt

Fig. 6. Correlation between IPC*CPU Utilization (left axis) and application
power efficiency (right axis).

clusters, S1 and S2, (i.e., set of points) is given as the
minimum distance across all member points, p, q, where ∀p
∈ S1, ∀q ∈ S2. Clusters are expanded or merged only if:

∀p, q : dist(p, q) < ε (1)

Based on our experimental analysis, we choose ε=20 as the
minimum distance between two clusters. In Figure 7, we show
the cluster classes (i.e., high, medium, low) and the members
(i.e., benchmarks) of each cluster class. Benchmarks that
belong to high class are the most power efficient benchmarks,
where as the low class corresponds to the lowest power
efficiency class.

50 60 70 80 90 100
0

0.5

1

1.5

blackscholes
bodytrack

canneal

dedup
facesim

freqmine

streamcluster

swaptions

vips

x264

CPU Utilization (%)

In
s
tr

u
c
ti
o

n
 p

e
r

C
y
c
le

Density Based Clustering

High

Medium

Low

Fig. 7. Benchmark classification through density based clustering.

C. Adaptive Resource Sharing

Based on the benchmark classes that are derived from
the DBSCAN algorithm, we allocate CPU resources to each
benchmark by favoring the most power efficient ones. Offline
benchmark classification is used as a lookup table to adaptively
adjust the resource sharing across VMs during runtime. We
determine the application classes according to the IPC and
CPU utilization metrics. Our runtime technique is also able
to adaptively reconfigure the resource sharing of VMs in case
of potential phase variations within applications. At runtime,
we monitor IPC and CPU utilization of each applications and
adjust their resource share accordingly.

As long as the initial training set covers a representative
and wide range of applications that have different runtime
characteristics, the offline classification scheme will work for
unknown applications. Moreover, for applications that do not
fit within the current classification scheme (i.e., outliers),
classification can be re-computed at runtime. As the DBSCAN
algorithm has O(nlogn) average complexity, runtime overhead
for reclassification is low [18]. Running the reclassification
algorithm on the hypervisor level does not affect the per-
formance of VMs, since hypervisor uses its own computa-
tional resources that are strictly isolated from computational
resources of the VMs.

It is possible reconfigure the resource allocation of VMs by
either CPU hot-plugging or adjusting the CPU usage limits.
VMware ESXi hypervisor allows CPU hot-plugging, thus

6

number of vCPUs can be dynamically adjusted without restart-
ing the VMs. Adding and removing vCPUs to VMs impose
negligible overhead on the performance of the applications
and VM reconfiguration takes effect within 0.5 to 0.8 seconds.
Initially, we execute each benchmark with 8 threads. We pack
the threads onto a small number of vCPUs, if number of
vCPUs is configured to have less than 8 vCPUs. For instance,
for a VM with 4 vCPUs, we pack 8 threads onto 4 vCPUs.
Thread packing is previously shown to be an effective runtime
technique to reduce the number of active cores without causing
performance degradation [19]. We assume 3 different VM
configurations: 6 vCPUs for each VM; 4 vCPU for VM0,
8 vCPU for VM1; 8 vCPU for VM0, 4 vCPU for VM1.
If benchmarks that belong to same power efficiency classes
co-scheduled together, we allocate equal number of vCPUs
to each VM. Higher power efficiency classes are favored by
increasing the number of vCPUs to 8 and the VM running a
lower class application is set to have 4 vCPUs. As all of the
parallel workloads have fairly good performance scaling up to
4 threads, we do not consider VM configurations less than 4
vCPUs.

We also test adjusting CPU usage limits for VMs as a
means of implementing adaptive resource sharing. Adjusting
usage limits takes effect within 0.5 second with negligible
performance overhead on benchmark execution. Both of the
VM reconfiguration techniques can be performed by utilizing
vSphere Command Line Interface (vCLI), which allows user
to perform administrative actions on VMs. Our adaptive policy
runs on the hypervisor level and makes VM reconfiguration
decisions by monitoring the IPC and CPU utilization metrics.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed resource sharing
technique on a real-life system. We execute each application
with all other possible co-runner applications and utilize our
benchmark classification scheme to guide resource allocation
decisions.

In our experiments, we perform VM reconfiguration once
per co-scheduled benchmark pair. It is also possible to re-
configure the VMs multiple times during the execution. We
first evaluate the success of our benchmark classification
scheme. For all potential co-scheduling combinations for 10
benchmarks, we first find the optimal resource allocation
which maximizes the throughput-per-watt and then compare
the optimal solution to our resource allocation technique based
on benchmark classification. Within ±3% error range, our
resource allocation technique is able to find the optimum
solution with 97% accuracy. We define the error range as
the percentage of throughput-per-watt difference between the
optimum and the proposed resource sharing, where optimum
solution is the resource allocation decision that maximizes
the throughput-per-watt of the system. As the selected metric,
IPC*CPU Utilization, is able to predict the power efficiency of
benchmarks with high accuracy, our resource allocation tech-
nique achieves close-to-optimal accuracy for making resource
allocation decisions.

In Figure 8, we show throughput-per-watt improvements for
each benchmark in comparison to the baseline case, where all

10

 5

0

 5

10

 15

20

 25

30

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64

Th
ro

ug
hp

ut
/W

at
t I

m
pr

ov
em

en
ts

Thrput/Watt Improvements w.r.t. Equal Resource Allocation

Max
Average
Min

Fig. 8. Throughput-per-watt improvements in comparison to equal resource
sharing.

benchmarks share equal resources (i.e., 6 vCPUs each). We
report the average, minimum and maximum throughput-per-
watt improvements for the cases when benchmarks are co-
scheduled separately with other benchmarks. Throughput-per-
watt improvements reach up to 25%, with an average of 9%
across all benchmarks.

MPC MPC*Util. IPC IPC*Util. Proposed3.5

4

4.5

5

5.5

6

6.5 x 108 Average Throughtput/Watt for 50 Workload Sets

Av
er

ag
e

Th
ro

ug
ht

pu
t/W

at
t

Max
Min
Average

Fig. 9. Throughput-per-watt comparison of previous co-scheduling policies
and proposed technique.

We compare our resource sharing technique with co-
scheduling policies that are similar to previously proposed
approaches. We randomly generate 50 workload sets, each
consisting of 10 randomly selected PARSEC benchmarks. For
each workload set, we co-schedule the benchmarks according
to their rank for various metrics. We balance the selected met-
ric across 10 benchmarks by co-scheduling the higher ranked
benchmarks with lower ranked ones. We report throughput-
per-watt results for policies based on various metrics and
the proposed resource sharing technique in Figure 9. For
previously proposed policies, we co-schedule the benchmarks
with equal resources. Proposed resource sharing technique
outperforms the best previous co-scheduling technique by 12%
on average.

7

VII. CONCLUSIONS

Energy efficiency remains to be a major challenge for
modern data centers. As multi-threaded workloads dominate
the application space of HPC clusters and date centers, pro-
portional resource sharing across multi-threaded workloads
provide opportunities to improve the energy efficiency of
the system. With increasing number of server nodes, energy-
efficient management of data center resources is an important
and a challenging problem to be solved.

In this paper, we evaluate the existing co-scheduling tech-
niques that are based on application selection and show that
rather than choosing the applications to co-schedule, it is
more important to adjust the allocated resources depending
on the power efficiency of the applications. As it is possible
to improve the degree of performance isolation across VMs,
application selection policies have smaller impact on the
energy efficiency when compared to proportional resource
sharing. We present a benchmark classification technique to
classify benchmarks according to their power efficiencies
and utilize the classification technique to make design an
adaptive resource sharing technique. We show that the pro-
posed resource sharing technique is able to achieve 12%
higher throughput-per-watt in comparison to state-of-the-art
co-scheduling techniques.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” IEEE Computer, pp. 33–37, 2007.

[2] M. Bailey, “The economics of virtualization: Moving toward an
application-based cost model,” International Data Corporation (IDC),
Whitepaper, December 2009.

[3] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via vm multiplexing,”
in Proceedings of the 7th International Conference on Autonomic
Computing, 2010, pp. 11–20.

[4] G. Dhiman, G. Marchetti, and T. Rosing, “vgreen: A system for energy
efficient computing in virtualized environments,” in ISLPED, 2009, pp.
243–248.

[5] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing sla violations,” in 10th IFIP/IEEE International
Symposium on Integrated Network Management., 2007, pp. 119 –128.

[6] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[7] X. Fan, W. dietrich Weber, and L. A. Barroso, “Power provisioning
for a warehouse-sized computer,” in In Proceedings of International
Symposium on Computer Architecture, 2007, pp. 13–23.

[8] X. Wang and M. Chen, “Cluster-level feedback power control for
performance optimization,” in High Performance Computer Architecture,
2008. HPCA 2008. IEEE 14th International Symposium on, feb. 2008,
pp. 101 –110.

[9] R. Nathuji, K. Schwan, A. Somani, and Y. Joshi, “Vpm tokens: virtual
machine-aware power budgeting in datacenters,” Cluster Computing,
vol. 12, pp. 189–203, June 2009.

[10] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
in Proceedings of the 8th International Workshop on Middleware for
Grids, Clouds and e-Science, 2010, pp. 1–6.

[11] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” in Autonomic Computing, 2008. ICAC ’08.
International Conference on, june 2008, pp. 3 –12.

[12] R. Romosan, D. Rotem, A. Shoshani, and D. Wright, “Co-scheduling
of computation and data on computer clusters,” in In Proceedings of
the 17th International Conference on Scientific and Statistical Database
Management (SSDBM), 2005, pp. 103–112.

[13] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner,
“Justrunit: experiment-based management of virtualized data centers,”
in Proceedings of the 2009 conference on USENIX Annual technical
conference, ser. USENIX’09, 2009, pp. 18–18.

[14] N. Bonvin, T. Papaioannou, and K. Aberer, “Autonomic sla-driven pro-
visioning for cloud applications,” in Cluster, Cloud and Grid Computing
(CCGrid), 2011 11th IEEE/ACM International Symposium on, 2011, pp.
434 –443.

[15] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fern, “Adaptive
parallel job scheduling with flexible coscheduling,” IEEE Trans. Parallel
and Distributed Syst, pp. 1066–1077, 2005.

[16] R. L. Mcgregor and C. D. Antonopoulos, “Scheduling algorithms for
effective thread pairing on hybrid multiprocessors,” in In Proceedings
of the 19th IEEE International Parallel and Distributed Processing
Symposium. IEEE Computer Society Press, 2005.

[17] M. Bhadauria and S. A. McKee, “An approach to resource-aware co-
scheduling for cmps,” in Proceedings of the 24th ACM International
Conference on Supercomputing, ser. ICS ’10, 2010, pp. 189–199.

[18] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in In
Proceedings of 2nd International Conference on Knowledge Discovery
and Data Mining. AAAI Press, 1996, pp. 226–231.

[19] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive dvfs and thread packing under power caps,” in MICRO, 2011,
pp. 175–185.

