
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009 1503

Utilizing Predictors for Efficient Thermal
Management in Multiprocessor SoCs

Ayşe Kıvılcım Coşkun, Student Member, IEEE, Tajana S̆imunić Rosing, Member, IEEE, and
Kenny C. Gross, Member, IEEE

Abstract—Conventional thermal management techniques are
reactive, as they take action after temperature reaches a thresh-
old. Such approaches do not always minimize and balance the
temperature, and they control temperature at a noticeable per-
formance cost. This paper investigates how to use predictors for
forecasting temperature and workload dynamics, and proposes
proactive thermal management techniques for multiprocessor
system-on-chips. The predictors we study include autoregressive
moving average modeling and lookup tables. We evaluate sev-
eral reactive and predictive techniques on an UltraSPARC T1
processor and an architecture-level simulator. Proactive methods
achieve significantly better thermal profiles and performance in
comparison to reactive policies.

Index Terms—Energy management, prediction methods,
processor scheduling, temperature control, thermal factors.

I. INTRODUCTION

CHIP POWER consumption is expected to increase with
each new generation of computers while the geometries

continue to shrink, resulting in higher power densities. High
power densities cause thermal hot spots and large temperature
variations on the die and introduce a number of significant
challenges, including higher cooling costs, increase in leak-
age power, lower device performance, and reliability degra-
dation [18], [30]. In this paper, we show that, by performing
thermal management and job allocation on a multiprocessor
system-on-chip (MPSoC) proactively, thermal emergencies and
temperature-induced problems can be avoided. The proactive
thermal management techniques we propose utilize predictors
for forecasting the thermal or workload dynamics on cores.
Based on the predictions, our techniques are then able to act
on thermal hot spots and temperature variations ahead of time.

Previously proposed thermal management techniques are
typically activated upon reaching a temperature threshold, and
they maintain the temperature below the critical levels at a
considerable performance cost [28]. In multiprocessor domain,
techniques such as thread migration and proportional–integral–

Manuscript received November 29, 2008; revised March 2, 2009 and
May 11, 2009. Current version published September 18, 2009. This work was
supported in part by Sun Microsystems, by UC MICRO, by the Center for Net-
worked Systems (CNS) at UCSD, by the MARCO/DARPA Gigascale Systems
Research Center, and by NSF Greenlight. This paper was recommended by
Associate Editor D. Atienza.

A. K. Coşkun and T. S̆. Rosing are with the Department of Computer Science
and Engineering, University of California San Diego, La Jolla, CA 92093-0404
USA (e-mail: acoskun@ucsd.edu; trosing@ucsd.edu).

K. C. Gross is with Sun Microsystems, San Diego, CA 92121-1973 USA
(e-mail: kenny.gross@sun.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2026357

derivative control [11] or temperature-aware job scheduling [9]
have been introduced to achieve a safe die temperature at a
reduced performance impact. Still, such techniques are reactive
in nature, i.e., they also take action after the temperature reaches
a predetermined level. Furthermore, conventional dynamic ther-
mal management techniques do not focus on balancing the
temperature, and as a result, they can create large spatial
variations in temperature or thermal cycles. In particular, in
systems with dynamic power management (DPM) that turns
off cores, reliability degradation can be accelerated because
of the cycles created by workload rate changes and power
management decisions [24].

In this paper, we extend the proactive thermal management
technique we proposed in [8]. The goal of our technique is to
prevent thermal problems at very low performance overhead.
In our experiments, we have seen that, as the workload goes
through stationary phases, temperature can be estimated ac-
curately by regressing the previous measurements. Thus, we
utilize autoregressive moving average (ARMA) modeling for
estimating future temperature accurately based on tempera-
ture measurements. Since our goal is to proactively allocate
workload, it is essential to detect the changes in workload and
temperature dynamics as early as possible and adapt the ARMA
model if necessary. For detecting these changes at runtime, we
use sequential probability ratio test (SPRT), which provides the
earliest possible detection of variations in time series signals
[34]. The early detection of variations enables us to update the
ARMA model for the current thermal dynamics immediately
and avoid inaccuracy.

Utilizing the forecast, our proactive temperature balancing
(PTB) technique allocates incoming jobs to cores to minimize
and balance the temperature on the die. In multithreaded sys-
tems, PTB performs balancing by first moving threads that
are currently waiting, as opposed to stalling the executing
threads. In single-threaded environments, we bound the number
of thread reallocations to reduce the performance cost. In com-
parison to the state-of-art allocation methods used in modern
operating systems (OSs), our technique’s performance over-
head is negligible, while it effectively reduces the frequency
of hot spots and gradients. For example, on an UltraSPARC T1
processor [21], PTB achieves 60% reduction in hot spot occur-
rences, 80% reduction in spatial gradients, and 75% reduction
in thermal cycles on average in comparison to reactive thermal
management, while incurring a performance cost of less than
2% with respect to the default scheduling policy running on
the system. This paper extends our previous work in [8] in the
following directions.

1) We provide an extensive study on how to use various
predictors (ARMA, history predictor [17], exponential

0278-0070/$26.00 © 2009 IEEE

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1504 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

averaging, and recursive least squares predictor [35]) to
forecast temperature and workload dynamics. We com-
pare these techniques’ prediction accuracy, overhead, and
adaptation capabilities.

2) To address MPSoCs without temperature sensors, we
utilize predictors to estimate future workload dynam-
ics, such as core utilization and instructions per cycle
(IPC), and demonstrate the differences with temperature
prediction.

3) In addition to the eight-core multithreaded UltraSPARC
T1 (with real-life workloads as measured by the con-
tinuous system telemetry harness (CSTH) [13]), we
evaluate our proactive thermal management policy on
an architecture-level simulator configured for a 16-core
single-threaded MPSoC. This paper provides compar-
isons between multi- and single-threaded systems, dis-
cusses the scalability of the policies, and analyzes various
proactive and reactive thermal management methods.

The rest of this paper starts with an overview of the related
work. Section III discusses the ARMA predictor and the online
adaptation framework. We compare ARMA with other pre-
dictors in Section IV. Section V demonstrates how to predict
workload dynamics for MPSoCs without thermal sensors. In
Section VI, we explain the thermal management techniques we
study in this paper. Section VII provides the methodology and
results, and we conclude in Section VIII.

II. RELATED WORK

In this section, we discuss the techniques for multicore
scheduling and thermal management. We also briefly investi-
gate previous work on energy management, as energy consump-
tion affects temperature significantly.

A number of MPSoC scheduling techniques with perfor-
mance and energy objectives have been introduced previously
(e.g., [25]). Minimizing energy on MPSoCs using dynamic
voltage-frequency scaling (DVS) has been formulated using
a two-phase framework in [36]. As power-aware policies are
not always sufficient to prevent temperature-induced problems,
thermal modeling and management methods have been pro-
posed. HotSpot [28] is an automated thermal model to calculate
transient temperature response given the physical characteris-
tics and power consumption traces. A fast thermal emulation
framework is introduced in [4], which reduces the simulation
time considerably while maintaining accuracy. Including tem-
perature as a constraint in the cosynthesis framework and in
task allocation for platform-based system design is introduced
in [15]. Reliability-aware microprocessor [30] provides a re-
liability model for temperature-related failures and optimizes
the architectural configuration and power/thermal management
policies for reliable design. In [24], it is shown that aggressive
power management can adversely affect reliability due to fast
thermal cycles, and the authors propose a policy optimization
method for MPSoCs, which saves power while meeting reli-
ability constraints. A hardware–software emulation framework
for reliability analysis is proposed in [3], and a reliability-aware
register assignment policy is introduced as a case study.

Dynamic thermal management controls overheating by keep-
ing the temperature below a critical threshold. Computation
migration and fetch toggling are examples of such techniques

Fig. 1. Flowchart of the proposed technique.

[28]. Heat-and-run performs temperature-aware thread assign-
ment and migration for multicore multithreaded systems [12].
Kumar et al. propose a hybrid method that coordinates clock
gating and software thermal management techniques such as
temperature-aware priority management [20]. The multicore
thermal management method introduced in [11] combines dis-
tributed DVS with process migration. The temperature-aware
task scheduling method proposed in [9] achieves better ther-
mal profiles than conventional thermal management techniques
without introducing a noticeable impact on performance.

In this paper, we introduce a proactive temperature manage-
ment method for MPSoCs, which can adapt to dynamic changes
in system behavior. The key difference from reactive manage-
ment is that, as opposed to taking action after the temperature
reaches a certain level, our technique estimates the hot spots
and temperature variations in advance and modifies the job
allocation to minimize the adverse effects of temperature. For
systems without temperature sensors, we show how to predict
workload dynamics instead of temperature and discuss how to
perform proactive management based on workload predictions.
We also extensively compare various reactive and proactive
thermal management techniques (i.e., in terms of their thermal
behavior and performance) not only in simulation but also on a
real system implementation.

III. PREDICTION WITH ARMA MODELS

A. ARMA Predictors

In this section, we provide an overview of our proactive tem-
perature management approach and explain the methodology
for accurate temperature prediction at runtime. Fig. 1 shows
an overview of our technique. Based on the temperature ob-
served through thermal sensors, we predict temperature tn steps
into the future using an ARMA model. Utilizing these predic-
tions, the scheduler then allocates the threads to cores to balance
the temperature distribution across the die. The ARMA model
utilized for temperature forecasting is derived based on a tem-
perature trace representative of the thermal characteristics of
the current workload. During execution, the workload dynamics
might change, and the ARMA model may no longer be able to
predict accurately. To provide runtime adaptation, we monitor
the workload through the temperature measurements, validate
the ARMA model, and update the model if needed. The online
adaptation method is explained in Section III-B.

ARMA models are mathematical models of autocorrelation
in a time series. In this paper, we use ARMA models to predict
the future temperature of cores using the observed temperature

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

COŞKUN et al.: UTILIZING PREDICTORS FOR EFFICIENT THERMAL MANAGEMENT IN MULTIPROCESSOR SoCs 1505

values in the past. ARMA model assumes that the modeled
process is a stationary stochastic process and that there is a
serial correlation in the data. In a stationary process, the prob-
ability distribution does not change over time, and the mean
and variance are stable. Based on the observation that workload
characteristics are correlated during short time windows, and
that temperature changes slowly due to thermal time constants,
we assume that the underlying data for the ARMA model are
stationary. We adapt the model when the ARMA model no
longer fits the workload. Thus, the stationary assumption does
not introduce inaccuracy.

yt +
p∑

i=1

(ai yt−i) = et +
q∑

i=1

(ci et−i). (1)

An ARMA(p, q) model is described by (1). In the equation,
yt is the value of the series at time t (i.e., temperature at time t),
ai is the lag-i autoregressive (AR) coefficient, ci is the moving
average (MA) coefficient, and et is called the noise, error, or
residual. The residuals are assumed to be random in time (i.e.,
not autocorrelated) and normally distributed. p and q represent
the orders of the AR and MA parts of the model, respectively.

ARMA modeling has two steps: 1) identification and estima-
tion, which consist of specifying the order and computing the
coefficients of the model (coefficients are computed by software
with little user interaction) and 2) checking the model, where it
is ensured that the residuals of the model are random and the
estimated parameters are statistically significant.

1) Identification and Estimation: During identification, we
use an automated trial-and-error strategy. We start by fitting
the training data with the simplest model, i.e., ARMA(1, 0),
measure the “goodness of fit,” and increase the order of the
model if the desired fit is not achieved. At each iteration, to
fit the data with the current order of ARMA model, coefficients
are computed using a least-squares fit. Other methods can be
utilized for coefficient estimation.

We use the final prediction error (FPE) [22] to evaluate
the goodness of fit of the models. Once the FPE is below a
predetermined threshold, we halt the trial-and-error loop. FPE
is a function of the residuals and the number of estimated
parameters. As FPE takes the number of estimated parameters
into account, it compensates for the artificial improvement in
fit that could come from increasing the order of the model. The
FPE is given in the following, where V is the variance of model
residuals, N is the length of the time series, and n = p + q is
the number of estimated parameters in the model:

FPE =
1 + n/N

1 − n/N
· V. (2)

2) Checking the Model: For checking that the model residu-
als are random, or uncorrelated in time, we look at the autocor-
relation function (ACF). Autocorrelation is the cross correlation
of a signal with itself as a function of lag time and is useful for
finding repeating patterns in a signal if there are any. If model
residuals are random, the ACF of all residuals (except for lag
zero) should fluctuate close to zero. The residuals are assumed
as random if the ACF for the majority of the trace is in between
the predetermined confidence intervals.

As an example, we have applied the ARMA prediction
methodology to a sample temperature trace. The trace is ob-

Fig. 2. Temperature prediction.

Fig. 3. ACF of the residuals.

tained through HotSpot [28] for a Web server workload running
on a system with a thermal management policy that swaps
workload among hot and cold cores periodically, causing ther-
mal cycles. We show a part of the trace in Fig. 2, while the
total length of the example trace is 200 samples long, sampled
at every 100 ms. Using the first 150 samples of the data as the
training set and FPE � 1, we formed an ARMA(5, 0) model.
It should be noted that, for most of the real-life workloads,
we experimented with much shorter training sets (i.e., 20–50
samples) that were sufficient for forming an ARMA model with
the desired fit.

We saved the last 50 samples of the data to test our prediction
method. We used the ARMA model to predict five steps (i.e.,
500 ms) into the future. Fig. 2 shows that the prediction matches
the observed values closely. For temperature curves with less
temporal variation, designing an accurate ARMA predictor is
even easier. Fig. 3 shows the ACF of the residuals for the
example in Fig. 2. Each sample refers to a 100-ms interval.
The horizontal lines show the 95% confidence intervals. In our
automated methodology, we observe the percentage of ACF
values within the 95% confidence interval. If most of the ACF
values fall within the 95% range, we declare that the residuals
are random.

Computing the ARMA model has relatively low overhead.
For example, in Matlab, an ARMA(p, 0) model with p ≤ 10
(no MA component) for a training data set of 50 samples can
be computed in less than 150 ms, and an ARMA(p, q) model
up to the fifth order can be computed in less than 300 ms. The
computation and validation of the model together take between
250 and 500 ms. Note that implementing the ARMA process
in C/C++ and optimizing the source code would significantly
reduce the overhead.

Note that, even though each core’s ARMA model considers
solely the temperature behavior of that particular core, the
temperature trace of a core inherently takes into account
the thermal behavior of the neighbor cores. This is due to
the fact that temperature is not only dependent on the power

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1506 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

consumption of a unit, but also on the floorplan and the
power/thermal characteristics of other units on the die. While
it is possible to develop prediction techniques that consider a
joint power/temperature profile of a set of units for forecasting,
in our experiments, we observed that considering each core’s
thermal trace individually results in accurate predictions.

B. Online Adaptation

ARMA models are accurate predictors when the time se-
ries data are stationary. Since the workload dynamics vary at
runtime, the temperature characteristics may diverge from the
training data we used for forming the initial ARMA model. In
order to adapt to changes in the workload, we propose monitor-
ing the temperature dynamics and validating the ARMA model.
When we determine that the current workload deviates from
the initial assumptions used for forming the ARMA model, we
update the model on the fly.

We use SPRT to detect changes over time in the statistical
characteristics of the residual signals. Applying SPRT on the
residuals provides the earliest possible indication of anomalies
[34], where anomaly is defined as the residuals drifting from
their expected distribution. Instead of using a simple threshold
value for detection (e.g., setting a threshold for the standard
deviation of the prediction error), SPRT performs statistical hy-
pothesis tests on the mean and variance of the residuals. These
tests are conducted on the basis of the user-specified false- and
missed-alarm probabilities of the detection process, allowing
the user to control the likelihood of the missed detection of
residual drifts or false alarms.

To perform online validation, we maintain a history window
of temperature on each core. The window length is empiri-
cally selected based on thermal time constants and workload
characteristics. To monitor the prediction capabilities of the
model at runtime, for each new data sample, we compute the
residual by differencing the predicted data from the observed
data. Our goal at runtime is to detect if there is a drift in
residuals, where a drift refers to the mean of residuals moving
away from zero (recall that, for an ARMA model with good
prediction capabilities, the residuals should fluctuate close to
zero). Detecting the drift quickly is important for maintaining
the accuracy of the predictor, as such a drift shows that the
model no longer fits the current temperature dynamics.

Specifically, we declare a drift when the sequence of the
observed residuals appears to be distributed about mean +M
or −M instead of around zero, where M is our preassigned
system disturbance magnitude. A typical value for M would
be (3 ∗

√
V), where V is the variance of the residuals in the

training data set.
At time instant t, the residuals (R) can be computed by (3),

where T ′
i(t) is the prediction and Ti(t) is the measurement.

R(t) = Ti(t) − T ′
i(t). (3)

SPRT then decides between the following two hypotheses.
1) H1: R(t) is drawn from a probability density function

(pdf) with mean M and variance σ2.
2) H2: R(t) is from a pdf with mean zero and variance σ2.
In other words, we detect that there is a drift if SPRT decides

on H1. If H1 or H2 is true, we wish to decide on the correct
hypothesis with probability (1 − β) or (1 − α), respectively,

Fig. 4. Online detection of variations in thermal characteristics.

where α and β are the false- and missed-alarm probabilities.
Small values such as 0.01 or 0.001 are used for α and β.

SPRT is applied to detect the drift (i.e., anomaly) in residuals
by computing the log likelihood ratio in (4), where p(./H2)
is the joint density function assuming no fault, p(./H1) is the
joint density function assuming fault, and N is the number of
observations.

LRN = ln
p [R(1), R(2), . . . , R(N)/H1]
p [R(1), R(2), . . . , R(N)/H2]

. (4)

If LRN ≥ B, we accept H1, meaning that the residuals show
significant change from the assumptions, and if LRN ≤ A, we
accept H2. If one of the hypotheses is accepted, the SPRT
computation is restarted from the current sample. Otherwise
(i.e., A < LRN < B), we continue the measurements. The
bounds A and B are defined as in

A = ln
(

β

1 − α

)
B = ln

(
1 − β

α

)
. (5)

Following the derivation provided in [14], the value of SPRT
can be represented as in (6). In the equation, M is the system
disturbance magnitude as defined previously, and σ2 is the
variance of the residuals in the training set

SPRT =
M

σ2

N∑
i=1

(
R(i) − M

2

)
. (6)

Note that the M and σ2 values are computed at the beginning
and then fixed until the ARMA model is updated. Thus, at
runtime, during each sampling interval, the SPRT equation
effectively performs one addition and one multiplication. Be-
cause of the simplicity of computation shown in (6), the cost of
computing SPRT after each observation is very low (negligible
in our measurements). Moreover, as shown in [34], there is
no other procedure that has the same error probabilities with
shorter average sampling time than SPRT. We have picked
SPRT as the online monitoring tool in this paper due to both
its guarantee for fast detection of changes and low computation
overhead.

In Fig. 4, we demonstrate a case where the temperature
dynamics change and the SPRT detects this change immedi-
ately (see t = 4.5 s in the figure). A and B correspond to the
SPRT thresholds of ±6.9068 for α and β values of 0.001.
When SPRT >= 6.9068 (i.e., LRN ≥ B), we declare that
the residuals have a drift from the training data, initiating
the computation of a new ARMA model. Recall that, when
SPRT <= −6.9068 (i.e., LRN ≤ A), we accept the hypoth-
esis that the mean of the residuals is zero. In both cases, the
SPRT computation is restarted.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

COŞKUN et al.: UTILIZING PREDICTORS FOR EFFICIENT THERMAL MANAGEMENT IN MULTIPROCESSOR SoCs 1507

Fig. 5. Comparison of predictors—stable temperature.

Fig. 6. Comparison of predictors—thermal cycling.

We also compared the SPRT detection with monitoring the
standard deviation of the residuals. The prediction capability of
an ARMA model can be examined by computing the standard
deviation of the prediction error. If the dynamic characteristics
of the temperature time series can be well represented by the
model, the standard deviation of the associated prediction error
should be relatively small. It is generally recommended to keep
the standard deviation of prediction errors to less than 10% of
the standard deviation of the original signal. This condition
implies that the ARMA model is able to capture more than
90% of the underlying dynamics of the system. Using a 10%
threshold, the standard deviation method can quickly detect
the change in temperature dynamics in the case of abrupt
changes such as in Fig. 4. However, for gradual shift in thermal
dynamics, it may fail to capture the drift immediately. SPRT
guarantees the fastest detection for the given false- and missed-
alarm probabilities.

IV. COMPARING PREDICTORS

In this section, we compare ARMA with various predictors
in terms of their prediction and adaptation capabilities, and their
computation and hardware overhead.

A. Exponential Averaging

A well-known method for prediction is exponential moving
averaging. In Figs. 5 and 6, we compare ARMA prediction
with exponential average prediction for an execution slice of
a highly utilized Web server workload and the previous trace
used in Fig. 2, respectively. The exponential average predictor
estimates the current value of the series as yt = αTt−1 + (1 −
α)yt−1, where yt is the predicted temperature (i.e., exponential
average) at time t, Tt−1 is the measured temperature at time
t − 1, and α is a constant (0 ≤ α ≤ 1). We used α = 0.9 in
Fig. 5 and α = {0.5, 0.9} in Fig. 6.

Fig. 7. Predicting further ahead with exponential averaging.

When we have a relatively stable temperature, an exponential
average predictor works well, providing almost the same values
as the ARMA predictor in Fig. 5. However, when there are rapid
temperature changes, such as thermal cycling, the exponential
average predictor performs poorly, such as in Fig. 6. In addition,
even though the exponential average predictors with α = 0.9
and α = 0.5 perform very similarly in the first example, there
is a significant effect of the α value in the thermal cycling case,
which would require the user to determine α accordingly. Con-
trarily, ARMA predictor has an automated process of forming
the model with high accuracy. The overhead of evaluating the
ARMA or the exponential average model at runtime is very
similar, as both models only compute a polynomial equation
for each sample.

The ideal number of steps to predict ahead depends on the
system and workload characteristics. In our experiments, we
predict 500 ms (i.e., five steps) into the future, which provided
good results for our proactive thermal management policies.
However, for different system and workload characteristics,
the preferred prediction distance may vary. For example, for
systems with less variant workload, predicting further ahead
and using a lower sampling rate for polling the temperature
sensors can be sufficient.

For the experiment in Fig. 7, we increased the prediction
distance to 10 and 20 steps to evaluate the accuracy of ARMA
and exponential averaging predictors as a function of the pre-
diction distance. When the goal is forecasting several time
steps into the future, the prediction accuracy of exponential
averaging degrades significantly. For this experiment, we used a
200-sample temperature trace for a CPU-bound SPEC 2000
suite workload, where the temperature was changing within a
1.5◦C range. The plot shows the difference of error (in degree
Celsius) in comparison to predicting five steps into the future
with the same predictor. While the ARMA predictor’s accuracy
is stable, the error margin of the exponential predictor increases
considerably when predicting ahead.

B. History Predictor

In Section III, we showed that it is possible to predict the
future temperature accurately based on the previous thermal
measurements. Following this insight, we built a history pre-
dictor, which is similar to a global branch predictor and consists
of a shift register that tracks the last few observed values. The
length of the history is specified by the shift register depth.
At each sampling period, the register is updated with the last

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1508 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 8. Accuracy–size tradeoff for the history predictor.

measurement. This updated shift register content is used to
index a history table (HT). The HT holds several previously
observed thermal patterns, with their corresponding next value
predictions. The shift register index is associatively compared
to the stored valid HT tags, and if a match is found, the corre-
sponding HT prediction is used as the final prediction. We keep
an invalid entry for each tag to track the ages of different HT
tags for applying a least recently used replacement policy when
the HT is full. This predictor is similar to the global history
predictor used for predicting power phases in [17]. When the
shift register does not hit the HT, the predictor behaves like
a last-value predictor and assumes that the future temperature
value will be the same as the last observed temperature.

One issue with the history predictor is the precision of
temperature data. We have performed experiments where we
stored temperature readings with one or two decimal places.
However, even for relatively stable temperature profiles, ob-
taining a reasonable percentage of hits on the HT was not
possible when we considered the decimal places. In addition,
even when we maintain one decimal digit, the required HT
size for predicting with high accuracy becomes considerably
large (i.e., we would have to have new entries in the table to
accommodate even slight changes in the decimal digit). For
this reason, for the history predictor, we round the temperature
measurements to the nearest integer values and only predict
temperature in integers.

In Fig. 8(a) and (b), we show the accuracy for various HT
sizes and history lengths. In this experiment, we have used the
same temperature trace we used for Fig. 7 and predicted five
steps ahead. In Fig. 8(a), we compare the standard deviation
of error and the mean error (in degree Celsius) for the predic-
tion, where error is the difference of the measured trace and
predictions. For this workload, we observe that increasing the
history length does not bring much benefit; however, increasing
the table size reduces the magnitude of errors. In Fig. 8(b),
we demonstrate the correct prediction ratio (with respect to
the integer temperature trace) and the hit rate for the HT.
While increasing the history length reduces the hit rate as
expected, the accuracy does not get affected by this. This is
due to the fact that, for stable profiles, the last-value predictor
compensates well when the history predictor cannot predict.
Note that increasing the table size over 100 does not bring
additional benefits, which motivates the use of a small-size table
to achieve enough accuracy with lower hardware overhead.

Fig. 9 shows the ARMA predictor and the history predictor
(with an HT size of 100 and a history length of five) for predict-
ing five steps ahead (i.e., 500 ms). We observe that the ARMA

Fig. 9. Comparison of ARMA and history predictor.

Fig. 10. Comparison of ARMA and recursive least squares predictor.

captures the thermal dynamics almost exactly, while the history
predictor can predict the integer value of the temperature with
reasonable accuracy. For the repeating patterns of workload,
such as several applications being time-multiplexed on a core,
and stable thermal profiles, the history predictor can predict
with high accuracy and does not require a training phase (except
for the first time an application is run), provided that the HT is
large enough to maintain the entries associated with all of the
applications.

C. Recursive Least Squares

Another recently proposed temperature prediction method is
using recursive least squares [35]. In Fig. 10, we compare the
prediction accuracy of the least squares approach with ARMA.
We trained both predictors with 50 samples of the temperature
data. While least squares method with a prediction distance
of five (shown as Lsq − 5) has similar accuracy as ARMA
(prediction distance = 10), its accuracy drops rapidly when
we increase the forecasting distance (tn) to ten steps (Lsq −
10). This trend continues even more dramatically for higher tn.

Note that both of the aforementioned methods can predict
the data in the history window they are trained with the desired
degree of accuracy. If one keeps adding enough terms, it is even

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

COŞKUN et al.: UTILIZING PREDICTORS FOR EFFICIENT THERMAL MANAGEMENT IN MULTIPROCESSOR SoCs 1509

Fig. 11. Prediction of core utilization.

possible to fit through every single observation in the history
window. However, typically, we would not want to do that
because, usually, there is random measurement noise on the
time series and there is no value to learning the noise. Thus,
the differentiating point of recursive least-squares and ARMA
arises when we are forecasting further into the future. As we
increase tn, recursive least-squares does significantly worse
than ARMA. The reason is that, as soon as you predict more
than a few time steps into the future, the term with the biggest
exponent in the least-squares fitting function dominates, and the
prediction accuracy degrades from that point on.

Another important advantage of ARMA in comparison to
least-squares is in the overhead. Recursive least-squares method
continuously updates the coefficients of the model as new data
arrive (otherwise, accuracy drops), whereas the SPRT support
enables us to update the model only when it is necessary. In ad-
dition, the length of the polynomial in the least-squares estima-
tion needs to be set manually, which can unnecessarily increase
computation overhead if set to a larger value than needed. On
the other hand, we use an automated and fast trial-and-error
strategy for setting the number of terms in the ARMA model.

V. WORKLOAD PREDICTION

The predictors discussed previously assume a telemetry in-
frastructure on the chip, which provides temperature measure-
ments at the desired granularity. In a number of systems, we
may not have a thermal sensor for each core or sensors may
degrade and fail during the system lifetime. To apply a proactive
management strategy for such cases, in this section, we discuss
how the workload parameters can be predicted.

For workload prediction, we demonstrate the prediction of
two parameters: 1) core utilization and 2) the IPC of com-
mitted instructions. Core utilization is a good measure of how
busy the core is and hence provides an insight for the power
consumption, particularly in multithreaded systems, where we
may not have access to measuring per-thread IPC. For single-
threaded systems, IPC tends to have a strong correlation with
the power consumption. While such performance metrics may
not directly reflect the thermal behavior of cores, they still
provide an estimation of whether the power consumption is
increasing or decreasing in the near future. Therefore, the
forecast of future workload can be utilized to perform proactive
temperature management, assuming a correlation between high
utilization/IPC and high power consumption.

Figs. 11 and 12 show the traces of core utilization and
committed IPC, respectively, and the prediction results obtained
by ARMA. The core utilization results are collected for medium

Fig. 12. Prediction of committed IPC.

utilized Web application on a multithreaded system. The IPC
trace belongs to bzip running on a single-threaded architecture.
Both predictors were trained using 150 samples, and the predic-
tion was performed for the following 50 samples. Note that the
workload parameters may have short-term spikes due to chang-
ing application characteristics, while these do not typically
get reflected in the temperature response due to the thermal
time constants. This is particularly the case for core utilization.
To achieve more accurate prediction for core utilization, we
applied a smoothing function (i.e., moving averaging) to the
workload traces. The smoothed-out utilization and prediction
signals are demonstrated with the subscripts sm in Fig. 11.
For the original trace, the accuracy of utilization prediction is
significantly lower than the temperature prediction. However,
when the data are smoothed out first, the predictor works more
accurately.

Even though bzip is a highly IPC-variant benchmark, Fig. 12
shows that IPC can be predicted with high accuracy. Note that
applications typically have different phases of performance, and
SPRT would detect such a change immediately. The substantial
accuracy difference between predicting IPC and core utilization
is mainly due to the difference between observing a single
thread and observing multiple threads at the same time. The
core utilization results are collected on a multithreaded system,
where the core is running a set of threads rather than a single
application.

VI. PROACTIVE TEMPERATURE MANAGEMENT

We study various thermal management techniques for
MPSoCs and propose a proactive temperature-aware job allo-
cation technique. This section discusses the details of all the
techniques we implemented. We consider both single-threaded
and multithreaded systems in this paper. In the system model
for the multithreaded systems, each core has a dispatching
queue, which holds the threads allocated to that core. This is the
typical abstraction in modern multicore OS schedulers based
on multilevel queuing. The dispatcher allocates the incoming
threads to queues based on the current policy.

The default policy we evaluate (i.e., default policy in modern
OSs, e.g., Solaris) is Dynamic Load Balancing, which assigns
an incoming thread to the core it ran previously, if the thread ran
recently. If the thread has not run recently, then the dispatcher
assigns it to the core that has the lowest priority thread in the
queue. The dispatcher first tries to assign the thread based on
locality (e.g., if several cores are sharing a cache or on the
same chip, etc.) if possible. At runtime, if there is a significant
imbalance among the queues, the threads are migrated to have
more balanced utilization.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1510 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Many temperature management methods rely on dynamic
temperature data acquired from the system; thus, we assume
that each core has a temperature sensor. Current chips typically
contain several sensors, and these sensors can be read by the
CSTH for collecting and analyzing time series sensor data [13].
The management policies observe the system characteristics at
regular intervals (i.e., ticks) to make decisions.

1) Power Management: Many current MPSoCs have power
management capabilities to reduce the energy consumption.
Even though the power management techniques do not directly
address temperature, they affect the thermal behavior signifi-
cantly. We implement two commonly used power management
methods: DPM and DVS. For DPM, we utilize a fixed time-out
policy, which puts a core to sleep state if it has been idle longer
than the time-out period. We set the time-out as the breakeven
time [19]. The DVS policy observes the core utilization over a
given length of recent history and reduces the frequency/voltage
proportionally.

2) Reactive Thermal Management: Several reactive thermal
management techniques have been proposed in literature (e.g.,
[12]). In this paper, we implement some of the most commonly
used methods.

Reactive thread Migration (R-Mig) migrates the workload
from a core if the core’s temperature is above the threshold
to the coolest core available. In single-threaded systems, this
corresponds to migrating the currently running job or swap-
ping the jobs among the hot and cool cores. In multithreaded
environment, the technique migrates the current threads in the
hot core’s dispatch queue to other cool cores or swaps threads
among hot and cool cores.

Reactive DVS (R-DVS) reduces the voltage/frequency (V/f)
setting on a core if the threshold temperature is exceeded,
which is similar to the frequency scaling approach in [28]. We
assume three built-in V/f states in our experiments. The policy
continues to reduce the (V/f) level at every tick as long as the
temperature is above the threshold. When the temperature is
below the critical threshold, then the V/f setting is increased.

3) Proactive Thermal Management: The proactive methods
utilize the temperature prediction introduced in Section III-A.
The motivation behind proactive management is to avoid ther-
mal emergencies before they occur and, thus, to minimize the
adverse effects of hot spots and temperature variations at lower
performance cost.

In the workload allocation techniques we propose, we do not
change the priority assignment of the threads or the time slices
allocated for each priority level. This paper focuses on finding
effective dispatching methods to reduce temperature-induced
problems without affecting performance.

Proactive thread Migration (P-Mig) moves workload from
cores that are projected to be hot in the near future to cool cores.
Proactive DVS (P-DVS) reduces the V/f setting on a core if the
temperature is expected to exceed the critical threshold. These
two policies are the same as their reactive counterparts, except
that they get triggered by the temperature estimates instead of
the current temperature.

Proactive temperature balancing (PTB) follows the principle
of locality (i.e., allocating the threads on the same core they
ran before) during the initial assignment as in the default
policy. At every scheduler tick, if the temperatures of cores are
predicted to have imbalance in the next interval, threads waiting

on the queues of potentially hotter cores are moved to cooler
cores. This way, the thermal hot spots can be avoided, and the
gradients are prevented by thermal balancing.

In a single-threaded system, we bound the number of migra-
tions to avoid the unnecessary performance cost. The migration
of the jobs on all the hot cores can cause thermal oscillations.
We start performing migrations from the hottest core and mi-
grate only if the workload on the hot core’s neighbors has not
been migrated during the current tick. Note that, in a multi-
threaded environment, threads waiting in the queue are moved
unless the threshold is already exceeded; thus, migration does
not stall the running thread. This is in contrast to moving the
actively running threads in thread migration policies discussed
earlier. As moving the waiting threads in the queues is already
performed by the default policy for load balancing purposes,
this technique does not introduce additional overhead. In PTB
for multithreaded systems, the number of threads to migrate is
proportional to the spatial temperature difference among the hot
and cool cores.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the thermal management tech-
niques discussed in the previous section. In the results, DLB is
the default load balancing policy, R-Mig (P-Mig) and R-DVS
(P-DVS) refer to the reactive (proactive) migration and voltage
scaling, respectively, and PTB is the proposed job allocation
policy (i.e., combined with ARMA predictor). All predictors in
this section predict five steps ahead (i.e., 500 ms, assuming a
100-ms sampling rate).

We show two sets of experimental results. The first set is
based on the UltraSPARC T1 processor [21]. In the second set
of results, we use an architecture-level simulation framework
to simulate performance, power, and temperature and provide
results on a hypothetical high-performance 16-core architecture
manufactured at 65 nm.

The threshold temperature for the management policies is
85 ◦C, which is considered a high temperature for our system.
Higher temperature increases the failure rates, for example,
for electromigration related failures, an increase in temperature
from 80 ◦C to 85 ◦C reduces the mean time to failure by
30% [18]. In this section, the hot spot results demonstrate the
percentage of “time spent above 85 ◦C.” The spatial gradient
results summarize the percentage of time that gradients above
15 ◦C occur, as gradients of 15 ◦C–20 ◦C start causing clock
skew and delay issues [1]. The spatial distribution is calculated
by evaluating the temperature difference between hottest and
coolest cores at each sampling interval. For metallic structures,
assuming the same frequency of thermal cycles, when ΔT
increases from 10 ◦C to 20 ◦C, failures happen 16 times more
frequently [18]. Thus, we report the temporal fluctuations of
magnitude above 20 ◦C. The ΔT values we report are computed
over a sliding temperature history window (i.e., maximum ΔT
in the history window) and averaged over all cores.

A. UltraSPARC T1 Implementation

The first set of experimental results is based on the Ultra-
SPARC T1 [21]. The experimental flow consists of gathering
workload traces, applying policies (scheduling, DVS, etc.) on

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

COŞKUN et al.: UTILIZING PREDICTORS FOR EFFICIENT THERMAL MANAGEMENT IN MULTIPROCESSOR SoCs 1511

the given workload, computing the corresponding power traces,
and finally calculating the temperature response.

The results marked as real implementation refer to our imple-
mentation of the policies in Solaris, where we ran the workload
on the UltraSPARC T1 in real time. Some of our policies utilize
temperature readings from all cores, and UltraSPARC T1 does
not contain a sensor for each core. To obtain detailed thermal
data in synchronization with the scheduling experiments, using
a shared file, we piped the utilization data collected from
the target machine to another computer that was running the
thermal simulator. The utilization data were converted into
the equivalent power trace by the thermal simulator, and the
temperature results were computed for the next interval and
then were passed back to the target system (which was running
the thermal management policies). A separate computer in the
private network was assigned to run the thermal simulator to
avoid interfering with the workload dynamics on the target
system. In the real implementation, the core utilization statistics
were passed to the thermal simulator at every 1-s interval,
and the thermal simulations were sampled at every 100 ms,
which provided good precision. To implement thread migra-
tion, we utilized the existing migration routine in the OS dis-
patcher and included additional temperature-induced triggers
accordingly.

The results marked as simulator are from our simulation
infrastructure attached to the power/thermal model, where we
used the real-life workload traces again, but this time imple-
mented the scheduling policies within the simulator that is a
replica of the multicore system model. Again, the temperature
sampling rate was set at 100 ms.

We leveraged the CSTH [13] to gather detailed workload
characteristics of real applications. We sampled the utilization
percentage for each hardware thread at every second using
mpstat [23]. We recorded half-an-hour-long traces for each
benchmark. To determine the active/idle time slots of cores,
we recorded the length of user and kernel threads using
DTrace [23].

We ran the following sets of benchmarks: 1) Web server;
2) database; 3) common integer; and 4) multimedia. To generate
a Web server workload, we ran SLAMD [29] with 20 and
40 threads per client to achieve medium and high utilizations,
respectively. For database applications, we tested MySQL using
sysbench for a table with one million rows and 100 threads.
We also ran compiler (gcc) and compression/decompression
(gzip) benchmarks. For multimedia, we ran mplayer (inte-
ger) with a 640 × 272 video file. Several instances of the
benchmarks were executed simultaneously for the integer and
multimedia benchmarks to achieve a reasonable utilization on
the MPSoC. We summarize the details of our benchmarks in
Table I. Utilization ratios are averaged over all cores throughout
the execution. Using cpustat, we also recorded the cache
misses and floating point (FP) instructions per 100 thousand
instructions.

The peak power consumption of SPARC is similar to its av-
erage power [21]; therefore, we assumed that the instantaneous
power consumption is equal to the average power at each state
(active, idle, and sleep). The average power consumption for
UltraSPARC T1 (including leakage) and the area distribution of
the units are provided in Table II, and the floorplan is available
in [21].

TABLE I
WORKLOAD CHARACTERISTICS

TABLE II
POWER AND AREA DISTRIBUTIONS OF THE UNITS

We estimated the power at lower voltage levels based on
the equation P ∝ f ∗ V 2. We assumed three built-in voltage/
frequency settings in our simulations. To account for the leak-
age power variation at runtime, we used the second-order poly-
nomial model proposed in [31]. We determined the coefficients
in the model empirically to match the normalized leakage
values in [31]. As we know the amount of leakage at the default
voltage level for each core, we scaled it based on this model for
each voltage level, considering the temperature change as well.
We used a sleep state power of 0.02 W, which is estimated based
on the sleep power of similar cores. To compute the power
consumption of the crossbar, we scaled the power according
to the number of active cores and the memory access statistics.

We used HotSpot version 4.2 [28] as the thermal modeling
tool and modified the floorplan and thermal package character-
istics for UltraSPARC T1. We initialized HotSpot with steady-
state temperature values.

First, we provide the simulator results. Table III shows a
detailed analysis of the hot spots observed on the system for
each workload and also the average performance results. We
show the percentage of time spent above 85 ◦C for all the work-
loads, and also the average results for the cases with no power
management and DPM. The performance results shown in the
table are normalized with respect to the default policy’s per-
formance. We computed the performance based on the average
delay we observed in the thread completion times. The reactive
migration of workload or applying temperature triggered DVS
cannot eliminate all the hot spots, particularly for workloads
with medium to high utilization level. Performing migration
or DVS proactively achieves significantly better results while
also reducing the performance cost. The cost is lower with
the proactive approaches as they maintain the temperature at
lower levels, requiring fewer overall number of migrations or
shorter periods of DVS. Note that, once a temperature threshold
is reached, execution at the default speed is not allowed on
a core until the temperature is lowered. Moreover, when a
system is highly utilized, swapping threads may not reduce the
temperature sufficiently, and frequent threshold triggers may
occur as new threads arrive.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1512 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

TABLE III
THERMAL HOT SPOTS AND PERFORMANCE (simulator)

Fig. 13. Temperature cycles—with DPM (simulator).

Our technique, PTB, achieves very similar thermal results to
P-DVS while it has much better performance. DPM reduces the
thermal hot spots to some extent, as it reduces the temperature
when the system has idle time. Performing proactive tempera-
ture management results in the best thermal profile among the
techniques when there is DPM, i.e., 83% reduction in hot spots
in comparison to DLB.

We also looked at how the energy savings obtained with
DPM change depending on the policy. Among the workload
allocation/migration policies, DLB has the highest savings in
energy. R-Mig, P-Mig, and PTB balance the workload more
than DLB does to reduce thermal problems, whereas clustered
workload achieves longer continuous idle time slots and helps
DPM. DLB achieves 13.6% savings on average, while P-Mig
and R-Mig reduce energy consumption by close to 12%. PTB
performs dramatically better than the other migration-based
policies in terms of reducing the thermal problems while still
obtaining 8.9% savings when combined with DPM. DVS poli-
cies considerably increase the savings, e.g., 21.5% for P-DVS
and 23.7% for R-DVS, when combined with DPM. However,
recall that DVS significantly increases the execution time. Thus,
while DVS reduces the energy consumption of cores, due to
prolonged activity of memories and other components, the
total energy consumption of the system may not benefit as
much. Moreover, a significant portion of the total energy costs
in current servers is due to cooling costs, which we did not
consider in this computation.

Fig. 13 shows the average percentage of time we observed
thermal cycles above 20 ◦C. We also plotted the workload with
the maximum thermal cycling, i.e., Web-med, for comparison.
We only consider the case with DPM for the thermal cycling
results, as putting cores to the sleep state creates larger cycles.
Our technique achieves very significant reduction in thermal
cycles, i.e., to around 1% in the average case, as it contin-
uously balances the workload among the cores according to
their expected temperature. As reactive techniques take action
after reaching temperature thresholds, they cannot avoid the

Fig. 14. Spatial gradients (simulator).

TABLE IV
TEMPERATURE RESULTS FOR THE COMBINED WORKLOADS (simulator)

temperature imbalance in time as much as our technique.
P-DVS and PTB perform very similarly; however, it should be
noted that the performance cost of PTB is less than DVS.

Fig. 14 shows the average percentage of time we observed
large spatial gradients above 15 ◦C. DPM creates larger gra-
dients due to the low temperatures of the cores that go into
the sleep state. PTB can almost eliminate large gradients by
reducing their frequency to below 2% in average. P-DVS is the
second best policy for reducing the on-die variations.

To show the effect of runtime adaptation on the accuracy of
our technique, we ran traces of different workloads sequentially
and computed the temperature statistics. In Table IV, we show
the results for running the following combinations of workload
with the PTB policy: (A) Web-med followed by Web&DB and
(B) Mplayer followed by Web-med. We show the percentage of
hot spots, cycles, and gradients for the individual workloads and
also for the combined workloads for the case with DPM. We ran
equal lengths of each benchmark in the combined workloads.
We see that the percentage of hot spots and the variations of the
combined workload are close to the average values of running
the individual benchmarks. Thus, PTB can adapt to workload
changes without negatively affecting the thermal profile.

We next discuss the results collected on the real implemen-
tation, where we implemented our technique in the Solaris
task dispatcher running on an UltraSPARC T1 system. On the
real implementation, we simulated DPM effects on temperature
using HotSpot, as we did with the simulator, and assumed
that the transition among active and sleep states has negligible

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

COŞKUN et al.: UTILIZING PREDICTORS FOR EFFICIENT THERMAL MANAGEMENT IN MULTIPROCESSOR SoCs 1513

TABLE V
HOT SPOTS (real implementation)

Fig. 15. Spatial gradients (real implementation).

Fig. 16. Thermal cycles—with DPM (real implementation).

overhead. As the system does not have DVS capabilities, we
simulated the thermal behavior for the default policy (DLB),
reactive and proactive migrations, and our policy (PTB), run-
ning the benchmark set described previously.

In Table V, we show the distribution of hot spots, comparing
various benchmarks. The combination workloads (A) and (B)
are described in Table IV. We observe that PTB can reduce the
hot spots by 60% in average in comparison to reactive migra-
tion and by 20% to 30% with respect to proactive migration.
Workloads with low utilization, such as Mplayer, do not have
a significant percentage of high temperatures. However, for
hotter benchmarks, PTB achieves a dramatic reduction in the
occurrence of hot spots.

Figs. 15 and 16 show the average frequency of spatial gra-
dients and thermal cycles on our real system implementation.
These results agree with the simulation results that PTB reduces
the thermal variations more effectively in comparison to other
proactive and reactive techniques.

As the real implementation on UltraSPARC T1 runs multi-
threaded workloads, we did not use an IPC-based performance
metric. Evaluating the performance of multithreaded workloads
using IPC is prone to inaccuracy [2]. This inaccuracy is due to
the assumption that instructions per program remain constant
across all executions, whereas the instruction path of multi-
threaded workloads running on multiple processors can vary
substantially. Thus, to evaluate the performance of the various
techniques we implemented, we used the “Load Average”
metric. Load average is the sum of run queue length and number
of jobs currently running. Therefore, if this number is low (i.e.,
typically below three or five, depending on the system), the
response time of the system is expected to be fast. As load
average grows, performance degrades.

Fig. 17 shows the performance values for the policies,
normalized relative to the default policy (i.e., DLB). PTB is

Fig. 17. Normalized performance (real implementation).

Fig. 18. Proactive balancing results for various predictors.

able to achieve better thermal profiles than other policies with
less performance cost. This is because PTB first attempts to
migrate the threads waiting in the dispatch queue, as opposed
to stalling and migrating actively running threads. For example,
for the workload Web−med, in the default case, the number
of migrations of active threads was counted as 0.004 per
1000 instructions. Reactive migration (R-Mig) increases this
number to 0.009/1000 instructions. Proactive migration causes
fewer number of migrations than R-Mig (0.008/1000 instruc-
tions), as the temperature becomes more stable and the fre-
quency of thermal emergencies decreases. PTB reduces this
number further to 0.0046, which is only slightly higher than
the default case. Note that the number of migrations of threads
that are waiting in the queue is higher with PTB; however, the
performance cost of such migrations is much lower.

Lastly, to show the effect of prediction accuracy on thermal
behavior, we implemented the PTB using least squares pre-
diction and history predictor and compared the results against
performing PTB with ARMA. Fig. 18 shows the percentage of
hot spots observed with all the predictors. For this experiment,
we ran the following benchmarks sequentially in the given
order: Web-medium, Web-high, Web&Database, and Database.
Each benchmark was run for an equal amount of time. PTB
with ARMA achieves a better thermal profile than PTB with
other predictors. This advantage is mainly a result of the longer
adaptation period of the history and least squares predictors
when the workload changes. SPRT detects the change imme-
diately and computes a new ARMA model, whereas the other
predictors go through a training period before starting accurate
predictions.

B. Architecture-Level Simulator

To study the effect of reactive/proactive thermal management
strategies in larger MPSoCs with higher performance cores,
we have used an architecture-level simulator in addition to the
results we collected on UltraSPARC T1. Following the trend of

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 19. Floorplan of the 16-core CPU [10].

integrating an increasing number of cores on a single die, e.g.,
Sun’s 16-core Rock processor [33] and Intel’s Larrabee with up
to 32 cores [26], the CPU we model is a homogeneous 16-core
multiprocessor manufactured at 65 nm. The floorplan for this
CPU is shown in Fig. 19.

The simulation flow in this part consists of capturing the
application phases using SimPoint [27] and computing the
average power consumption for each phase. Then, with a finite
number of simulation samples for each phase (using the M5
simulator [5] integrated with Wattch [6]), we reconstruct the
power and execution properties of complete program execution.
We do this for all voltage and frequency settings available,
so that we can reconstruct the complete program if there are
dynamic voltage/frequency changes. To model the power dissi-
pation of L2 caches, we used CACTI [32]. This phase-analysis-
based setup ensures that we can accurately simulate longer time
frames than the typical architecture-level simulations.

We capture these program traces in a database which is
queried by the scheduler at distinct intervals to determine the
average IPC, power value, and the current instruction count.
The power data collected by the scheduler are fed into HotSpot
[28], which gives the thermal results for the modeled architec-
ture. More details on the simulator are provided in [10].

We assumed that each core has three voltage and frequency
settings for DVS: 1.2 V at 2.0 GHz, 1.187 V at 1.9 GHz, and
1.06 V at 1.7 GHz. Each core has a 64-kB two-way DCache
and a 64-kB two-way ICache (each has an access time of
two cycles). Each L2 cache (two banks; L2i − 1 and L2i − 2)
is 2 MB, eight-way associative, and has an access time of
20 cycles. Memory latency is 200 cycles. Each core is single-
threaded, has a four-width out-of-order issue, four integer
arithmetic logic units (ALUs), two integer multiplication units,
two FP ALUs, and two FP multiplier/dividers. The core
architecture mimics an Alpha processor scaled to 65 nm.
To model the penalty for thread migration, we measured the
cold start effects for each benchmark (204 μs on average,

TABLE VI
WORKLOAD CHARACTERISTICS FOR THE ARCHITECTURAL SIMULATOR

reaching up to 1 ms). The delay for changing V/f level was set
at 20 μs, based on the values reported in previous work [16].

We used benchmarks with different intensities of CPU and
memory instructions to create representative traces for a wide
range of real-world applications. We designed the following
multicore workloads using the SPEC 2000 benchmark suite:
1) 16 CPU-bound threads; 2) 16 mixed threads (containing
highly CPU-bound, highly memory-bound, and medium CPU-
bound threads); 3) 14 CPU-bound threads; and 4) 14 mixed
threads. The specifics of each workload are provided in
Table VI.

The leakage model we use in this simulator is the same as
described in Section VII-A. To get the transient temperature re-
sponse, we integrated HotSpot [28] with Wattch. We calculated
the die characteristics based on the trends reported for 65-nm
process technology.

Next, we provide results on how the policies affect the
thermal behavior and performance of the 16-core architecture.
Fig. 20 shows the frequency of hot spots for R-Mig, P-Mig,
DVS, and PTB. Note that, for this part of the experiments,
we use the single-threaded version of the policies. Unlike the
multithreaded simulations, in Fig. 20, we see that DVS can
reduce the frequency of hot spots more effectively. However,
this comes at a performance cost, which will be investigated
later. On our 16-core architecture, we have not observed a
significant amount of large temperature variations. The reason
is that our applications highly utilized the system, unlike the
multithreaded benchmarks with much more variant execution
profile.

Next, we compare the performances of the temperature
management techniques on the 16-core architecture using the
fair speedup (FS) metric [7]. FS is computed by finding the
harmonic mean of each thread’s “speedup” over a baseline
policy of running the thread at the highest frequency and
voltage. Fig. 21 shows the performance for each workload and
policy, as well as the average case for the 16-core architecture.
PTB increases the performance by over 3% in comparison
to P-DVS and by over 5% in comparison to R-DVS. PTB
achieves the same performance as P-Mig while reducing the hot
spots. Note that, on a single-threaded system, the performance
benefit of PTB over P-Mig diminishes, as PTB is a policy that
is specifically designed for optimizing multithreaded system
performance.

On the 16-core system, we also ran simulations where the
ARMA predictor was used for predicting IPC (as described
in Section V). In this case, the proactive balancing policy was
utilizing the IPC predictions (referred to as PTB_IPC). In other
words, the prediction of high IPC is considered equivalent to a
forecast of high power consumption. Therefore, the high-IPC
threads are allocated to cooler locations. In the 16-core (4 × 4)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

COŞKUN et al.: UTILIZING PREDICTORS FOR EFFICIENT THERMAL MANAGEMENT IN MULTIPROCESSOR SoCs 1515

Fig. 20. Thermal hot spots (16-core system).

Fig. 21. Performance of policies on the 16-core architecture.

Fig. 22. Thermal results for ARMA IPC predictor.

MPSoC, the corner cores are typically cooler than other cores
on the sides, and the cores at the center of the die are expected
to be the hottest. How to order the cores in terms of their sus-
ceptibility to hot spots during scheduling has been discussed in
prior work [10]. Note that, once the job with the highest IPC is
allocated on one of the corner cores, the second highest IPC job
will be allocated on the opposite corner (across the diagonal)
to minimize the possibility of hot spots—this way, the policy
avoids clustering the high power applications on neighboring
cores. Thus, as PTB_IPC separates the high-IPC jobs from each
other and places the lowest power jobs in the central region of
the die, it is effective in reducing the frequency of hot spots.

Fig. 22 shows the thermal behavior achieved by PTB (tem-
perature based) and PTB_IPC. The two techniques result in
very similar percentages of hot spots, whereas PTB_IPC has
higher performance overhead due to more frequent migrations.
PTB_IPC reacts to changes in IPC, which are not always
reflected to the temperature profile due to the thermal time
constants. The results show that, for a single-threaded system
without temperature sensors, IPC is a reasonable metric to
guide thermal management. Note that, for other systems or
workloads, PTB_IPC may result in higher percentage of hot
spots as it does not consider the thermal interactions of neigh-
boring units or the recent thermal history.

We observe that, in single-threaded MPSoCs, DVS has better
results than job allocation policies (migration or balancing) in
terms of reducing the hot spots. However, considering that the
performance cost of DVS is higher, it would be beneficial to
design hybrid strategies combining DVS and job scheduling to
achieve a more desirable temperature–performance tradeoff. It
should also be noted that DVS requires hardware support for the
dynamic management of voltage, whereas the PTB we propose
can be performed by only modifying the OS dispatching policy.

Previously in Section VII-A, we have seen that PTB ac-
complishes the reduction of the frequency of harmful temper-
ature events as much as DVS while resulting in only a slight
decrease in performance with respect to the DLB scheme. In
multithreaded MPSoCs, proactive management brings signif-
icantly more benefits in reducing hot spots and temperature
variations in comparison to applying the equivalent policies
in single-threaded systems. This is due to the fact that multi-
threaded environment provides more opportunities for applying
temperature-aware job allocation techniques without hurting
performance.

VIII. CONCLUSION

In this paper, we have presented a proactive tempera-
ture management approach for MPSoCs, which can adapt to
changes in system dynamics at runtime. We utilize ARMA
modeling to accurately predict future temperature on each core
based solely on the previous measurements. We continuously
monitor how well the ARMA model fits the current temperature
using SPRT and update the model if necessary. SPRT guaran-
tees one to achieve the fastest detection of changes in thermal
dynamics. Our PTB method for the dynamic allocation of
threads reduces the thermal hot spots and temperature gradients
significantly at very low performance impact. The proposed
method does not require offline analysis or workload profil-
ing and achieves more accurate predictions under dynamically
variant workload in comparison to methods that rely on offline
analysis or longer training periods.

We have provided a detailed comparison of our ARMA/
SPRT-based approach to other prediction methods (e.g., ex-
ponential moving average, history predictor, and least squares
predictor) and have also presented a thorough experimental
evaluation of both reactive and proactive thermal management
approaches on single-threaded and multithreaded MPSoCs. In
our UltraSPARC T1 experiments, we have observed that our
technique achieves 60% reduction in hot spot occurrences, 80%
reduction in spatial gradients, and 75% reduction in thermal cy-
cles in average, in comparison to reactive thermal management.

ACKNOWLEDGMENT

The authors would like to thank D. Atienza and the anony-
mous reviewers for their valuable feedback.

REFERENCES

[1] A. H. Ajami, K. Banerjee, and M. Pedram, “Modeling and analysis of
nonuniform substrate temperature effects on global ULSI interconnects,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 6,
pp. 849–861, Jun. 2005.

[2] A. R. Alameldeen and D. A. Wood, “IPC considered harmful for
multiprocessor workloads,” IEEE Micro, vol. 26, no. 4, pp. 8–17,
Jul./Aug. 2006.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

1516 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

[3] D. Atienza, G. D. Micheli, L. Benini, J. L. Ayala, P. G. D. Valle,
M. DeBole, and V. Narayanan, “Reliability-aware design for nanometer-
scale devices,” in Proc. ASPDAC, 2008, pp. 549–554.

[4] D. Atienza, P. D. Valle, G. Paci, F. Poletti, L. Benini, G. D. Micheli,
and J. M. Mendias, “A fast HW/SW FPGA-based thermal emulation
framework for multi-processor system-on-chip,” in Proc. DAC, 2006,
pp. 618–623.

[5] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt, “Network-oriented
full-system simulation using M5,” in Proc. Workshop CAECW, 2003,
pp. 36–43.

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. ISCA,
2000, pp. 83–94.

[7] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip multi-
processors,” in Proc. ICS, 2007, pp. 242–252.

[8] A. K. Coskun, T. Rosing, and K. Gross, “Proactive temperature balancing
for low cost thermal management in MPSoCs,” in Proc. ICCAD, 2008,
pp. 250–257.

[9] A. K. Coskun, T. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Proc. DATE, 2007, pp. 1659–1664.

[10] A. K. Coskun, R. Strong, D. Tullsen, and T. S. Rosing, “Evaluat-
ing the impact of job scheduling and power management on processor
lifetime for chip multiprocessors,” in Proc. SIGMETRICS/Performance,
2009, pp. 169–180.

[11] J. Donald and M. Martonosi, “Techniques for multicore thermal
management: Classification and new exploration,” in Proc. ISCA, 2006,
pp. 78–88.

[12] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-run: Lever-
aging SMT and CMP to manage power density through the operating
system,” in Proc. ASPLOS, 2004, pp. 260–270.

[13] K. Gross, K. Whisnant, and A. Urmanov, “Electronic prognostics through
continuous system telemetry,” in Proc. MFPT, Apr. 2006, pp. 53–62.

[14] K. C. Gross and K. E. Humenik, “Sequential probability ratio test for
nuclear plant component surveillance,” Nucl. Technol., vol. 93, no. 2,
pp. 131–137, Feb. 1991.

[15] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“Thermal-aware task allocation and scheduling for embedded systems,”
in Proc. DATE, 2005, pp. 898–899.

[16] C. Isci, A. Buyuktosunoglu, C. CHer, P. Bose, and M. Martonosi, “An
analysis of efficient multi-core global power management policies: Max-
imizing performance for a given power budget,” in Proc. MICRO, 2006,
pp. 347–358.

[17] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring
and prediction on real systems with application to dynamic power man-
agement,” in Proc. 39th MICRO, 2006, pp. 359–370.

[18] “Failure mechanisms and models for semiconductor devices,” JEDEC
Publication JEP122C. [Online]. Available: http://www.jedec.org

[19] A. Karlin, M. Manesse, L. McGeoch, and S. Owicki“Competitive ran-
domized algorithms for nonuniform problems,” Algorithmica, vol. 11,
no. 6, pp. 542–571, Jun. 1994.

[20] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A coordinated
hardware–software approach for dynamic thermal management,” in Proc.
DAC, 2006, pp. 548–553.

[21] A. Leon, L. Jinuk, K. Tam, W. Bryg, F. Schumacher, P. Kongetira,
D. Weisner, and A. Strong, “A power-efficient high-throughput 32-thread
SPARC processor,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 7–16,
Jan. 2007.

[22] System Identification: Theory for the User, 2nd ed. L. Ljung, Ed.
Englewood Cliffs, NJ: Prentice–Hall, 1999.

[23] R. McDougall, J. Mauro, and B. Gregg, Solaris Performance and Tools.
Upper Saddle River, NJ: Prentice–Hall, 2006.

[24] T. S. Rosing, K. Mihic, and G. D. Micheli, “Power and reliability manage-
ment of SoCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15,
no. 4, pp. 391–403, Apr. 2007.

[25] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano,
“Communication-aware allocation and scheduling framework for stream-
oriented multi-processor system-on-chip,” in Proc. DATE, 2006, pp. 3–8.

[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture for
visual computing,” in Proc. ACM SIGGRAPH, 2008, pp. 1–15.

[27] T. Sherwood, G. H. E. Perelman, and B. Calder, “Automatically character-
izing large scale program behavior,” in Proc. ASPLOS, 2002, pp. 45–57.

[28] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan, “Temperature-aware microarchitecture,” in Proc. ISCA, 2003,
pp. 2–13.

[29] SLAMD Distributed Load Engine. [Online]. Available: www.slamd.com

[30] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime
reliability-aware microprocessors,” in Proc. ISCA, 2004, pp. 276–287.

[31] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full-chip leakage
estimation considering power supply and temperature variations,” in Proc.
ISLPED, 2003, pp. 78–83.

[32] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” HP Lab.,
Palo Alto, CA, Tech. Rep. HPL-2006-86, 2006.

[33] M. Tremblay and S. Chaudhry, “A third-generation 65 nm 16-core 32-
thread plus 32-scout-thread CMT SPARC processor,” in Proc. ISSCC,
2008, pp. 82–83.

[34] A. Wald and J. Wolfowitz, “Optimum character of the sequential proba-
bility ratio test,” Ann. Math. Stat., vol. 19, no. 3, pp. 326–339, 1948.

[35] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal management
for multicore systems,” in Proc. DAC, Jun. 2008, pp. 734–739.

[36] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage selec-
tion for energy minimization,” in Proc. DAC, 2002, pp. 183–188.

Ayşe Kıvılcım Coşkun (S’06) received the B.S.
degree in microelectronics engineering, with a minor
degree in physics, from Sabanci University, Istanbul,
Turkey, in 2003 and the M.S. degree in computer en-
gineering from the Department of Computer Science
and Engineering, University of California San Diego,
La Jolla, where she is currently working toward the
Ph.D. degree.

She was a Student Researcher with Ecole
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, for two summers—in 2005 and 2008.

Since June 2006, she has been an Intern with Sun Microsystems. Her re-
search interests are temperature and energy management in multiprocessor sys-
tems, 3-D stack architectures, reliable computer architectures, and embedded
systems.

Ms. Coşkun has been a Reviewer for many prestigious IEEE and Association
for Computing Machinery conferences and journals and has served in the
review panel of the National Science Foundation.

Tajana S̆imunić Rosing (M’90) received the M.S.
degree in electrical engineering from the University
of Arizona, Tucson, and the M.S. degree in engineer-
ing management and the Ph.D. degree from Stanford
University, Stanford, CA, in 2001. Her Ph.D. topic
was dynamic management of power consumption.

She was a Senior Design Engineer with Altera
Corporation. She was a Full-Time Researcher with
HP Labs while working part-time at Stanford Univer-
sity. She is currently an Assistant Professor with the
Department of Computer Science and Engineering,

University of California San Diego, La Jolla. Her research interests are energy
efficient computing, embedded systems, and wireless systems.

Dr. Rosing has served at a number of technical paper committees and
has been an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS. She is currently an Associate Editor of IEEE TRANSACTIONS ON

MOBILE COMPUTING.

Kenny C. Gross (M’98) received the Ph.D. de-
gree in nuclear engineering from the University of
Cincinnati, Cincinnati, OH, in 1977.

He is a Distinguished Engineer with Sun Mi-
crosystems, San Diego, CA, leading the System Dy-
namics Characterization and Control team in Sun’s
Physical Sciences Research Center. He has 216 U.S.
patents—issued and pending—and 169 scientific
publications. He specializes in advanced pattern
recognition, continuous system telemetry, and dy-
namical system characterization for improving the

reliability, availability, and energy efficiency for computing systems.
Dr. Gross was the recipient of the 1998 R&D 100 Award for one of the top

100 technological innovations of that year, for an advanced statistical pattern
recognition technique (called multivariate state estimation technique) that was
originally developed for nuclear and aerospace applications and is now being
used for a variety of applications to improve quality, availability, and energy
efficiency for enterprise computer servers.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 12, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

