
Performance and Power Analysis of RCCE Message Passing
on the Intel Single-Chip Cloud Computer

John-Nicholas Furst Ayse K. Coskun
Electrical and Computer Engineering Department, Boston University, Boston, MA 02215 USA

{jnfurst, acoskun}@bu.edu

Abstract— The number of cores integrated on a single chip
increases with each generation of computers. Traditionally, a
single operating system (OS) manages all the cores and resource
allocation on a multicore chip. Intel’s Single-chip Cloud Com-
puter (SCC), a manycore processor built for research use with 48
cores, is an implementation of a “cluster-on-chip” architecture.
That is, the SCC can be configured to run one OS instance
per core by partitioning shared main memory. As opposed to
the commonly used shared memory communication between the
cores, SCC cores use message passing. Intel provides a customized
programming library for the SCC, called RCCE, that allows for
fast message passing between the cores. RCCE operates as an
application programming interface (API) with techniques based
on the well-established message passing interface (MPI). The
use of MPI in a large manycore system is expected to change
the performance-power trends considerably compared to today’s
commercial multicore systems. This paper details our experiences
gained while developing the system monitoring software and
benchmarks specifically targeted at investigating the impact of
message passing on performance and power of the SCC. Our
experimental results quantify the overhead of logging messages,
the impact of local versus global communication patterns, and
the tradeoffs created by various levels of message passing and
memory access frequencies.

I. INTRODUCTION

Processor development has moved towards manycore archi-
tectures in recent years. The general trend is to utilize advances
in process technology to include higher numbers of simpler,
lower power cores on a single die compared to the previous
trend of integrating only a few cores of higher complexity.
This trend towards integrating a higher number of cores
can be seen in desktops, servers, embedded platforms, and
high performance computing (HPC) systems. Future manycore
chips are expected to contain dozens or hundreds of cores.

While integrating a high number of cores offers the po-
tential to dramatically increase system throughput per watt,
manycore systems bring new challenges, such as developing
efficient mechanisms for inter-core communication, creating
strategies to overcome the memory latency limitations, and
designing new performance/power management methods to
optimize manycore system execution. A significant difference
of manycore systems compared to current multicore chips
comes from the on-chip communication: manycore systems
are likely to incorporate a network-on-chip (NoC) instead of
a shared bus to avoid severe performance limitations. One
method of enabling inter-core communication on a NoC is
a message passing interface (MPI).

In order to enable new research in the area of manycore
design and programming, Intel Labs created a new exper-
imental processor. This processor, called the “Single-Chip
Cloud Computer” (SCC), has 48 cores with x86 architecture.
The SCC chip provides a mesh network to connect the
cores and four memory controllers to regulate access to the
main memory [5]. The SCC includes an on-chip message
passing application framework, named RCCE, that closely
resembles MPI. RCCE provides multiple levels of interfaces
for application programmers along with power management
and other additional management features for the SCC [9].

The objective of this paper is to investigate the on-die
message passing provided by RCCE with respect to perfor-
mance and power. To enable this study, we first develop
the monitoring tools and benchmarks. Our monitoring infras-
tructure is capable of logging messages, track performance
traces of applications at the core level, and measure chip
power simultaneously. We use this infrastructure in a set
of experiments quantifying the impact of message traffic on
performance and power. Significant findings of this paper
are: overhead of our message logging method is negligible;
execution times of applications increase with larger distances
between communicating cores; and observing both the mes-
sages and the memory access traffic is needed to predict
performance-power trends.

We present the monitoring infrastructure for the SCC in
Section II. Section III describes the applications we developed
for SCC. Section IV documents the experimental results on
message logging overhead, effects of various message/memory
access patterns, and energy efficiency. Section V discusses
related work. Section VI concludes the paper.

II. MONITORING INFRASTRUCTURE FOR THE SCC

Analyzing the message passing system on the SCC requires
monitoring performance and power consumption of the system
at runtime. As the SCC was designed as a research system it
includes special hardware and software features that are not
typically found in off-the-shelf multi-core processors. Addi-
tional infrastructure is required to enable accurate and low-
cost runtime monitoring. This section discusses the relevant
features in the SCC architecture and provides the details of
the novel monitoring framework we have developed.

Hardware and Software Architecture of the SCC:
The SCC has 24 dual-core tiles arranged in a 6x4 mesh.

Each core is a P54C CPU and runs an instance of Linux 2.6.38
kernel. Each instance of Linux executes independently and the
cores communicate through a network interface. Each core
has private L1 and L2 caches. Cache coherence is managed
through a software protocol as opposed to commonly used
hardware protocols. Each tile has a message passing buffer
(MPB), which controls the message exchange among the
cores. The SCC is connected by a PCI-Express cable to a
PC acting as the Management Console (MCPC).

The SCC system has a power sensor used for measuring
the full SCC chip power consumption. Power is measured by
polling this sensor during application execution.

Each P54C core has two performance counters. These coun-
ters can be programmed to track various architectural events,
such as number of instructions, cache misses or memory
accesses. Performance counters can be accessed from the core
in which they are located by reading dedicated registers.

The SCC software includes RCCE, which is a lightweight
message passing library developed by Intel and optimized
for SCC [9]. It uses the hardware MPB to send and receive
messages. At the lower layer, the library implements two
message passing primitives RCCE put and RCCE get. These
primitives move the data between a local core buffer to the
MPB of another core.

Our system setup includes the SCC, the MCPC, and the
monitoring framework we developed. On the SCC we imple-
mented utilities to track performance counters, collect power
measurements, and log message traffic. On the MCPC we
developed software to load desired benchmarks and experi-
mental configurations to the SCC. After running experiments,
we analyze the collected data using our automated software.

Software Modules Developed for the SCC:
Performance Counters: To implement performance counter

polling we added a patch to the Linux kernel that RCKOS
runs. RCKOS is the operating system the SCC cores run and
is provided by Intel. Our patch involves a device used for
polling and the ioctl infrastructure to communicate with the
device. The ioctl is a system call that is device-specific and
allows for user-land access to protected kernel functionality.
Once the kernel is patched, RCKOS is recompiled and a new
binary image is created and used to flash the cores.

Performance polling is performed by setting the Control
and Event Select Register (CESR). The P54C cores on the
SCC have two registers (0x12, 0x13) allotted for performance
counters. The CESR contains a 6-bit Event Select field (ES),
a Pin Control bit (PC) and a three bit control field (CC) for
each of the two counters. The CESR is located at 0x11 and
is visualized in Figure 1. Two independent events can can be
counted by setting the appropriate codes for each ES. The
Counter Control is used for enabling / disabling the counters.
The CESR is programmed through using the Model Specific
Registers (MSR) which are available on RCKOS through the
/dev/msr0 device.

To measure L1 cache misses and instructions, we wrote
0xD600CE to the MSR. For tracking memory access density,

Fig. 1. Control and Event Select Register

we poll the counter “non-cacheable memory reads.” We em-
pirically determined non-cacheable memory reads as a good
metric for quantifying memory access intensity through mea-
surements with a set of custom designed microbenchmarks that
vary in their memory access density [6]. To measure memory
accesses and instructions, we wrote 0xD600DE to the MSR.
We ran multiple experiments to collect all three parameters
(cache misses, memory accesses, number of instructions). It
is also possible to multiplex the register polling to increase the
number of parameters collected with little loss of accuracy.

Message Logger: We modified the lower level RCCE put
and RCCE get routines in the RCCE library to log the number
of messages sent and the source/destination of each message.
At the end of each parallel thread the library generates a log
containing the communication matrix. Each element in the
matrix {mi,j} corresponds to the number of messages that
corei has sent to corej . In addition, we program the RCCE
library to trigger the logging of the performance counters at
the beginning of each of the parallel threads and save the trace
at the end of execution.

Software Modules Developed for the MCPC:
• Stress files and app-loader: These files contain the bench-

mark sequences for the tests. For each benchmark, the stress
file provides the name, number of threads, and the cores to
allocate the benchmark. The app-loader loads the files on
the SCC to start the experiments. We wrote a set of python
scripts that run on the MCPC. These scripts load the stress
configuration files and start the RCCE benchmarks in SCC.

• Post-processing SW: We designed software for processing
the collected data. This script interfaces with the collected
data and the stress file. For each benchmark, the script
collects the logs and parses them to extract useful statistics.
The script then stores the parsed measurements in a MySQL
database stored on the MCPC. A custom web-based front
end to this database was created to display the results. The
data are available for access by Matlab or Excel allowing
the implementation of other complex analysis functions.
In this paper we use the monitoring infrastructure described

above for analyzing the message passing system on the SCC.
The framework can also be leveraged for enabling runtime
management policies on the SCC computer.

III. APPLICATION SPACE

We employ a set of benchmarks to evaluate the perfor-
mance of the SCC and explore a variety of configurations.
Two of these benchmarks are Block Tridiagonal (BT) and
Lower-Upper (LU) from the NAS parallel benchmarks (NPB)
suite [1]. BT and LU have been re-programmed for the Intel
SCC, and are available to the MARC community. We also

use other benchmarks provided by Intel for the SCC. We build
upon the existing benchmarks to create a wider set of operating
scenarios in terms of number of cores used and the message
traffic. We also design a broadcast benchmark to emulate one
to multiple core communication. The complete benchmark set
we run in our experiments is as follows.

Benchmarks provided by Intel:
• BT: Solves nonlinear Partial Differential Equations (PDE)

with the Block Tridiagonal method.
• LU: Solves nonlinear PDEs with the Lower-Upper sym-

metric Gauss-Seidel method.
• Share: Tests the off-chip shared memory access.
• Shift: Passes messages around a logical ring of cores.
• Stencil: Solves a simple PDE with a basic stencil code.
• Pingpong: Bounces messages between a pair of cores.

Custom-designed microbenchmark:
• Bcast: Sends messages from one core to multiple cores.
The broadcast benchmark, Bcast, sends messages from a

single core to multiple cores through RCCE. We created the
benchmark based on the Pingpong benchmark, which is used
for testing the communication latency between pairs of cores
using a variety of message sizes.

Table I categorizes the Intel benchmarks based on
instructions-per-cycle (IPC), Level 1 instruction (code) misses
(L1CM), number of messages (Msgs), execution time in
seconds, and memory access intensity. All parameters are
normalized with respect to 100 million instructions for a
fair comparison. Each benchmark in this categorization runs
on two neighbor cores on the SCC. The table shows that
the Share benchmark does not have messages and is an
example of a memory-bounded application. Shift models a
message intensive application and Stencil models an IPC heavy
application. Pingpong has low IPC but heavy L1 cache misses.
BT has a medium value for all performance values except for
the number of messages. LU is similar to BT except that it
has even higher number of messages and the lowest number
of L1 code cache misses.

We update the Stencil, Shift, Share, and Pingpong bench-
marks so that they can run on cores in configurations de-
termining which cores communicate and which cores are
utilized. Note that for all configurations of these benchmarks,
communication occurs within “pairs” of cores (i.e., a core only
communicates to a specific core and to no other cores). The
configurations we used in our experiments are as follows:
• Distance between the two threads in a “pair”:

• 0-hops: Cores on the same tile (e.g., cores 0 and 1)
• 1-hop: Cores on neighboring tiles (e.g., cores 0 and 2)
• 2-hops: Cores on tiles that are at 2-hops distance (e.g.,

cores 0 and 4)
• 3-hops: Cores on tiles that are at 3-hops distance (e.g.,

cores 0 and 6)
• 8-hops: Cores on corners (e.g., cores 0 and 47)

• Parallel execution settings:
• 1 pair: Two cores running, 46 cores idle

TABLE I. BENCHMARK CATEGORIZATION. VALUES ARE NORMALIZED

TO 100 MILLION INSTRUCTIONS.

Benchmark L1CM Time Msgs IPC Mem.Access
Share High High Low Low High
Shift High Low High Medium Low

Stencil Low Low Low High Medium
Pingpong High Medium Medium Low Low
BT.W.16 Medium Medium High Medium Medium
LU.W.16 Low Medium High Medium Medium

Benchmark Categorization (normalized to 100M inst)—Numerical
Benchmark L1CM Time Msgs IPC Mem.Access

Share 372361 3.3622 871 0.0558 0.05
Shift 307524 0.7784 147904 0.2410 0.001

Stencil 97715 0.5528 23283 0.3393 0.03
Pingpong 280112 2.1116 68407 0.0888 0.001
BT.W.16 251096 1.11 229411 0.1682 0.03
LU.W.16 94880 1.15 305988 0.1631 0.03

• 2 pairs: Four cores running, 44 cores idle
• 3 pairs: Six cores running, 42 cores idle
• 4 pairs: Eight cores running, 40 cores idle
• 5 pairs: Ten cores running, 38 cores idle
• 6 pairs: Twelve cores running, 36 cores idle
• 24 pairs: 48 cores running

The idle cores run SCC Linux but do not run any user
applications and they are not in sleep states.

• Broadcast: The Bcast benchmark is run with one core
communicating to N cores, where 1 ≤ N ≤ 47.
The applications were run 5 times and the collected data

have been averaged. An additional warmup run was conducted
before the experimental runs. All of the experiments were
conducted with the tiles at 533 MHz, the mesh at 800MHz
and the DDR’s at 800MHz. Our recent work also investigates
the impact of frequency scaling on the SCC power and
performance [2].

IV. EXPERIMENTAL EVALUATION

The purpose of the experiments is to quantify the perfor-
mance and power of the Intel SCC system while running
applications that differ in number of messages, message traf-
fic patterns, core IPC, and memory access patterns. In this
way, we hope to understand the performance-energy tradeoffs
imposed by using MPI on a large manycore chip.

A. Overhead of Message Logging

We first analyze the overhead caused by our message log-
ging and performance monitoring infrastructure. Figures 2 and
3 demonstrate the overhead measured in execution time caused
by different levels of measurement while running BT and LU.
We choose BT and LU to study message over logging overhead
as they are standard multicore MPI benchmarks. In the figures,
control represents the case without any logging, performance
counters results are for tracking performance counters only,
counting messages is for logging both counters and number
of messages, message target also logs the sender/receiver cores
for each message, and message size logs the size of each
message on top of all the other information.

We see in figures 2 and 3 respectively that while there is an
overhead associated with the message logging, it is very small.

1 4 9 16 25 36
Control 176.76 46.67 24.32 14.14 9.81 7.37
Performance Counters 176.39 46.36 24.23 14.24 9.81 7.45
Counting Messages 176.79 46.79 24.39 14.28 9.8 7.43
Message Target 175.82 46.8 24.43 14.24 9.77 7.47
Message Size 176.45 47.24 25.41 15.42 12.06 8.68

176.79

47.24

25.41
15.42 12.06 8.68

0
20
40
60
80
100
120
140
160
180
200

Ex
ec
ut
io
n
Ti
m
e
(s
)

Cores:

Fig. 2. BT Class W Execution Time(s) vs. # of Cores vs. level of logging.
The execution time is shown for a varying number of cores. In each case the
the addition of logging shows very small overhead.

1 2 4 8 16 32
Control 884.43 427.94 168.24 80.87 38.72 21.48
Performance Counters 883.98 427.32 166.81 81.85 39.27 21.54
Counting Messages 884.04 428.18 167.92 81.51 39.37 21.3
Message Target 880.37 426.68 164.96 81.99 39.12 21.55
Message Size 884.42 430.31 170.93 88.75 48.21 38.6

880.37

430.31

170.93

88.75
48.21 38.6

0

100

200

300

400

500

600

700

800

900

1000

Ex
ec
ut
io
n
Ti
m
e
(s
)

Cores:

Fig. 3. LU Class W Execution Time(s) vs. # of Cores vs. level of logging. The
execution time is shown for a varying number of cores. Again, the overhead
of message logging is very low.

We have seen similar low overhead when we measured the
overhead for the other benchmarks. For example, for message
target logging, we see only a 0.21% overhead in execution
time when running the Stencil benchmark.

When logging message size is added to the infrastructure
we see a significant increase in execution time, especially
when a large number of cores are active (see Figures 2-3).
For the Pingpong and Stencil benchmarks we have seen an
increase over 200%. For message intensive benchmarks such
as Shift, the execution time is over 600% longer compared to
the message target logging. These large overheads are due to
the large amount of data logged when the size of the messages
is considered. The message size distribution varies depending
on the benchmark. Some benchmarks such as Pingpong are
heterogeneous in their message sizes, as shown in Figure 4.
Benchmarks Stencil and Shift have fixed sized messages of 64
bytes and 128 bytes, respectively.

The rest of the experiments use the message target logging,
which logs the performance counters, number of messages,
and message sender/receiver information at a low overhead.

0

100000

200000

300000

400000

500000

600000

2 64 128 192 288 416 608 832 1216 1600 2048 2880 3200 3456 4864 5760 6880 8128

Fr
e

q
u

e
n

cy

Message Size (Bytes)

Frequency

Fig. 4. Pingpong message size histogram. The majority of Pingpong
messages are small; however, there are also a significant number large
messages. As the broadcast benchmark is derived from Pingpong it has the
same distribution of message sizes.

0.324

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

0.342

11.6

11.7

11.8

11.9

12

12.1

12.2

12.3

Stencil
0hop2

Stencil
1hop

Stencil
2hop

Stencil
3hop

Stencil
4hop

Stencil
5hop

Stencil
6hop

Stencil
7hop

Stencil
8hop

IP
C

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Distance (Hops)

Average of time Average of IPC

Fig. 5. Stencil with one pair of cores. The distance between the cores
increases from local communication on the same router to the maximum
distance spanning 8 routers.

B. Impact of Communication Distance

Next, we analyze how the distance between communicating
cores affects performance. We look at the case of a single pair
of cores that are running on the SCC. Figure 5 demonstrates
that as the distance between the cores increases, the execution
time increases. In the figure, we plot the execution time of
Stencil as the distance between cores is increased from 0 hops
(local) to the maximum distance of 8 hops (cores 0-47). There
are clear linear trends for both the IPC and the execution time.
Stencil is chosen in this experiment as it demonstrates the
largest difference in execution time owing to its high IPC (as
outlined in Table I). Similar trends can be seen for Shift.

C. Impact of Memory Accesses

To measure the impact of memory accesses, we keep the
distance constant but increase the number of cores (i.e., num-
ber of pairs simultaneously running). In this way, we expect to
increase the accesses to the main memory. In this experiment,
we do not see any measurable difference in execution time for
Stencil or Shift, as their memory access intensity is low. The
Share benchmark, which has a high memory accesses density
at 0.05 (see Table I), is prone to significant delays when there
is memory contention. Figure 6 demonstrates this point. We
see significant delay when 24 pairs of cores are concurrently
executing a benchmark that is heavy in memory accesses. The
combined load of 24 pairs accessing memory is saturating
the memory access bandwidth and causing the delay. While
this effect is due to the uncached accesses to the DRAM and
specific to the SCC, the trend is observed in many multicore
applications which become memory bound.

0

0.01

0.02

0.03

0.04

0.05

0.06

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IP
C

Ex
ec
ut
io
n
Ti
m
e
(s
)

Pairs

Average Time Average IPC

Fig. 6. Execution time of Share with local communication, as a function of
the number of pairs executed concurrently.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0

20

40

60

80

100

120

140

160

Share 3hop Share
24pair3hop

Shift 3hop Shift
24pair3hop

Stencil 3hop Stencil
24pair3hop

M
sg
/I
ns
t

Ex
ec
ut
io
n
Ti
m
e
(s
)

Benchmark

Time Msg/Inst

Fig. 7. Share, Shift, and Stencil with 3 hops communication. One pair
compared to 24 pairs executed concurrently.

D. Impact of Network Contention

For exploring the impact of network contention, we compare
3-hop communication of a single pair of a benchmark versus
running 24 pairs. Shift, which has low memory accesses but
high message density, does not exhibit significant changes in
execution time when comparing one pair with 24 concurrent
pairs; this is visualized in Figure 7. When we look at Stencil,
which has both memory accesses and messages, we still do not
see significant differences in execution time as seen in Figure
7. In fact, the only major difference occurs for Share, owing
to its memory access intensity. We believe these benchmarks
have not been able to cause network contention; therefore, the
dominant effect on the execution time is the memory access
frequency in the figure.

E. Impact of Broadcast Messages

Next, we analyze performance for applications that heavily
utilize broadcast messages. We run our Bcast benchmark
for this experiment. The benchmark is an adaptation of the
Pingpong benchmark, so as in Pingpong, Bcast sends many
messages of different sizes. Instead of sending the messages
to a specific core, Bcast sends messages to all of the receiver
cores in a one to N broadcast system. Figure 8 demonstrates
that as the number of cores in the broadcast increases we have
significantly slower execution. It is particularly interesting that
there is a peak IPC at N = 8 cores. This peak suggests that
when N > 8 for the Bcast benchmark, the performance of the
sender core and the network become bottlenecks.

Figure 9 demonstrates how as the number of cores in the
broadcast increases, the messages per instruction increases

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

50

100

150

200

250

300

350

400

Bcast
2

Bcast
3

Bcast
4

Bcast
6

Bcast
8

Bcast
10

Bcast
12

Bcast
16

Bcast
20

Bcast
24

Bcast
28

Bcast
32

Bcast
36

Bcast
40

Bcast
44

Bcast
48

IP
C

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Number of Cores

Average of time Average of IPC

Fig. 8. Execution of Bcast with respect to number of cores. As the number
of cores increase we see the growth in execution time.

0

0.002

0.004

0.006

0.008

0.01

0.012

0

50

100

150

200

250

300

350

400

Bcast
2

Bcast
3

Bcast
4

Bcast
6

Bcast
8

Bcast
10

Bcast
12

Bcast
16

Bcast
20

Bcast
24

Bcast
28

Bcast
32

Bcast
36

Bcast
40

Bcast
44

Bcast
48

M
sg
/I
ns
tr

Ex
ec
ut
io
n
Ti
m
e
(s
)

Cores

Time Msg/Inst

Fig. 9. Broadcast with increasing number of cores. As the number of cores
increase we see a higher number of messages per instruction.

with it. Again we see that at N = 8 cores there is a local
inflection point. This helps confirm that for this particular
broadcast benchmark, broadcasting to a large number of cores
saturates the traffic from the sender core, which in turn causes
delays. This result highlights the importance of carefully
optimizing broadcasting to ensure desirable performance lev-
els. A potential optimization policy would be to allow for
broadcasting to a small number of cores at a given time
interval.

F. Power and Energy Evaluation

As part of our analysis, we also investigate the power and
energy consumption for each benchmark. Figure 10 compares
the Share, Shift, Stencil and Pingpong benchmarks in 24-
pair 0-hop (local communication) configuration. We see that
at full utilization of all 48 cores, a significant difference
exists in the amount of power drawn by each benchmark.
The Share benchmark, heavy in memory accesses and low in
messages (see Table I), has relatively low power consumption
compared to the Shift and Stencil benchmarks which have
significantly higher IPC and power consumption. Overall, IPC
is a reasonable indicator of the power consumption level.

Looking at power alone is often not sufficient to make an
assessment of energy efficiency. Figure 11 compares energy-
delay product (EDP) (delay normalized to 100 M instructions)
for Share, Shift, Stencil and Pingpong benchmarks in 24-pair
0-hop configuration. Again, significant differences exist in the
EDP across the benchmarks. The high EDP in Share is a result

45

47

49

51

53

55

57

59

61

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Share Shift Stencil Pingpong

P
o

w
e

r
(w

)

IP
C

Benchmark

IPC Power

Fig. 10. Comparing IPC vs power for the Share, Shift, Stencil and Pingpong
benchmarks. All benchmarks were executed with 24 pairs of cores, all with
local communication.

0

20000

40000

60000

80000

100000

120000

140000

160000

0

500

1000

1500

2000

2500

Share Shift Stencil Pingpong

M
sg

s

En
e

rg
y-

D
e

la
y

P
ro

d
u

ct

(J
*s

)

Benchmark

Energy-Delay Product Msgs

Fig. 11. Comparing EDP vs. number of messages for the Share, Shift, Stencil
and Pingpong benchmarks. All benchmarks were executed with 24 pairs of
cores, all with local communication.

of the high memory intensity and low IPC, which cause high
delay. Stencil has the highest IPC, a low number of messages,
and a medium level of memory accesses, which jointly explain
the low EDP. Shift and Pingpong both have a considerable
amount of messages. However, Pingpong misses a lot in the
L1 cache, resulting in lower performance. Thus, its EDP is
higher compared to Shift.

We have also compared running one pair of Share against 24
pairs. For one pair the power consumed is 31.616 Watts. When
24 pairs are run concurrently the power consumed jumps to
50.768 Watts. The power drawn follows linearly with the
number of active cores. Due to the offset and leakage power
consumption of the chip, running the system with a large
number of active cores when possible is significantly more
energy-efficient (up to 4X reduction in EDP per core among
the benchmark set).

V. RELATED WORK

There has been several projects relevant to the design,
development, and experimental exploration of the Intel SCC.
As part of Intel’s Tera-scale project, the Polaris 80-core chip
can be regarded as the predecessor of the SCC [8]. The main
purpose of the Polaris chip was to explore manycore archi-
tectures that use on-die mesh networks for communication.
However, unlike the SCC, it only supported a very small
instruction set and lacked corresponding software packages
that facilitate manycore application research [10].

Previous work describes low-level details of the SCC pro-
cessor hardware [4]. Special focus is given to topics regarding
L2 cache policies and the routing scheme of the mesh net-
work. Other recent research on the SCC looks at benchmark
performance in RCCE focusing on the effects of message sizes
[7]. The authors also provide detailed performance analysis of
message buffer availability in RCCE [7].

Another related area is the development of the message
passing support. The RCCE API is kept small and does not

implement all of the features of MPI. For example, RCCE only
provides blocking (synchronous) send and receive functions,
whereas the MPI standard also defines non-blocking communi-
cation functions. For this reason, some researchers have started
to extend RCCE with new communication capabilities, such
as the ability to pass messages asynchronously [3].

VI. CONCLUSION

Future manycore systems are expected to include on-chip
networks instead of the shared buses in current multicore
chips. MPI is one of the promising candidates to manage
the inter-core communication over the network on manycore
systems. This paper investigated the performance and power
impact of the message traffic on the SCC. We have first de-
scribed the monitoring infrastructure and the SW applications
we have developed for the experimental exploration. Using our
low-overhead monitoring infrastructure, we have demonstrated
results on the effects of the message traffic, core performance
characteristics, and memory access frequency on the system
performance. We have also contrasted the benchmarks based
on their power profiles and their energy delay product. Overall,
the paper provides valuable tools and insights to researchers in
the manycore systems research area. For future work, we plan
to analyze the traffic patterns in more detail, create various
local and global network contention scenarios, investigate
opportunities to track other performance metrics (such as
L2 cache misses), and utilize the experimental results for
designing energy-efficient workload management policies.

ACKNOWLEDGMENTS
The authors thank the Intel Many-Core Applications Research Commu-

nity. John-Nicholas Furst has been funded by the Undergraduate Research
Opportunities Program at Boston University.

REFERENCES

[1] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-
94-007, March 1994.

[2] A. Bartolini, M. Sadri, J. N. Furst, A. K. Coskun, and L. Benini.
Quantifying the impact of frequency scaling on the energy efficiency
of the single-chip cloud computer. In Design, Automation, and Test in
Europe (DATE), 2012.

[3] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the intel SCC many-core
processor. In High Performance Computing and Simulation (HPCS),
pages 525 –532, July 2011.

[4] J. Howard et al. A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 108 –109, Feb. 2010.

[5] Intel. SCC external architecture specication (EAS).
http://techresearch.intel.com/spaw2/uploads/files//SCC EAS.pdf.

[6] M. A. Khan, C. Hankendi, A. K. Coskun, and M. C. Herbordt. Software
optimization for performance, energy, and thermal distribution: Initial
case studies. In IEEE International Workshop on Thermal Modeling
and Management: From Chips to Data Centers (TEMM), IGCC, 2012.

[7] T. G. Mattson et al. The 48-core SCC processor: the programmer’s view.
In High Performance Computing, Networking, Storage and Analysis
(SC), pages 1 –11, Nov. 2010.

[8] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming
the Intel 80-core network-on-a-chip terascale processor. In High Per-
formance Computing, Networking, Storage and Analysis (SC), pages 1
–11, Nov. 2008.

[9] T. G. Mattson and R. F. van der Wijngaart. RCCE: a small library for
many-core communication. Intel Corporation.

[10] S. R. Vangal et al. An 80-tile sub-100-W teraFLOPS processor in 65-nm
CMOS. IEEE Journal of Solid-State Circuits, 43(1):29 –41, jan. 2008.

