
Evaluating the Impact of Job Scheduling
and Power Management on Processor Lifetime

for Chip Multiprocessors

Ayse K. Coskun, Richard Strong, Dean M. Tullsen, and Tajana Simunic Rosing
Computer Science and Engineering—University of California, San Diego

{acoskun, rstrong, tullsen, tajana}@cs.ucsd.edu

ABSTRACT
Temperature-induced reliability issues are among the major chal-
lenges for multicore architectures. Thermal hot spots and ther-
mal cycles combine to degrade reliability. This research presents
new reliability-aware job scheduling and power management ap-
proaches for chip multiprocessors. Accurate evaluation of these
policies requires a novel simulation framework that can capture
architecture-level effects over tens of seconds or longer, while also
capturing thermal interactions among cores resulting from dynamic
scheduling policies. Using this framework and a set of new thermal
management policies, this work shows that techniques that offer
similar performance, energy, and even peak temperature can differ
significantly in their effects on the expected processor lifetime.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques
General Terms
Reliability

1. INTRODUCTION
The microprocessor industry has moved to chip multiprocessing

to enable the scaling of performance beyond the limits of unipro-
cessor execution. As the chip area shrinks, the power density grows
for new process technologies, causing higher temperatures. There-
fore, our success at finding ways to profitably use the available tran-
sistors has a cost, as we are now faced with significant challenges
in managing the power and thermal effects on these chips. High
temperatures increase the cost of cooling, degrade reliability, and
reduce performance.

A number of mechanisms for thermal control are currently avail-
able for multicore processors—including job scheduling, job mi-
gration, dynamic voltage and frequency scaling, etc. This paper
presents a framework for evaluating the effectiveness of these tech-
niques in various combinations, and presents effective new policies
for managing thermal effects.

The primary goal of managing temperature is to prevent pro-
cessor failure. This research is focused on hard failures (which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’09, June 15–19, 2009, Seattle, WA, USA.
Copyright 2009 ACM 978-1-60558-511-6/09/06 ...$5.00.

cause permanent damage to the underlying circuit), and the phys-
ical and electrical phenomena that induce them. Silicon devices
have a number of failure modes that are impacted by temperature,
and in some cases these modes are at odds: thermal management
techniques that reduce the rate of one failure mode may exacerbate
another. In fact, we show that techniques that are nearly identical
in performance, power, and even peak temperature can differ by a
factor of two in expected processor lifetime. Therefore, it is crit-
ical that we have a model of power, temperature, and particularly
reliability that incorporates all critical failure modes. This paper in-
troduces such an integrated modeling framework, shows that some
policies have unintended consequences when all sources of failure
are considered, and proposes new policies that provide significant
gains in processor lifetime with little loss in performance.

Most power and thermal management techniques have focused
primarily on controlling peak temperature. Although several types
of failures clearly scale with the peak temperature, that factor alone
does not accurately model all types of failures. Other failures, such
as cracks and fatigue failures, are created not by sustained high
temperatures, but rather by the repeated heating and cooling of sec-
tions of the processor. This phenomenon is referred to as thermal
cycling. The particular failures that our infrastructure models in-
clude electromigration, time dependent dielectric breakdown, and
the thermal cycling-induced errors mentioned above. Failing to in-
clude thermal cycling in the failure model can lead to misleading
results and highly suboptimal temperature mitigation strategies.

Modeling thermal cycles is difficult. The primary challenge is
the need to accurately model these systems over the timescales
which thermal cycles occur. This far exceeds the ability of cur-
rent processor modeling techniques, which typically simulate sys-
tem behavior at instruction or cycle level. Therefore, we intro-
duce new performance modeling mechanisms, integrated with our
power, thermal, and reliability models, that allows accurate model-
ing of execution behavior over tens or hundreds of seconds. Being
able to capture all the thermal failure effects is critical to an accu-
rate understanding of processor lifetime. We show, for example,
that some proposed mechanisms that appear to improve reliability
if thermal cycling effects are ignored actually have the opposite ef-
fect when thermal cycling is taken into account.

In this work, we define several new scheduling and power man-
agement policies. This research shows that the most critical factors
for increasing processor lifetime with acceptable performance are:
(1) The asymmetric thermal characteristics of the cores (cores in
the center having very different properties than those on the edges,
etc.); (2) The frequency of migration, which can both inhibit sleep
states and cause thermal cycling. Our most effective policy that em-
ploys voltage/frequency scaling, as well as our best one that does
not, both account for the location asymmetry and reduce the num-

ber of thread movements. We present new scheduling policies that
can decrease the failure rate by a factor of two (over naive manage-
ment), with a performance cost of less than 4%.

This paper is organized as follows. Section 2 discusses recent
work in thermal and reliability management. Section 3 describes
the integrated performance, power, thermal, and reliability sim-
ulation framework. We provide the details of the experimental
methodology in Section 4, and explain the thermal management
techniques in Section 5. A thorough evaluation of the techniques is
presented in Section 6, and we conclude in Section 7.

2. BACKGROUND AND RELATED WORK
In this section we provide an overview of previously proposed

dynamic thermal management (DTM) techniques, and also sim-
ulation methodologies for modeling performance, power and re-
liability. Many of the DTM techniques are reactive in nature—
depending on sensors to indicate temperatures beyond assigned
thresholds, and adapting the processor to either reduce or migrate
activity to bring the temperature down.

Brooks and Martonosi [4] introduced the concept of dynamic
thermal management in reaction to thermal measurements. Some
thermal management techniques stall execution or migrate compu-
tation to other units to control temperature. A well-known example
of such techniques is clock gating, which freezes all dynamic op-
erations until the thermal emergency is over, causing typically sig-
nificant performance cost. Clock gating is implemented in Intel’s
Pentium 4 [13].

Donald et al. [10] propose a dynamic thermal management tech-
nique for simultaneous multithreading (SMT) architectures. Their
technique selectively manages the execution of integer or floating
point intensive threads to prevent hot spots in the register files. To
identify integer or floating point intensive threads, hardware event
counters are sampled during execution. In activity migration, the
heat is spread by moving computation to a different location on
the die. Migration can happen at multiple levels: from one core to
another [14], or within a core [28].

Existing redundancy in a superscalar pipeline can be utilized for
controlling temperature [24]. In this technique, the power density
is controlled by balancing the utilization of issue queues, regis-
ter files and ALUs. Fetch gating alternates between fetching and
stalling fetch in order to reduce the activity and power density in
the pipeline. Skadron et al. introduce a feedback control loop to
control the duty cycle for fetch-gating [28].

Another class of thermal management techniques use dynamic
voltage and frequency scaling (DVFS, where the system is able to
alter the processor’s frequency and supply voltage dynamically) to
respond to thermal emergencies [28]. DVFS can use different num-
ber of steps for the global voltage and frequency settings, ranging
from two in Intel’s SpeedStep technology to 40 for the Intel XScale.

In hybrid thermal management [27], for mild levels of thermal
stress fetch gating (where we stall fetch, but allow other stages of
the pipeline to proceed with previously fetched instructions) is used
as the response mechanism. When the overhead of the fetch gat-
ing increases and instruction level parallelism (ILP) cannot suffi-
ciently hide the ill performance effect, DTM switches to DVFS.
Another hybrid DTM technique minimizes the performance im-
pact by proactive use of software techniques like thermal-aware
process scheduling combined with reactive use of hardware tech-
niques such as clock gating [19]. Donald, et al. evaluate various
combinations of DVFS, clock gating (i.e., stop-go) and migration
for managing the temperature of multicore processors [11]. They
show that distributed DVFS combined with thread migration pro-
vides the best performance among different alternatives.

Prior work has also investigated low overhead temperature-aware
task scheduling at the operating system level for multiprocessor
system-on-chips (MPSoC) [8], and the authors proposed an adap-
tive probabilistic policy addressing both temperature variations and
hot spots. The adaptive scheduling technique is combined with
thread migration or DVFS to further improve thermal behavior.
Murali, et al. [22] propose a technique that assigns frequencies to
different cores in an MPSoC to guarantee meeting the thermal con-
straints. In the offline phase, the set of feasible frequencies for
different temperature and workload constraints are calculated by
solving convex optimization models. At run time, the management
policy selects the appropriate frequency values that meet the cur-
rent workloads and operating conditions.

In Heat-and-Run [12], the authors propose a DTM solution for
chip multiprocessors with SMT cores. SMT thread assignment is
used to maximize processor resource utilization by co-scheduling
threads that use complementary resources before cooling is neces-
sary. In this way the cost of thread migration is reduced.

Few papers in the thermal management literature have taken re-
liability explicitly into account. Reliability management has been
mostly addressed previously as a way of optimizing the policies or
architecture at design-time. The Reliability-Aware Microprocessor
(RAMP) provides a reliability model at the architecture level for
temperature related intrinsic hard failures [30]. It analyzes the ef-
fects of application behavior on reliability and optimizes the archi-
tectural configuration and the voltage/frequency setting statically
(at design time) to meet the reliability target. Previous work also
shows that aggressive power management can adversely affect re-
liability due to fast thermal cycles, and optimization methods that
consider reliability constraints can provide energy savings while
improving the MPSoC lifetime [25].

To the best of our knowledge, a simulation framework to evalu-
ate the reliability impact of dynamic management policies in a fast
and accurate way has not been introduced previously. The Sim-
Point tool [26] also addresses the problem of long simulation times,
but it provides clustering analysis to identify a few representative
points that can be simulated to predict the performance of the en-
tire application. Instead, we want to capture the entire behavior
rather than summarize. However, we use SimPoint’s phase iden-
tification mechanism to capture a complete phase trace as part of
our simulation process. Biesbrouck, et al. [1] use individual pro-
gram phase information (a complete phase trace not unlike ours) to
guide multithreaded simulation. This is accomplished by creating
a Co-Phase Matrix, which represents the per-thread performance
for each potential combination of the single-threaded phase behav-
iors that occur when multiple programs are run together. Although
RAMP [30] also integrates an architecture-level performance sim-
ulator with a power model and a thermal simulator, it does not in-
clude the phase-based approach we introduced. Using our frame-
work, we are able to simulate much longer periods of real-life exe-
cution in reasonable simulation time.

3. A NOVEL FRAMEWORK FOR MULTI-
CORE RELIABILITY MODELING

This area of research presents new methodological challenges
that require tools and solutions radically different than traditional
architectural investigation. This section describes the entire simu-
lation infrastructure, but with a focus on the two most novel aspects
of the framework, which are the long time-frame performance mod-
eling and the integrated reliability model.

3.1 Overview
For a study such as this one, it is critical that we have a fully

Phase
Profile

(SimPoint)

Phase-Based
Performance

& Power
Modeling

(M5 / Wattch)

Database

Performance

/ Power
 Query Tool

 Scheduling
 Manager

Thermal
Modeling
(HotSpot)

Reliability
Computation

Figure 1: Design Flow

integrated performance, power, and thermal model of the entire
chip multiprocessor. This is because we are modeling interactive
scheduling techniques that observe the temperature and possibly
power characteristics of the processor and make scheduling deci-
sions accordingly. For example, it is impossible to completely de-
couple the performance and the thermal models. However, full in-
teractive architecture-level simulation is also not possible, as just
a single simulation at these time frames corresponding to several
minutes of real execution time could require months to complete.

Our simulation framework is shown in Figure 1. The perfor-
mance modeling front-end combines a full-program phase profile
combined with detailed architecture-level simulation of every dis-
tinct program phase at all possible frequency settings, including
both performance and power characteristics. This characteriza-
tion all goes into a database that can be queried as the full CMP
simulation progresses. In this way, we can model the effects of
changing frequency, stopping or migrating jobs, etc., without fur-
ther architecture-level simulation. After scheduling decisions are
made and the resulting performance and power data produced, we
can model time-varying temperature effects across the entire chip.
The temperature curves are then fed into the reliability models, pro-
ducing the expected failure rates.

3.2 Long-Term Performance Modeling
To accurately model the reliability of the system including ther-

mal cycling effects, we need to capture temporal thermal behavior
over time periods orders of magnitude longer than typically mod-
eled in architectural simulation. At the same time, we would like
to capture various types of effects that the architectural simula-
tion provides; e.g., workload-dependent utilization of specific ar-
chitectural structures and their impact on power and temperature,
the time-varying behavior of individual applications, etc. This re-
quires the development of new simulation tools and methodologies
not currently available.

We initially use SimPoint [26] to capture the phases of each
application. But instead of capturing one or a few representative
phases, we use it to capture a complete phase profile of each ap-
plication, beginning to end. Then, using the M5 performance sim-
ulator [2] integrated with the Wattch power modeling tool [5] and
utilizing a finite number of simulation samples for each phase, we
can reconstruct the power and execution properties of the complete
program. In fact, we do this for all voltage and frequency settings
available, so that we can reconstruct the complete program even in
the face of an arbitrary number of voltage/frequency changes.

We capture these program traces in a database which can be
queried by the Schedule Manager at distinct intervals. Given a
program start point, an interval length in cycles, and a frequency
setting, the query tool returns the average instructions per second
(IPC) and power levels across the interval, and the point in execu-
tion the program reaches at the end of the interval. Thus, at runtime,
the scheduling manager can make decisions about thread migra-
tion, thread stoppage, or voltage/frequency changes, and query the
database to model the precise effects.

This framework relies on two simplifying assumptions that are
critical to making this problem tractable. The first is that the time
constants over which temperature varies do not require us to fully
capture cycle-by-cycle variances in the temperature portion of the
model. The instruction-level variations are captured in the perfor-
mance model, but only summarized in the latter stages. This allows
us to replace the cycle-by-cycle data with a stair-step graph, pre-
senting performance and power behavior as constant at the average
values over individual intervals. This way, we capture the program
behavior with little loss of accuracy.

The second assumption is that the behavior of individual threads
is separable. This is accurate because we model systems with pri-
vate L2 caches, which is a likely architectural scenario in future
systems [21]. At 16 cores and above, the interconnect cost of a
shared cache would be extremely high. This assumption has been
used and demonstrated to be accurate even on research that does
not require this type of long simulation [20]. Even with the small
core counts in current multicores, the AMD dual-core and quad-
core Opteron, the IBM Power6, and the coming Intel Nehalem pro-
cessor all have private L1 and L2 caches. For shared L2 caches,
interactions between threads will be higher and system-level ac-
curacy will be reduced. However, recent research on multicore
caching has focused on reducing those interactions [16], and in the
extreme, the proposed techniques could be configured to make the
shared caches essentially act as private caches. Thus, even in that
scenario we can represent a reasonable system accurately. This as-
sumption makes it difficult to model parallel applications with any
significant communication between threads, if that communication
impacts the runtime characteristics of the application.

3.2.1 Phase Modeling
We used SimPoint [26] to identify the various phases within the

applications and to characterize complete program execution. A
program’s execution is divided into intervals of 100 million instruc-
tions. Once we assign each interval to a representative phase, we
represent a program’s execution by a Phase-ID trace [1]. Thus, at
any instruction during a program’s execution, we use this file to
determine the current phase and to identify points of transition be-
tween phases.

By running simulations at each phase point in M5 and compos-
ing performance/power statistics with the Phase-ID trace, we cre-
ate both a power and a performance trace. The scheduling manager
then accesses these traces via the query tool.

3.2.2 Power Modeling and Management
Power modeling requires coupling the execution traces obtained

from M5 with a tool that computes the power consumption for each
functional unit. This coupling converts the performance parame-
ters (e.g., cache accesses, branch predictions, etc.) into estimates
for transistor switching, and then the power model utilizes these
estimates for calculating the instantaneous power values.

Transistors consume power when they switch output values, but
they also leak power even when they do not switch. The former is
referred to as dynamic power, and historically has been the dom-
inant factor; however, as technology shrinks, leakage power be-
comes increasingly important. We utilized Wattch [5] for the dy-
namic power modeling of cores in our framework. We integrated
Wattch with M5 to provide dynamic and cycle accurate power mea-
surements for each application. To model power dissipation of L2
caches, we used CACTI [34] (an integrated memory performance,
area, leakage, and dynamic power model) and obtained the typi-
cal power consumption of a memory block with the given size and
properties, and then used these values throughout the simulation.

We developed a power model for 65nm by scaling the parameters
within Wattch to match published power values for 65nm technol-
ogy. The variation in dynamic power range we observed matches
the power distribution on a similar core [15], on which the major-
ity of applications had less than 16% power dissipation difference
from the other applications. Among the applications sampled in
that distribution were the SPEC suite, which we use in this study.

We compute the leakage power of CPU cores based on struc-
ture areas, temperature, and supply voltage. For the 65nm process
technology, we assume a leakage power density of 0.5W/mm2 at
383K [3]. To account for the temperature and voltage, we used the
second-order polynomial model proposed by Su, et al. [33]. This
model computes the change in leakage power for the given differ-
ential temperature and voltage values. We determined the coeffi-
cients in the polynomial model empirically to match the normalized
leakage values in the paper. This model is found to match closely
with measurements [33], and we found the leakage values produced
were in line with expected values (i.e., 30–40% of the total power
consumption) based on the technology.

One of the techniques we investigate to manage power is Dy-
namic Power Management (DPM). DPM puts cores in sleep state
to save energy. We implemented a fixed timeout policy [18], which
is one of the commonly used DPM policies. For each core, the pol-
icy waits for a timeout period when the core is idle, and then turns
off the core. This is to ensure that we do not turn off cores for very
short idle times, where turning off the core would not amortize the
cost of transitioning to and from the sleep state. The time period
to amortize the cost of going to sleep is called the breakeven time
(tbe). We assume a sleep state power value of 0.05W, and based on
the active and idle power dissipation values we computed the tbe

to be around 200ms. A simple and effective way to set the timeout
period is ttimeout = tbe [18].

3.3 Thread Management and Thermal Mod-
eling

We implemented a scheduling manager which enables the simu-
lation of a large array of thread management policies. The mech-
anisms available for managing temperature include adjusting the
frequency/voltage of a core (DVFS), putting an idle core into a low-
power sleep mode (DPM), migrating computation off of a hot core,
and policies that stop activity on a hot core (i.e., clock- or fetch-
gating). We present the specific policies we model in Section 5. In
each policy, the scheduling manager makes a set of decisions after
each scheduling interval, and it may incorporate performance and
thermal information from the prior interval. After making those
decisions for each thread and core, the scheduling manager then
queries the performance database to obtain the power and perfor-
mance behavior of each core over the next interval. Our simulation
sampling intervals (50 ms) are shorter than a scheduling interval, so
there would be multiple exchanges with the performance database
before another scheduling decision is made.

Since the scheduling manager keeps track of performance and
power information, it also has the responsibility of modeling com-
plex phenomena such as the delay from thread migrations. The
model simulates the effects on power and performance for the fol-
lowing phenomena: thread migration, DVFS, starting a new appli-
cation on a core, core sleep, and core wakeup. The assumptions we
made for several of the delays modeled are presented in Table 1, but
one of the more complex phenomena deserves special attention.

We modeled two aspects of the cost of thread migration among
cores. We measured the software overhead in M5’s full system
mode as the time for Linux to migrate a thread from one core to an-
other idle core and to start execution. This thread migration takes

Parameter Model Value
Sampling Interval 50ms
Thread Migration Delay syscall delay + cold start effects
DVFS Delay syscall delay + 20E-6s
Wakeup Delay 25ms
Application Startup Delay syscall delay + cold start effects
Transition Power 10W
(to and from sleep states)

Table 1: Delay and Power Model Assumptions

Parameter Value
Die Thickness 0.1mm

Core Area 14.44mm2

L2 area (total of 2 banks) 10.56mm2

Convection Capacitance 140 J/K
Convection Resistance 0.1 K/W

Table 2: HotSpot Parameters

less than 3.0 µs. We also attributed architecture overhead to cold
start effects in the branch predictor, caches, TLBs, etc. We mea-
sured cold start effects by inducing many random migrations for
each benchmark and computing the average loss in performance.
The average loss was 204 µs, but varied wildly by benchmark—
i.e., from 2 to 740 µs. Note that cold start effects dominate the
migration penalty. To address the highly variable overhead, we
modeled a distinct migration penalty for each benchmark.

Automated thermal modeling requires power traces for each unit
as input, in addition to the chip and package characteristics such
as die thickness, heat sink convection properties, etc. Therefore,
we feed the detailed power trace derived by the combination of the
scheduling manager and the performance/power database into the
thermal model. We modified HotSpot Version 4.0’s [28] (block
model) settings to model the thermal characteristics of the 16-core
die. We used the steady state temperature of each unit as the ini-
tial temperature values. We summarize the HotSpot parameters in
Table 2. We calculated the die characteristics based on the trends
reported for 65nm process technology [14].

The described methodology allows us to do full-program simu-
lation with simple lookups of sampled simulation data. This sac-
rifices some accuracy. However, the rate at which temperature
changes typically dwarfs the time of even complete phases, so we
would expect this technique to actually sacrifice little accuracy.
We validated our methodology by comparing the results with di-
rect M5/ Wattch power output. For each phase simulation point of
each SPEC benchmark, we ran M5 and Wattch for 500ms of sim-
ulated execution and gathered power statistics every 500µs. We
compared the power statistics of M5/Wattch and our framework,
and we found that our phase-based approach has 1.8% error over-
all. Table 3 shows the detailed results for the benchmarks. bzip2
with input set program had the largest average error of 3.0%.

The low error margin in our power computation methodology
translates to even lower error in temperature computation because
of the thermal time constants. To verify the accuracy of our method-
ology in terms of the temperature response, we experimented with
bzip2, as it has the highest power error margin. Figure 2 shows one
particular (worst case) data point—the temperature trace for a core
running bzip2 and then going to sleep state, on a system running
12 bzip2 threads. The “M5/Wattch” thermal trace corresponds to
the detailed power trace sampled at 500µs, and the “phase” trace
is the thermal output of running the same workload and using our
power computation methodology. We observe that the trace gener-
ated with our methodology closely matches the trace sampled at a

Benchmark Average Error Benchmark Average Error
parser 0.023 facerec 0.022
applu 0.021 gcc_166 0.020
art110 0.016 fma3d 0.024
swim 0.018 mcf 0.011
galgel 0.015 gap 0.020
twolf 0.009 vpr_route 0.017
mesa 0.027 ammp 0.015
lucas 0.009 bzip2_program 0.030
vortex1 0.018 equake 0.029
sixtrack 0.011 eon_rushmeier 0.018
apsi 0.014 crafty 0.018

Overall: 0.018

Table 3: Power Estimation Error of Our Front-End Tool Com-
pared with respect to M5/Wattch

��

��

��

��

� ��� ��� ��� ���

���������

�
�
�
	
�

�
�

�
��
�
��
��
��
��

	�
����

�����

Figure 2: Comparison of Temperature Responses for bzip2, Us-
ing Two Simulation Methodologies.

higher granularity. As bzip2 is one of the most power-variant ap-
plications, the rest of the benchmarks demonstrate even less differ-
ence. Because thermal cycling effects are insignificant unless the
temperature variations are more than a few degrees, these results
are more than accurate enough to capture both temperature-induced
and cycle-induced effects.

Once we generate a full thermal trace, we use this trace as input
to our reliability model described in the next section.

3.4 Reliability Modeling
Our work targets temperature-induced reliability problems. Our

simulation and modeling framework allows us to evaluate schedul-
ing policies based on their success in reducing the failure rate due to
thermal hot spots and thermal cycles. Achieving a lower failure rate
increases the mean-time-to-failure, which is the expected lifetime
of the circuit. The most commonly studied temperature-induced
intrinsic hard failure mechanisms are electromigration, time depen-
dent dielectric breakdown, and thermal cycling [17, 30].

Electromigration (EM) occurs in interconnects as a result of the
momentum transfer from electrons to ions that construct the inter-
connect lattice and leads to hard failures such as opens and shorts in
metal lines. The EM failure rate (λEM), based on Black’s model,
is given in Equation 1. In the equation, Ea is the activation energy,
k is the Boltzmann’s constant, T is the temperature, J and Jcrit are
the current density and the threshold current density, respectively,
and A0 is a material dependent constant. We represent the first half
of the equation with the term λ0

EM , which can be considered as a
constant (an average technology/circuit dependent value).

λEM = A0(J − Jcrit)
−ne(−Ea/kT) = λ0

EMe(−Ea/kT) (1)

Time dependent dielectric breakdown (TDDB) is a wear-out
mechanism of the gate dielectric, and failure occurs when a conduc-
tive path is formed in the dielectric. TDDB is caused by the electric
field and temperature, and the failure rate is defined in Equation 2.

Similar to the EM failure rate equation, we use λ0
TDDB to repre-

sent the first half of the equation. Both EM and TDDB failure rates
are exponentially dependent on temperature.

λTDDB = A0eγEox e(−Ea/kT) = λ0
TDDBe(−Ea/kT) (2)

Thermal cycling (TC) is caused by the large difference in ther-
mal expansion coefficients of metallic and dielectric materials, and
leads to cracks and other permanent failures. The thermal cycling
effect is modeled by the Coffin-Mason equation [17]. Slow ther-
mal cycles happen because of low frequency power changes such
as power on/off cycles. Fast cycles occur due to events such as
power management decisions. Although lower frequency cycles
have generally received more attention, recent work shows that
thermal cycles due to power or workload variations can also de-
grade reliability [23, 25]. The failure rate due to thermal cycling is
formulated as in Equation 3.

λTC = C0(∆T − ∆To)−qf (3)

In this equation, ∆T is the temperature cycling range. The elas-
tic portion of the thermal cycle is shown as ∆To. Elastic thermal
stress refers to reversible deformation occurring during a cycle, and
∆To should be subtracted from the total strain range. Typically,
∆To << ∆T [17], so the ∆To component can be dropped from
the equation. C0 is a material dependent constant, q is the Coffin-
Manson exponent, and f is the frequency of thermal cycles. Note
that the Coffin-Manson equation [17] computes the number of cy-
cles to failure. Therefore, the MTTF (in years) is the number of
cycles multiplied by the period of the cycles.

Computing the frequency of cycles is not straightforward in a
simulation of an irregular, dynamic system. To resolve this prob-
lem, we observed the recent temperature history on each core to
compute ∆T and f . We set the initial length of the history win-
dow to 5 seconds, and adjusted the length dynamically depending
on how many cycles were observed. For example, if no tempera-
ture cycles were observed in the last interval, we incremented the
history window length to capture slower cycles. ∆T is the temper-
ature differential we observed in the last interval. We set a higher
band of 80% and a lower band of 20% of the temperature range
recorded in the last interval, and counted the number of times the
temperature exceeded the higher band or went below the lower
band, and used that to calculate the number of cycles in this pe-
riod. In this way, we could account for the contribution of cycles
with varying temperature differentials and varying periods.

To combine the failure rates, we used the sum-of-failure-rates
model as in RAMP [30]. This model assumes that all the individ-
ual failure rates are independent. Mean-time-to-failure (MTTF) is
1/λ for constant failure rates; therefore, we averaged the failure
rate observed throughout the simulation and computed the corre-
sponding average MTTF. The average MTTF value reported for
65nm technology is 7 years [32].

For moderate temperatures at 65nm technology, Srinivasan, et
al. [31] demonstrate that the contribution of electromigration, di-
electric breakdown, and cycling to the overall failure rate are sim-
ilar to each other. This allows us to calibrate the constants in each
failure equation (λ0

EM , λ0
TDDB, and C0) to give a system MTTF

of 7 years at nominal temperature. We used the same constants
all throughout the experiments, which means that the relative im-
pact of different failure mechanisms might change depending on
the conditions. For example, if the temperature is high, then the
effect of EM or TDDB is higher than TC.

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

������
�

�
�
�

�	
�
�

��
�

�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

������

�
�

�	
�
�

��

�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������
�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�����
�

�
�

�	
�
�

��

�	��

�

Figure 3: Floorplan of the 16-core CPU

CPU Clock 2.0Ghz
ICache 64KB 2-way @1ns (2 cyc)
DCache 64KB 2-way @1ns (2 cyc)
L2Cache 2MB 8-way @10ns (20 cyc) (2 banks)
Memory Latency 100ns (200 cyc)
Branch Predictor 21264-style tournament predictor
Issue out-of-order
ROB 128 entry
Issue Width 4
Functional Units 4 IntAlu, 2 IntMult, 2 FPALU, 2 FPMultDiv
Physical Regs 128 Int, 128 FP
IQ entries 64
Vdd 1.2V
DVFS Settings 100%, 95%, 85%

Table 4: Architectural Parameters

We also examined thermal gradients, which refer to the temper-
ature differences among different locations on the die. However,
we do not explicitly include the effects of gradients in our over-
all reliability model. This is because although thermal gradients
can induce hard errors, their primary effect is on device latencies,
which are then manifested as an increase in timing errors, rather
than hard failures.

4. METHODOLOGY
This section describes other details of our simulation infrastruc-

ture that impact the results shown in the following sections. These,
in general, are details that are relatively independent of our frame-
work described in Section 3 and easily changed, such as the pro-
cessor core model, the workload, etc.

The M5 Simulator’s [2] out-of-order execution model is based
on SimpleScalar 3.0 [6], and provides a detailed model of an Alpha
21264 processor. Anticipating continued scaling of core counts,
the CPU we model is a 16-core multiprocessor manufactured at
65nm. The floorplan for this CPU is provided in Figure 3. Each
core has out-of-order issue, a private data cache, instruction cache,
L2 cache, and memory channels. Each core possesses three volt-
age and frequency settings for dynamic voltage/frequency scaling:
1.200V at 2.0GHz, 1.187V at 1.900GHz, and 1.06V at 1.7GHz
which represent DVFS settings of 100% (original), 95% (step-1),
and 85% (step-2), respectively. The architectural parameters of
each core are depicted in Table 4.

Creating representative workloads is a challenge in a 16-core en-
vironment. To assist this process, we classify all SPEC2K bench-
marks in terms of their variability and memory boundedness (dis-
cussed below). The distinction between CPU bound and memory

bound applications is particularly important in this study because
it impacts how performance scales as the frequency changes. We
model both homogeneous and heterogeneous workloads in terms
of the applications’ CPU or memory boundedness. As our exe-
cution model does not extend to parallel programs, the homoge-
neous workloads stand in for both homogeneous server-type work-
loads and parallel applications with few stalls for communication.
However, our homogeneous and heterogeneous multiprogrammed
workloads best represent a server environment, where the average
lifetime of the processor can significantly affect overall costs.

We use the ratio of memory-bus transactions to instructions as a
metric to classify applications as memory or CPU-bound, as sug-
gested by Wu et al. [35]. We classify applications along several
other dimensions. By constructing our workloads from applica-
tions with different phase variability, power savings potential and
CPU/memory boundedness, we seek to represent a wide range of
real world workloads.

Table 5 describes each workload. We model workloads with
12–16 threads—our CMP architecture is constructed to not have
thermal issues when lightly loaded, which is the expected behavior
for the next few processor generations. We construct both homo-
geneous and heterogeneous workloads, and CPU-bound, memory-
bound, and mixed workloads. The mixed workloads contain appli-
cations from both extremes, as well as some in the middle of our
categorization. In the time frames we model, several of the appli-
cations complete execution. In those cases, we continually restart
the application at the beginning to get consistent behavior across
the experiment.

A common performance metric on multicore platforms is a raw
count of IPC. However, this metric gives undeserved bias towards
high-IPC threads as performance may be increased by running more
CPU bound threads. To circumvent this difficulty, we used the Fair
Speedup Metric (FS) [7, 29]. FS is computed by finding the har-
monic mean of each thread’s speed-up over a baseline policy of
running the thread at the highest frequency and voltage.

Although some applications complete multiple times during our
simulations, we compute FS in such a way that the overall contri-
bution of each application is the same.

5. RELIABILITY-AWARE SCHEDULING
The simulation and modeling infrastructure described allows us

to design and evaluate several job allocation and thermal manage-
ment strategies. We divide these techniques into three categories,
those that change what is running on a core (via gating or migra-
tion), those that continue to execute the same thread but change
speed (via DVFS), and hybrids that combine the two types.

Each of these methods can be integrated with Dynamic Power
Management (DPM) as well. DPM turns off cores after they have
been idle for a given timeout period. The scheduling and thermal
management policies evaluate the system characteristics at every
scheduling period, and make a decision accordingly. In all cases,
the scheduling tick is set to every 200ms. The threshold tempera-
ture for all the temperature-triggered policies is 85oC. The default
policy keeps the initial assignment of jobs to cores fixed, and no
workload migration or voltage/frequency scaling occurs on the fly.

5.1 Migration and Gating Scheduling Policies
These techniques attempt to move computation off of hot cores,

either via migration or stalled execution as a response to a thermal
event (high temperature) or as a matter of policy.

Stop_Go [11] runs each core at the default (highest) frequency
and voltage setting until a core reaches the thermal threshold. At
this point, the core is stalled and the clock is gated to reduce power

Wkload name Description Cores Utilized Benchmarks
hom_16_cpu Homogeneous CPU Bound 16 sixtrack*16
hom_16_mem Homogeneous MEM Bound 16 mcf*16
het_16_cpu Heterogeneous CPU Bound 16 mesa*3, bzip2_program*3, crafty*2, eon_rushmeier*3, vortex1*2, sixtrack*3
het_16_mem Heterogeneous MEM Bound 16 mcf*4, art110*4, equake*3, gcc_166*3, swim*2
het_16_mix Heterogeneous MIX 16 mcf*2, mesa, art110, sixtrack*2, equake, bzip2_program, eon_rushmeier*2

swim, applu, twolf, crafty, apsi, lucas
het_12_cpu Heterogeneous CPU Bound 12 mesa*2, bzip2_program*3, crafty*2, eon_rushmeier*2, vortex1*1, sixtrack*2
het_14_cpu Heterogeneous CPU Bound 14 mesa*2, bzip2_program*3, crafty*2, eon_rushmeier*2, vortex1*2, sixtrack*3
het_12_mix Heterogeneous MIX 12 mcf*2, mesa, art110, sixtrack*2, eon_rushmeier*2, swim, crafty, apsi, lucas
het_14_mix Heterogeneous MIX 14 mcf*2, mesa, art110, sixtrack*2, equake, eon_rushmeier*2, swim, twolf,

crafty, apsi, lucas

Table 5: Workload Characteristics

�

�

���

�

����

�

���

�

���

�

���

�

����

�

����

�

��	�

�

�
�

�

����

�

����

�

���

�

���

�

���

�

����

�

���

Figure 4: Thread Assignment Strategy for Balance Location

consumption. If the core’s temperature goes below the temperature
threshold in the next sampling interval, execution continues. We
assume that each core can be clock-gated individually.

Migration sends jobs that have exceeded a thermal threshold to
the coolest core that has not been assigned a new thread during the
current scheduling period. If the coolest core selected is already
running a job, we swap the jobs among the hot and cool cores.
This technique can be thought of as an extension of core-hopping
or activity migration techniques [12, 14] to the case of many cores
and many threads.

Balance assigns jobs with the highest committed IPC during the
last interval (i.e., between the last two scheduling ticks) to cores
that have the lowest temperature. This scheduling idea represents a
more proactive form of migration in which threads are dynamically
assigned to locations before thermal thresholds necessitate action.

Balance_Location is similar to balance, but instead of assigning
the threads with the highest committed IPC to the coolest cores,
it assigns them to cores that are expected to be coolest based on
location. The cores on the corner locations of the floorplan are
expected to be the coolest; the remaining cores on the sides are ex-
pected to be the second coolest; and the cores in the center of the
floorplan are hottest. This is because the temperature of a core is
a result not only of activity on that core, but also on the activity
of its neighbors: higher number of active neighbors results in hot-
ter cores. Figure 4 shows the strategy we used to assign 16 jobs
(j1 to j16) to cores, where the jobs have decreasing committed IPC
(IPC1 > IPC2 > ... > IPC16). Whereas the optimal alloca-
tion of threads to cores might diverge from the allocation shown
in the figure depending on the IPC difference among threads, this
allocation generally results in temperature characteristics close to
the best allocation. With this scheme and 14 threads, for example,
cores labeled j15 and j16 in this figure would always be idle.

We also experimented with heuristics that choose a thread’s next
core allocation based on the temperature of the thread’s current
core (e.g., move the thread on the hottest to the coolest core), but
these heuristics performed poorly. In multicore architectures like
the one we model, location is a more significant factor than the

execution characteristics of the threads in determining core tem-
perature. Thus, those techniques ended up constantly moving jobs
between hot and cold cores.

5.2 Methods with Voltage/Frequency Scaling
This set of techniques rely exclusively on dynamic voltage and

frequency scaling to control thermal dynamics. They differ in how
and when DVFS is applied.

DVFS-Threshold (dvfs_t) reduces voltage and frequency (V/f)
one step at a time when a core’s temperature exceeds a thresh-
old. After reducing the V/f to the step-1 (95%) setting, if the core
is still above the threshold in the next scheduling interval, dvfs_t
uses the step-2 (85%) setting. When a core’s temperature is below
the threshold, the V/f setting is increased, again one step at each
scheduling interval.

DVFS-location (location_dvfs) uses a fixed V/f setting for each
core, and there is no dynamic scaling at runtime. As the center
cores tend to heat up more quickly, the four cores in the center of
the floorplan have the 85% setting. The corner cores are typically
the coolest cores, hence they use the 100% (original) V/f setting.
The rest of the cores (i.e., the eight remaining cores on the sides)
have the 95% setting.

DVFS-Performance (dvfs_perf) reduces the voltage and fre-
quency dynamically on a core depending on the memory bound-
edness of the current application phase. Previously, it was shown
that CPU-intensive tasks do not gain much in terms of energy sav-
ings from running at low frequencies; and conversely, it is benefi-
cial to run memory-bound tasks at a lower frequency [9], as their
performance is much more tolerant of frequency scaling. DVFS-
Performance seeks to reduce the overall chip temperature with min-
imal performance cost by proactively scaling back those applica-
tions that are least impacted.

To determine the memory-bound phases, we use a cycles-per-
instruction (CPI) based metric, µ, as defined by Dhiman et al. [9].
It compares the observed CPI with a potential CPI we might have
gotten without memory events. If the µ is near one, the applica-
tion is CPU-bound. If it is low, the application is memory-bound.
Note that µ can also take negative values. Analysis on our own
application set confirms that this metric tracks extremely well with
performance degradation in the presence of DVFS.

If the µ observed in the last interval is less than -0.8, then we use
the 85% setting, and we find less than 6% performance loss during
those phases. If −0.8 < µ < 0.5, we apply the 95% setting, which
induces less than 5% loss in performance. For µ > 0.5, we do
not perform any V/f scaling. When µ > 0.5, if we used the 85%
scaling for CPU-bound applications, the performance loss would
be in the range of 12–15%.

DVFS-Performance_Threshold (dvfs_perf_t) behaves exactly

like dvfs_perf unless a core reaches a thermal threshold. If the tem-
perature exceeds the threshold on a core, then the policy activates
dvfs_t to reduce the temperature on that core. After the core’s tem-
perature returns within threshold, we switch back to dvfs_perf.

This technique wins if by proactively slowing a thread that is
tolerant of frequency changes, it can enable a nearby thread that is
not so tolerant of frequency change to forego a DVFS slowdown.

5.3 Techniques Combining Workload Alloca-
tion and DVFS

In investigating the interaction of scheduling and DVFS policies,
we employ Balance_Location to represent the scheduling policies.
It has useful properties in terms of both reliability and performance.
It does only enough migration to find the best location for each
thread, then only migrates when application characteristics change.

Balance_Location & DVFS-Threshold works by initially us-
ing Balance_Location to assign potentially hotter threads to cooler
locations on the die. If this technique fails to keep a given core un-
der the specified threshold, the core employs dvfs_t until it is under
the thermal threshold.

Balance_Location & DVFS_Performance uses the Balance_-
Location policy to allocate jobs to cores, and runs dvfs_perf_t at the
same time to decide on the V/f settings of the cores.

Balance_Location & DVFS-Location assigns the location V/f
settings as in the location_dvfs policy to cores, and performs Balan-
ce_Location for allocating the threads. This tends to have the effect
of assigning the most memory-bound threads in the center zone,
which runs at the 85% setting.

Balance_Location uses IPC in assigning threads to locations.
When combined with DVFS, we must account for the V/f and its
effect on the measured IPC. Thus, if a core is running at a lower
V/f setting, we scale the measured IPC based on the average per-
formance hit observed at that V/f level.

6. EXPERIMENTAL RESULTS
In this section we demonstrate that the framework we proposed

allows us to evaluate a large set of previously proposed and new
scheduling algorithms, in terms of performance, power, tempera-
ture, and processor lifetime (reliability). We show that having a
fully integrated model, including a reliability model that accounts
for all the major causes of temperature-induced hard failures, sheds
some new light on CMP scheduling.

Section 5 identified a wide assortment of thread management
policies. In evaluating those policies in various execution scenar-
ios, this section attempts to sort out the key issues facing the de-
signer of a multicore thread management policy, such as: (1) how
to properly combine scheduling/migration policies, DVFS policies,
and DPM policies; (2) how to address peak temperature effects
without exacerbating thermal cycling; (3) whether to use reactive
or proactive DVFS policies; and (4) how to address thermal asym-
metries in the chip multiprocessor.

We group the experiments in four major categories. Section 6.1
looks at full core utilization scenarios with a varying number of
memory-bound and CPU-bound threads, using the five 16-thread
workloads from Table 5. For these experiments, threads are initially
placed on the cores randomly (i.e., with neither a clearly good or
bad initial allocation). Section 6.2 examines systems that are less
than fully utilized, with 12 or 14 jobs (i.e., 2 or 4 idle cores). Sec-
tion 6.3 takes a deeper look at the consequences of the initial alloca-
tion of idle cores. Finally, Section 6.4 investigates how reliability,
performance, and energy vary when the system has DPM capabil-
ities, and which schedulers best complement DPM to achieve the
desired trade-offs for reliability, energy, and performance.

To deliver a fair comparison, we present the energy and per-
formance of the policies in addition to reliability (mean-time-to-
failure). This is in lieu of trying to create a single artificial metric
that captures all three: such user-defined metrics are susceptible to
providing results that are specific to the assumptions made while
creating the metric or while weighing the individual parameters.

We normalized all results in the following sections with respect
to the default case of no thermal management (i.e., all threads run-
ning full speed on the initially assigned cores). Hence, the y-axes
in our MTTF, performance, temperature and energy plots demon-
strate the normalized values for these parameters. This allows us to
evaluate each policy on the same scale.

Srinivasan et al. [32] reported the average MTTF of the SPEC
suite simulated for 65nm at 1.0V of supply voltage as 7 years, and
our model is calibrated to the same value. However, if the reliabil-
ity model was re-calibrated to assume a shorter or longer MTTF,
the policies would still display the same trends; only the absolute
numbers would change depending on process technology, baseline
MTTF, and the system being modeled. Therefore, we show results
based on the % change in MTTF values, rather than absolute num-
bers, so that the dependence on the absolute calibration is minimal.

6.1 Full Core Utilization
Sections 6.1.1 to 6.1.3 examine the case where all cores are ac-

tively running threads.

6.1.1 Techniques Utilizing Workload Allocation
This section analyzes the workload allocation policies’ ability

to improve thermal characteristics. The policies that we analyzed
in this section include Stop_Go, Migration, Balance, and Balan-
ce_Location. The results in Figure 5, which are the average val-
ues for all the 16-thread workloads, indicate that Migration, Bal-
ance, and Balance_Location have little impact on reliability in this
scenario—this is because cores are fully utilized and most of our
workloads are highly homogeneous.

In the one heterogeneous workload, the effect is still small. In
that case, the Balance and Balance_Location policies each improve
reliability by 4.4% with minimal impact (less than 1%) on perfor-
mance, energy, and average temperature. Thus, in the absence of
idle cores, these policies are less effective than the ones with volt-
age and frequency scaling, which we discuss in Section 6.1.2.

The Stop_Go policy was notably different than the policies dis-
cussed above, as it has the ability to cool a core even in the absence
of idle cores. Stop_Go improved the MTTF by 65%, but with a
hefty 52% decrease in performance and a 69% increase in energy
consumption. Average temperature of the processor was reduced
by 8%. The Stop_Go policy is prone to creating large temperature
variations due to switching among active and idle states. However,
the frequency of stalling/resuming execution was high enough that
the temperature variations were of a relatively low magnitude, and
the reliability of the core was dominated by the thermal hot spots
only (i.e., no significant increase in cycling-based failures).

6.1.2 Techniques with Voltage/Frequency Scaling
Figure 6 shows the effect of the DVFS policies on reliability

when the cores are fully utilized. DVFS has a much more signifi-
cant impact than the workload allocation policies, due to its ability
to reduce temperature even in the face of full utilization.

In particular, we find several key insights in these results. First, it
is important to always keep an eye on peak temperature. dvfs_perf,
by selectively choosing which threads to scale, sacrifices very little
in performance, but does lag a bit behind in MTTF in comparison to
other DVFS policies. This is because it ignores thermal warnings.

Figure 5: Comparison of Workload Allocation Techniques

dvfs_perf_t reacts upon reaching a threshold as well, and as a result
loses some performance, but it has one of the lowest failure rates.

Second, we see significant benefits of proactive techniques over
traditional reactive techniques. It is interesting to note that the other
DVFS policies beat dvfs_t along all axes, which is particularly sur-
prising on the performance front. This is surprising because (1)
dvfs_t only scales when it has to, and (2) the other DVFS poli-
cies default to dvfs_t upon reaching the threshold temperature. The
reason that other DVFS policies perform better is that proactively
scaling a thread (whose performance is tolerant to scaling) reduces
the temperature in that area, and often prevents other neighboring
threads from reaching the threshold.

Third, we see that it is critical that our thread management policy
understands the inherent thermal asymmetry of the multicore sys-
tem (an asymmetry that will exist, in all likelihood, for any mul-
ticore greater than four cores). The policy that provides the best
balance among all three metrics is location_dvfs, with a failure rate
that is half of the baseline and a minimal performance loss (3.8%
of default). To further investigate this point, we compared loca-
tion_dvfs with homogeneous proactive scaling: all cores at 85%
DVFS and all cores at 95% DVFS. Among these DVFS techniques,
location_dvfs still demonstrate the best trade-off point. The 95%-
DVFS result improved performance over location_dvfs by less than
1%, but gave up 25% in processor lifetime. The 85%-DVFS in-
creased reliability significantly, but more than doubled the perfor-
mance cost compared to location_dvfs.

Our techniques are easily adapted to other sources of asymmetry,
such as process variations, as long as we can quantify the effects of
such variations on the thermal and power properties of each core.

6.1.3 Hybrid Techniques
We examine the hybrid techniques in this section, and show the

results in Figure 7. When we compare the hybrid policies against
the DVFS based policies, we see that DVFS-based policies are
improved little by combining them with job allocation policies.
Again, this is due to the limited gains from reorganizing running
threads on a fully utilized system.

6.2 Impact of Partial Utilization
It is expected that most multicore systems will be utilized less

than 100% most of the time. This is true especially for the CMPs
in the server domain. To evaluate the impact of scheduling mech-
anisms on reliability when some cores are idle, we used the 12
and 14 thread workloads described in Table 5: a CPU-bound and
a mixed CPU-bound/memory-bound workload for each of the 12
and 14 thread cases. The results represent the average of the CPU-
bound and mixed cases for the 12 and 14 thread experiments. At the
beginning of each simulation, we decided which cores to leave idle

Figure 6: Comparison of DVFS-Based Techniques

Figure 7: Comparison of Hybrid Techniques

by choosing the allocation with the lowest peak temperature. Once
we determined the active cores, we performed the initial placement
of threads on these cores randomly.

We first focus on the case with 14 active threads in Figure 8.
Although this utilization is close to the full utilization examples
explored in Section 6.1, the impact on the reliability of the various
policies changes significantly.

Policies with frequent workload re-allocation (i.e., Balance, Mi-
gration) result in poorer reliability with respect to the other poli-
cies. The Balance policy assigns jobs to cores based on tempera-
ture rather than location and often mistakes a core that is cool now
for a core that will stay cool in the future. Migration policies that
focus heavily on current temperatures are prone to this type of error.
The Migration result has the same issue. Policies that migrate more
than necessary have two distinct reliability disadvantages over the
other techniques. First, migrating too often will tend to thwart the
DPM manager, which does not put a core to sleep until it has been
idle for awhile. This increases the time cores spend running at hot-
ter temperatures. Second, migration causes thermal cycling. This
was the dominant cause of the low MTTF results, as the power
variations between idle and active states create cycles of a signifi-
cant magnitude. We examine the effects of migrations in detail in
Section 6.4.

The Stop_Go policy achieves 1.25 times improvement in MTTF.
However, this comes at the cost of a drastic performance and energy
cost. Although Stop_Go could be utilized effectively as a back-up
policy for thermal emergencies to guarantee that temperature does
not exceed a given peak value, it is inefficient if used frequently.

Among the DVFS policies, dvfs_perf achieves the best perfor-
mance of less than 2% degradation, while location_dvfs results in
the longest system life time with a 69% improvement. The hybrid
policy Balance_Location&location_dvfs seems to provide the best
trade-off point among the policies as it achieves almost the same
MTTF as location_dvfs with better performance and lower energy
consumption. The reason the hybrid scheduling policies still pro-
vide only small gains over DVFS policies alone is that we start the
experiments with an optimal placement of idle cores. We examine
this further in Section 6.3.

We expect that as technology scaling continues, the bandwidth
for performing voltage scaling will decrease due to the leakage
power and transistor threshold voltage limitations. This situation
will require other mechanisms for managing power and tempera-
ture. Balance_Location is our best candidate for workload alloca-

Figure 8: Effect of System Utilization (2 Idle Cores)

Figure 9: Effect of System Utilization (4 Idle Cores)

tion, as it significantly increases reliability with negligible perfor-
mance loss.

Figure 9 shows the 12-core utilization results. Because chip tem-
peratures are lower overall, the magnitude of potential reliability
gains is reduced. In fact, policies that only react to thermal thresh-
olds see no activity in this scenario (e.g., Migration, dvfs_t, etc.)
and they give the same results as the default policy, as the core
temperatures do not exceed the threshold. Policies that proactively
look for opportunities can still improve processor lifetime signifi-
cantly, and even Balance_Location provides small gains. Policies
that proactively migrate based on current temperature (Balance)
make mistakes and create thermal cycling.

6.3 Effect of Initial Idle Core Locations
In this section, we examine each policy’s ability to adapt to dif-

ferent initial workload mappings on the processor topology. For ex-
ample, what happens when the initial mapping of threads to cores
is highly suboptimal? This could happen with a topology-ignorant
scheduler (a likely scenario early on), or just because of jobs enter-
ing or leaving the system. We examined several ways of performing
the initial allocation: best possible, worst possible, and an in-order
placement of jobs on cores.

The best case, i.e., the case with the lowest peak temperature, for
12 active threads is leaving the center cores (5, 6, 9, 10) idle, and for
14 active threads when cores 6 and 9 are idle. The worst case oc-
curs when the corner cores are idle. Specifically, the worst case for
a system with 12 active cores is leaving the cores 0, 3, 12, and 15
idle. Similarly, when 14 cores are active, leaving two of the corner
cores on the opposite sides idle, such as cores 0 and 15, represent
the worst assignment. The in-order initial assignment allocates all
available threads on the cores starting from core 0 ascending. This
method initially leaves cores 12–15 idle when 12 threads are ac-
tive, and cores 14–15 idle with 14 threads are active. The in-order
method attempts to model a naive scheduler that assigns jobs to
cores using a first-available strategy.

We have observed notable differences in reliability between the

experiments. For example, the policy dvfs_perf_t experiences a
15% reduction in MTTF in comparison to the best allocation when
either the worst or in-order idle core locations are used. This de-
crease in reliability is comparable to the default policy’s 20% re-
duction in MTTF when using the in-order and worst case initial
assignments.

On the other hand, when dvfs_perf_t was combined with Bal-
ance_Location, we were able to achieve a level of reliability to
match that of the optimal initial placement. This indicates that
one of the major roles of the allocation policy is reassigning thread
topologies to assist other policies that optimally set core voltage
and frequency. Thus, in a real CMP system, it is critical to com-
bine a conservative migration technique (i.e., one which avoids un-
necessary migrations and does not create cycling) with DVFS tech-
niques. In the absence of an intelligent migration and scheduling
policy, it is difficult to avoid detrimental configurations over time.

6.4 Interactions with Power Management
Dynamic power management (DPM) takes advantage of pro-

longed core idleness to put the core into a sleep mode. In sleep,
the power consumption of the core is greatly diminished. Each of
the policies presented is compatible with dynamic power manage-
ment, but some are able to use DPM opportunities better. Taking
a closer look at two extremes, we first examine two policies, Mi-
gration and Balance_Location&location_dvfs for the het_12_mix
workload with 12 CPU and memory bound threads. Comparing the
thermal traces for Migration and Balance_Location&location_dvfs
(Figure 10), the Migration policy suffers significant thermal cy-
cle variations. For Migration, we demonstrate the thermal cycles
observed on two cores due to frequent re-allocation of workloads.
For the Balance_Location&location_dvfs policy, we show all the
cores’ thermal traces, and observe that each core’s temperature is
stable and lower than the threshold.

This stability along with a lower peak temperature results in
significantly higher reliability. Balance_Location&location_dvfs
turns out to be the best policy when paired with DPM, and it pro-
vides an increase in MTTF of 36% over Migration, while the per-
formance difference is only 1.5%. So we see that scheduling poli-
cies which effectively manage thread locations and DPM policies
can reduce processor temperatures and improve reliability. At the
same time, DPM can also lead to greater thermal cycling which
can counteract some of the MTTF gains that result from the lower
power levels of sleeping cores. The adverse effect of DPM on re-
liability due to thermal cycles is also emphasized in previous work
[25]. Thus, when we include the effects of thermal cycling fail-
ures, we observe that the traditional assumptions for finding op-
timal strategies are incomplete; it would be wise to re-design the
DPM policies with a reliability perspective.

Despite DPM’s possible impact on reliability, we do see (Fig-
ure 11) that even in the face of this cycling phenomena, DPM was
an overall win for all policies with the exception of Balance. In this
figure, we show the average results over heterogeneous CPU-bound
workloads. The reason that Balance received no benefit from using
DPM is its proactive mechanism that keeps moving hot threads to
colder cores. The result is that no core is idle long enough to trigger
the sleep mode. On the other end of the spectrum, Migration and
Balance_Location show gains of 27% and 20% in MTTF for the
average case respectively. The reliability improvement in DVFS-
based techniques are less prominent and range between 4%–8%
MTTF increase.

The policy Stop_Go receives a large benefit in energy from using
DPM mechanisms, reducing power consumption by 27% in com-
parison to the no-DPM case. If confronted with a design choice that

Figure 10: (a) Cycles Caused by the Migration Policy; (b) Stable Thermal Profile of Balance_Location & location_dvfs

Figure 11: MTTF and Energy Effects of DPM

requires the simplicity of Stop_Go, DPM could help regain much of
the energy lost from the constant start and stop of individual cores.

In Table 6 we show the number of migrations and number of V/f
setting changes per second for the policies to provide a more com-
plete understanding of the runtime behavior. The policies that are
not listed do not utilize migrations or DVFS. The columns marked
as ALL, corner, center, and side refer to the average number across
all cores, across only the corner cores, center cores and side cores,
respectively. The results are with DPM, and for the CPU-bound
heterogeneous workload with 14 threads (i.e., 2 idle cores). Mi-
gration has a significantly higher number of thread movements
in comparison to other policies: almost 3 times more than Bal-
ance_Location. The low migration count of Balance_Location is
a result of its ability to match the performance characteristics of
applications with the thermal behavior of cores. Compared to Bal-
ance_Location only, combining Balance_Location with DVFS in-
creases the frequency of migrations, as the temperature profile of
the cores vary more when their V/f settings are dynamically ad-
justed. Among the DVFS policies, dvfs_perf has the lowest number
of changes as it only alters the V/f setting of applications tolerant
to operating at a slower speed. Also, dvfs_perf_t reduces the fre-
quency of changes in comparison to dvfs_t as it proactively adjusts
the V/f setting and triggers the thermal threshold fewer times.

To better understand the tension between the different failure
mechanisms, Figure 12 presents a breakdown of the contribution
of different failure types to reliability. This figure demonstrates
the normalized average failure rate for our two best and two worst
policies (i.e., best/worst in terms of their average MTTF results).
The workload for this experiment is the heterogeneous CPU-bound
workload with 12 threads. Recall that the failure rate is inversely
proportional to MTTF. This figure shows that Balance and Mi-
gration reduce the probability of failures due to electromigration
(EM) and dielectric breakdown (TDDB). If we ignored the effect

Migrations
ALL corner center side

balance 4.76 4.75 5.00 4.65
migration 7.66 8.36 5.00 8.66
balance_loc 2.73 1.25 1.60 4.03
balance_loc& dvfs_t 3.65 3.85 2.10 4.33
balance_loc& dvfs_perf_t 3.64 3.86 2.10 4.30
balance_loc& loc_dvfs 3.54 3.70 2.20 4.12

V/f Setting Changes
dvfs_perf_t 2.98 2.60 0.80 4.20
dvfs_perf 0.83 1.40 0.00 1.00
dvfs_t 3.40 3.60 0.40 4.80
balance_loc& dvfs_t 3.64 4.40 1.10 4.53
balance_loc& dvfs_perf_t 3.58 4.00 2.00 4.20

Table 6: Number of Migrations and V/f Changes (per Second)

Figure 12: Contributions of Failure Mechanisms

of thermal cycles, we would conclude that reliability had increased.
However, because of the number of thread migrations, they create
large thermal cycles (TC). The Location_dvfs and the hybrid Bal-
ance_Location&Location_dvfs policies, on the other hand, reduce
the failure rates caused by thermal hot spots without introducing
a significant amount of thermal cycling failures. Note that in the
default case, as there is no workload re-allocation, temperature is
stable and no cycles are observed.

7. CONCLUSIONS
This paper analyzes how job scheduling and power management

policies affect system lifetime. It demonstrates a novel CMP simu-
lation framework which is able to simulate thermal dynamics over
far longer time periods than typical architectural simulators, at high
accuracy. It evaluates a number of techniques in terms of their ef-
fect on reliability, temperature, energy, and performance.

The results in this paper provide several key insights that will
serve us well in the design of future thermal management policies:

• It is critical to consider thermal cycling effects in addition to
peak temperature effects. We saw two policies that erroneously
appear to increase lifetime when thermal cycling was ignored.

• Thermal cycling is not a significant effect in a fully utilized sys-
tem, as the variance in power between running threads was not

shown to be sufficiently high to cause harmful effects. However,
when cores are idle, it is important that we manage the idle cores
in a way that does not exacerbate thermal cycling.

• Conservative policies that minimize migration not only reduce
thermal cycling, but also maximize our ability to exploit sleep
states via DPM.

• Understanding thermal asymmetries, which are either due to the
layout of the processor or due to process variation, is critical
to effective thermal management. Not understanding thermal
variance causes much unnecessary movement because we can-
not discern between a hot thread and a hot core. Understanding
the thermal variance allows us to employ an asymmetric thermal
policy that accounts for and even exploits that asymmetry.

• Proactive techniques that apply DVFS to frequency-tolerant ap-
plications can raise the performance of the entire system. This
is somewhat non-intuitive, as the frequency-tolerant applications
are also the coolest applications. However, by lowering overall
temperatures chip-wide, this allows the hot applications to run
longer without triggering thermal events.

In future work, we will be addressing reliability management of
multithreaded multicore systems. We will seek to provide a com-
prehensive understanding of how parallel workloads differ from
single-threaded benchmarks, and propose novel management tech-
niques to address the particular characteristics of such workloads.

Acknowledgment
The authors would like to thank Erez Zadok as well as all of the anonymous
reviewers for their help in improving the paper. This research was supported
in part by NSF grant CCF-0702349, GSRC, NSF GreenLight, Cisco, CNS,
Sun Microsystems, and UC Micro grant 06-198.

8. REFERENCES
[1] M. V. Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to

guide simultaneous multithreading simulation. In International
Symposium on Performance Analysis of Systems and Software, pages
45–56, 2004.

[2] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented
full-system simulation using M5. In Computer Architecture
Evaluation using Commercial Workloads (CAECW), 2003.

[3] P. Bose. Power-efficient microarchitectural choices at the early
design stage. In Keynote Address, Workshop on Power-Aware
Computer Systems, 2003.

[4] D. Brooks and M. Martonosi. Dynamic thermal management for
high-performance microprocessors. In High-Performance Computer
Architecture (HPCA), pages 171–182, 2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In International
Symposium on Computer architecture, pages 83–94, 2000.

[6] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin,
Madison, June 1997.

[7] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In ACM International Conference on
Supercomputing, pages 242–252, 2007.

[8] A. K. Coskun, T. Rosing, and K. Whisnant. Temperature aware task
scheduling in MPSoCs. In Design Autom. and Test in Europe
(DATE), pages 1659–1664, 2007.

[9] G. Dhiman and T. Rosing. Dynamic voltage frequency scaling for
multi-tasking systems using online learning. In International
Symposium on Low Power Electronic Design (ISLPED), pages
207–212, 2007.

[10] J. Donald and M. Martonosi. Leveraging simultaneous
multithreading for adaptive thermal control. In Second Workshop on
Temperature-Aware Computer Systems, 2005.

[11] J. Donald and M. Martonosi. Techniques for multicore thermal
management: Classification and new exploration. In International
Symposium on Computer Architecture (ISCA), pages 78–88, 2006.

[12] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-Run:
leveraging SMT and CMP to manage power density through the
operating system. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 260–270, 2004.

[13] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing the
impact of increasing microprocessor power consumption. In Intel
Technology Journal, 2001.

[14] S. Heo, K. Barr, and K. Asanovic. Reducing power density through
activity migration. In ISLPED, pages 217–222, 2003.

[15] Intel pentium 4 processor in the 423-pin package thermal design
guidelines. Technical Report 249203-001, Intel, November 2000.

[16] R. Iyer et al. QoS policies and architecture for cache/memory in
CMP platforms. In ACM Sigmetrics, pages 25–36, 2007.

[17] Failure mechanisms and models for semiconductor devices, JEDEC
publication JEP122C. http://www.jedec.org.

[18] A. Karlin, M. Manesse, L. McGeoch, and S. Owicki. Competitive
randomized algorithms for nonuniform problems. In Algorithmica,
pages 542–571, 1994.

[19] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. HybDTM: a
coordinated hardware-software approach for dynamic thermal
management. In Design Automation Conference (DAC), pages
548–553, 2006.

[20] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture
optimization for heterogeneous chip multiprocessors. In Parallel
Architectures and Compilation Techniques (PACT), pages 23–32,
2006.

[21] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in
multi-core architectures: Understanding mechanisms, overheads and
scaling. In ISCA, pages 408–419, 2005.

[22] S. Murali et al. Temperature control of high-performance multicore
platforms using convex optimization. In Design Autom. and Test in
Europe (DATE), pages 110–115, 2008.

[23] H. Nguyen. Multilevel interconnect reliability on the effects of
electro-thermomechanical stresses. Ph.D. dissertation, University of
Twente, Netherlands, 2004.

[24] M. Powell, E. Schuchman, and T. Vijaykumar. Balancing resource
utilization to mitigate power density in processor pipelines. In
International Symposium on Microarchitecture, pages 294–304,
2005.

[25] T. S. Rosing, K. Mihic, and G. D. Micheli. Power and reliability
management of SoCs. In IEEE Transactions on VLSI, 15(4), pages
391–403, April 2007.

[26] T. Sherwood, G. H. E. Perelman, and B. Calder. Automatically
characterizing large scale program behavior. In ASPLOS, 2002.

[27] K. Skadron. Hybrid architectural dynamic thermal management. In
Design Autom. and Test in Europe (DATE), pages 10–15, 2004.

[28] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. Temperature-aware microarchitecture. In ISCA, pages
2–13, 2003.

[29] J. Smith. Characterizing computer performance with a single
number. In Communication of ACM, 31(10), pages 1202–1206, 1988.

[30] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for
lifetime reliability-aware microprocessors. In ISCA, pages 276–287,
2004.

[31] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of
technology scaling on lifetime reliability. In International Conference
on Dependable Systems and Networks (DSN), pages 177–186, 2004.

[32] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Lifetime
reliability: Toward an architectural solution. In IEEE Micro,
25(3):70–80, 2005.

[33] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif. Full-chip leakage
estimation considering power supply and temperature variations. In
ISLPED, pages 78–83, 2003.

[34] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical
Report HPL-2006-86, HP Laboratories Palo Alto, 2006.

[35] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks. A dynamic compilation framework for
controlling microprocessor energy and performance. In International
Symposium on Microarchitecture, pages 271–282, 2005.

