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Abstract— In deep submicron circuits, thermal hot spots and high
temperature gradients increase the cooling costs, and degrade reliability
and performance. In this paper, we propose a low-cost temperature
management strategy for multicore systems to reduce the adverse effects
of hot spots and temperature variations. Our technique utilizes online
learning to select the best policy for the current workload characteristics
among a given set of expert policies. We achieve 20% and 60% average
decrease in the frequency of hot spots and thermal cycles respectively
in comparison to the best performing expert, and reduce the spatial
gradients to below 5%.

Categories and Subject Descriptors: B.8 [Performance and Reliabil-
ity]: General; C.4 [Computer Systems Organization]: Performance of
Systems.
General Terms: Management, Design, Reliability.
Keywords: Thermal Management, Multiprocessor, Online Learning.

I. INTRODUCTION

As power consumption of chips has been increasing significantly
due to technology scaling, thermal hot spots and high temperature
gradients have become major challenges in multiprocessor system-on-
a-chip (MPSoC) design, as they degrade reliability and performance,
increase cooling costs and complicate circuit design. The number of
cores on a single die increases with new generations of computers,
requiring strategies to address the temperature induced challenges in
a cost-effective way.

Thermal hot spots increase the cooling costs, and in addition,
accelerate failure mechanisms such as electromigration, stress mi-
gration, and dielectric breakdown, which cause permanent device
failures [9]. Leakage is exponentially related to temperature, so high
temperatures increase leakage power. Temperature also affects per-
formance, as the effective operating speed of devices decreases with
higher temperatures. For these reasons, dynamic thermal management
techniques that have been proposed in the literature generally focus
on keeping the temperature below a critical threshold (e.g. [15], [4]).
Such techniques prevent thermal hot spots typically at a considerable
performance cost. Moreover, as dynamic thermal management tech-
niques do not focus on balancing the temperature across the chip, they
can create large spatial variations in temperature. Spatial temperature
variations lead to performance degradation or logic failures, and
decrease the efficiency of cooling. In process technologies below 0.13
µm, reliability issues arise due to negative bias temperature instability
(NBTI) and hot carrier injection (HCI) [10]. Global clock networks
are especially vulnerable to spatial variations due to clock skew [1].
Another issue with the dynamic thermal or power management
methods is that, they do not prevent thermal cycling. High magnitude
and frequency of thermal cycles (i.e. temporal fluctuations) cause
package fatigue and plastic deformations, and lead to permanent
failures [9]. Thermal cycling gets accelerated by dynamic power
management (DPM) methods that turn off cores in addition to low-
frequency power changes (i.e. system power on/off) [13].
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Some of the reliability challenges discussed above have been
addressed to some extent by techniques that perform reliability aware
voltage/frequency selection at design stage [17], or that optimize
the power management policy for a given reliability constraint [13].
However, as workload is hard to predict a priori for most systems,
adaptive management strategies are required. Dynamic temperature
aware scheduling techniques (e.g. [2]) proposed previously are able
to reduce temporal and spatial variations as well as hot spots in
comparison to conventional thermal or power management for the
average case. However they do not guarantee to be effective for all
execution periods, considering the trade-off between temperature and
performance varies for different workloads.

The policies proposed in the literature have different optimization
goals; thus, their advantages vary in terms of saving power, achieving
better temperature profiles or increasing performance. For example,
DPM can reduce the thermal hot spots while saving power. How-
ever, when there are frequent workload arrivals, it can significantly
increase thermal cycling. Migrating threads upon reaching a critical
temperature achieves significant reduction in hot spots. On the other
hand, this strategy does not balance the workload across the chip.

In this work, we propose using online learning to adapt to dy-
namically changing workload, and to select a policy that provides
the desired trade-off between performance and thermal profile. Our
technique keeps a set of expert policies, representative of the recently
proposed policies in the literature, i.e. dynamic power management
(DPM), dynamic voltage-frequency scaling (DVS), thread migration,
load balancing and Adaptive-Random [2]. Other expert policies can
be integrated as needed. During execution, we monitor the runtime
behavior of the currently active expert. After each time interval, we
compute a multivariate loss function, which provides feedback on
the temperature profile and the performance cost. The evaluation
of the temperature profile takes into account the hot spots, thermal
cycles and spatial gradients. We use the switching experts framework
proposed in [5] for deciding which expert to run at each interval.
Our technique is guaranteed to converge to the policy satisfying the
desired trade-offs for the current workload. In our experiments we
used an UltraSPARC T1 [12]. The thermal behavior and performance
of our technique are evaluated using real life workloads as measured
by the Continuous System Telemetry Harness (CSTH) [7]. We
achieve 20% and 60% decrease on average in the frequency of hot
spots and thermal cycles, respectively, in comparison to the best
performing policy, and reduce the spatial gradients to below 5%.

II. RELATED WORK

In this section, we briefly discuss the techniques for multicore
scheduling and thermal management. Several power and performance
aware MPSoC scheduling techniques have been proposed in the
literature (e.g. [14] and [19]). As power-aware policies are not
always sufficient to prevent temperature induced problems, static and
dynamic thermal management methods have been proposed. Static
methods for thermal and reliability management are based on thermal
characterization at design time. RAMP provides an architecture level
reliability model for temperature related intrinsic hard failures [17],
and optimizes the architectural configuration and voltage/frequency
setting for reliable design. In [13], it is shown that aggressive power
management can adversely affect reliability due to fast thermal cycles,



and the authors propose an optimization method for MPSoCs that
saves power while meeting reliability constraints.

Dynamic thermal management controls over-heating by keeping
the temperature below a critical threshold. Computation migration
and fetch toggling are examples of such techniques [15]. Heat-and-
Run performs temperature-aware thread assignment and migration
for multicore multithreaded systems [6]. Kumar et al. propose a
hybrid method that coordinates clock gating and software thermal
management techniques such as temperature-aware priority man-
agement [11]. The multicore thermal management method intro-
duced in [4] combines distributed DVS with process migration. The
temperature-aware task scheduling method proposed in [2] achieves
better thermal profiles than convention thermal management tech-
niques without introducing a noticeable impact on performance.

The previously proposed power or thermal management techniques
have different optimization goals and therefore work efficiently for
different types of workload. In this work we introduce an online
learning method that converges to the policy that provides the desired
temperature/performance trade-off for the current workload. During
online evaluation, we take both the thermal profile and performance
into account simultaneously. This way, we demonstrate lower and
more stable temperature profiles and further improvements to overall
energy utilization at low performance cost. Previously, Dhiman et
al. has utilized online learning for performing dynamic voltage
scaling [3]. As opposed to their online learning algorithm, which
evaluates each expert at every scheduler tick, we instead evaluate only
a subset of policies responsible for selecting which expert to run. In
addition, we focus on optimizing for temperature and performance,
while the focus of [3] is reducing power consumption.

III. ONLINE LEARNING FOR TEMPERATURE MANAGEMENT

A number of strategies exist to manage temperature, reduce power
consumption or to perform task allocation in a temperature or power-
aware manner. In most systems, workload varies dynamically at
runtime, which requires using adaptive policies to find the desired
trade-off between temperature and performance. In this work we
propose a novel technique to adapt the thermal management policy to
the current workload characteristics. The online learning framework
we use, which is based on the switching experts problem introduced
in [5], converges to the best policy for the current system dynamics
from a given set of policies. In the switching experts problem,
there are N expert policies. Also, a set of M higher level experts,
called specialists are defined. A specialist is a higher level policy
that determines which expert should run for the next interval. For
example, one specialist can choose to run DPM for all intervals,
while another one can select a different expert depending on whether
the system has high, medium or low utilization.

The pseudo-code for our algorithm is provided in Table I. In our
technique, at any given time, only one of the experts is active. The
decision to switch to another expert (or continue with the current one)
is performed at every interval by the specialist currently responsible
for decision making. We maintain weight vectors for the specialists,
which get updated at every interval based on the observed loss. Loss
is a non-negative value demonstrating how well a policy performs in
terms of the given objective. At every decision point, the specialist
with the highest weight factor is selected by the learning algorithm.
This way, our technique guarantees converging to the best available
policy for the current workload.

We define N experts and M specialists. Our algorithm maintains
a weight vector for all the specialists, w =< w1, w2, ...wM >. Each
weight wi represents the suitability of the specialist to the current
workload characteristics. We initialize the wi values by assigning
equal weights, wi = 1/M . As shown in the pseudocode, the weights

TABLE I. PSEUDO-CODE FOR THE ONLINE LEARNING ALGORITHM

Initialize wi = 1/M for i = {1, 2, ...M}
Do for t = 1, 2, ..., U

1. Pick the specialist with the highest wi, and
run the expert policy determined by that specialist

2. Compute the loss function for the last interval (Lt)
3. Update the weights for the specialists associated

with the active expert:
wnew

i = wold
i e−n·Lt if active

wnew
i = wold

i otherwise

are updated based on Lt, the loss observed during the last interval. At
each iteration, we only update the weights of the specialists that are
associated with the active ground expert. For example, if the active
expert policy has been DPM for the last interval, we only update
the weights of the specialists that would have selected DPM for that
interval. Equation 1 shows the update function. We use an exponential
function to update the weights as in [8]. Lt is the total loss computed
during the last interval, i.e. [t−1, t), and n is the learning rate. How
to select n is explained in detail in [8]. In our experiments, we set
n = 0.75. As the new weight, wnew

i , depends on the previous weight,
wold

i , weight update equation contains the history of updates.

wnew
i = wold

i e−n·Lt (1)

Our loss function takes both temperature and performance char-
acteristics into account. For evaluating the reliability impact of hot
spots, observing only the peak or average temperature does not
provide a good intuition of the thermal behavior. For this reason,
we use the “time spent above temperature threshold” metric (tHS)
to capture the impact of hot spots. For thermal cycles, on each core
we compute the percentage of time that cycles larger than a given
∆T value are observed (tTC ). Similarly, for spatial gradients, we
calculate the time during which large gradients occur (tSP ).

The components of the loss function are provided in Table II. To
compute the total loss, we normalize each term and then sum all the
terms. We use the “Load Average” metric (i.e. LA in Table II) to
evaluate the performance cost. We did not use metrics such as IPC
or CPI since they are application dependent, and it is not possible to
set a threshold value to compute the performance loss. Load average
is the sum of run queue length and number of jobs currently running.
Therefore, if this number is low (i.e. typically below 3 or 5, depending
on the system), the response time of the system is fast. If this number
is getting higher, it means that the performance is getting worse. LAc

and LAt are the load average for the last interval and the threshold
load average, respectively.

TABLE II. LOSS FUNCTION

Category Amount of Loss

Hot Spots tHS (if tHS > 0); 0 (ow∗) ∗otherwise
Thermal Cycles tTC (if tTC > 0); 0 (ow)
Spatial Gradients tSP (if tSP > 0); 0 (ow)
Performance (LAc − LAt) (if LAc > LAt); 0 (ow)

Convergence Bound: Another method for selecting experts is using
insomniac algorithms, where there is a master algorithm that evaluates
a given set of experts by comparing the performance of each expert to
that of the best expert. The online learning technique proposed in [3]
for DVS is an example of insomniac learning. However for thermal
management, evaluating each expert at every interval is infeasible.
Temperature of a unit is dependent on the instant power consumption
of that unit, as well as the recent temperature history and the power
consumption of neighboring units. Therefore, evaluating each expert’s
thermal behavior and performance accurately would require running
each expert on a separate system in parallel. This is obviously an
extremely inefficient approach. Thus, we have utilized the specialist



approach proposed for the switching experts problem in [5]. Our
algorithm evaluates a subset of active specialists at each iteration.

The conventional solutions to the switching experts problem re-
quire evaluating each of the exponentially many specialists at every
iteration (such as in [8]), which is an insomniac learning approach.
Provided that U (number of iterations in the sequence) and k (number
of intervals) are known, if we could keep a weight for all possible
exponentially many specialists, the total loss with respect to the best
specialist is upper bounded by k lnN + (k − 1)ln(U/k) [5]. This
bound is a very tight bound for this problem; however, this algorithm
is computationally very costly. The switching experts framework
proposed in [5] overcomes this problem by constructing specialists
for each expert and interval, and by evaluating only the active
specialists at each iteration. The bound achieved by the specialist
algorithm is k(lnU + o(lnU)) larger than the bound above. As
N << U , this bound gives a convergence rate of O(k lnU/U).

IV. EXPERIMENTAL RESULTS

Our experimental results are based on the UltraSPARC T1 pro-
cessor (floorplan shown in [12]). The average power consumption
(including leakage) and area distribution of the units on the chip are
provided in [2]. In our experiments, we leveraged the Continuous
System Telemetry Harness (CSTH) [7] to gather detailed workload
characteristics of real applications. We sampled the utilization per-
centage for each hardware thread at every second using mpstat.
Half an hour long traces were collected for each benchmark. To
determine the active/idle time slots of cores more accurately, we
recorded the length of user and kernel threads using DTrace. We
also recorded the cache misses and floating point (FP) instructions
(per 100K instructions) using cpustat.

We ran web server, database, compiler (gcc), compression (gzip)
and multimedia benchmarks. To generate web server workload, we
ran SLAMD [16] with 20 and 40 threads to achieve medium and high
utilization, respectively. For database applications, we tested MySQL
using sysbench for a table with 1 million rows and 100 threads.
For multimedia benchmarks, we ran MPlayer (integer) with 640x272
video files. We summarize the details of our benchmarks in Table III.

TABLE III. WORKLOAD CHARACTERISTICS

Benchmark Avg.Util(%) L2 I-Miss L2 D-Miss FP instr

1 Web-med 53.12 12.9 167.7 31.2
2 Web-high 92.87 67.6 288.7 31.2
3 Database 17.75 6.5 102.3 5.9
4 Web & DB 75.12 21.5 115.3 24.1
5 gcc 15.25 31.7 96.2 18.1
6 gzip 9 2 57 0.2
7 MPlayer 6.5 9.6 136 1
8 MPl.&Web 26.62 9.1 66.8 29.9

Peak power consumption of SPARC is similar to the average
power [12], so we assumed that the instantaneous power consumption
is equal to the average power at each state (active, idle, sleep). We
estimated the power at lower voltage levels based on the equation
P ∝ f.V 2. We assumed three built-in voltage/frequency settings
in our simulations. To account for the leakage power, we used the
polynomial model proposed in [18], and determined the coefficients
in the model empirically to match the normalized leakage values
in [18]. We used a sleep state power of 0.02 Watts, which is estimated
based on sleep power of similar cores. For the crossbar, we used a
simple power model, where the power consumption scales according
to the number of active cores and memory accesses.

We used HotSpot 4.0 [15] for thermal modeling, and modified the
simulator with UltraSPARC T1 characteristics. Thermal simulations
were sampled at every 100 ms, which provided a good precision. We
initialized HotSpot with steady state temperature.

We select a set of expert policies representative of the recently
proposed power and thermal management approaches, covering a
variety of trade-off points among temperature, performance and
power. The Default policy is a performance-oriented policy similar
to schedulers in modern OSes. It tries to allocate threads to the
same core they ran previously in order to optimize memory accesses.
Load balancing is performed if there is congestion. Dynamic power
management (DPM) turns off idle cores based on a fixed timeout
strategy. DVS & DPM applies a dynamic voltage/frequency scaling
policy which reduces the V/f level depending on the utilization
observed on each core in the last interval. Idle cores are turned off
using a fixed timeout policy as in DPM. Migration moves threads
from hot cores to cooler cores when a temperature threshold is
exceeded. DPM, DVS & DPM and Migration run together with the
Default scheduling policy. We also use the Adaptive-Random policy
proposed in [2] as one of the experts. Instead of keeping a set of
specialists covering all possible segmentations of experts, we use
the following specialists. In addition to the specialists that run the
same expert all the time (i.e. Default, DPM, DPM&DVS, Migration,
Adaptive-Random), to provide faster convergence to the best available
policy, we developed specialists that select an expert based on system
characteristics. These specialists are:

• Utilization based: We observe the average system utilization and
select the expert based on the following rules:
* High Util.: Migration
* Medium Util.: Adaptive-Random and DVS&DPM
* Low Util.: DPM

• Temperature based: Based on the thermal profile observed in the
last interval, we select the policy for the next interval.
* Hot spots or variations: Adaptive-Random
* Otherwise: Default policy

The loss function has four components that address hot spots,
cycles, spatial gradients and performance. Figure 1-(a) shows how
weighing these components in the loss function changes the frequency
each expert is selected. “All equal” assigns equal weights to all com-
ponents, “P-high” assigns a higher weight to the performance loss,
“P-low” assigns higher weight to temperature-related loss and “w/o
gradients” compute loss based only on hot spots and performance,
without considering gradients. It can be seen that “P-high” selects
the policies with minimal performance cost more frequently than
others, whereas the “all equal” setting favors Adaptive-Random and
Migration more often. DPM and DVS&DPM are typically selected
less often than other experts, as they create cycles. In the “w/o
gradients” setting, we see a significant increase in the frequencies
of selecting DPM and DVS&DPM. In the rest of our evaluation, we
use the “all equal” loss function, as we want to minimize all the
temperature-induced problems at low performance cost.

In our experimental evaluation, the hot spot results demonstrate
the percentage of time spent above 85oC, which is considered
a high temperature for our system. The spatial gradient results
summarize the percentage of time that gradients above 15oC occur, as
gradients of 15−20oC start causing clock skew and delay issues [1].
The spatial distribution is calculated by evaluating the temperature
difference between hottest and coolest cores at each sampling interval.
For metallic structures, assuming the same frequency of thermal
cycles, when ∆T increases from 10 to 20oC, failures happen 16
times more frequently [9]. So, we report the temporal fluctuations of
magnitude above 20oC. ∆T values we report are computed over a
sliding window and averaged over all cores.

In Figure 1-(b), we demonstrate how each expert behaves in terms
of handling the thermal hot spots and temperature variations, and
we compare their performance. These results are averaged over the
benchmarks in Table III. We only show thermal cycling results for



Fig. 1. (a) Effect of Loss Function on Expert Selection, (b) Evaluation of
Expert Strategies

the experts with DPM, as going into the sleep state causes cycles
with high magnitudes. We normalized all values to [0,1] for the
sake of comparison. In the figure, we observe that our experts have
different strengths. For example, Migration reduces the thermal
hot spots more efficiently than other techniques, however it causes
higher performance cost. DPM decreases the hot spots and does not
have high performance cost, but it causes cycles and gradients.

To show how the online learning method adapts to varying
workload behavior and compare it against other strategies, we ran
sequences of the benchmarks in Table III. In our results, the sequences
are identified by the numbers associated with each benchmark as
shown in Table IV. For example, the workload sequence A runs
Web-med (1) followed by Web-high(2) and so on. In Table IV, we
compare the efficiency of our online learning (i.e. OL) technique
against running each expert alone. For workloads A, B and C, OL
reduces the frequency hot spots more than all of the individual
experts, as it can combine the advantages of different experts over
different execution intervals. For workload D, OL performs almost
as good as DPM&DVS. OL reduces the frequency of hot spots by
about 20% on average in comparison to DVS&DPM.

TABLE IV. THERMAL HOT SPOTS

W.load Util Def. Migr. DPM DVS& Adapt OL
(%) DPM -Rand

A: 12784 50.8 18.6 11.4 16.9 8.9 13.2 6.5
B: 57843 28.2 8.4 4.2 6.4 2.3 5.4 2.1
C: 14214 69.8 27.8 18.1 21.3 14.9 19.2 9.7
D: 68253 32.3 10.3 5.7 8.0 2.7 6.4 2.9

Figures 2 (a) and (b) show how the online learning method com-
pares to other methods in terms of reducing temperature variations.
Our method reduces the cycles dramatically, i.e. 80% and 68% in
comparison to DPM and DVS&DPM, respectively. OL is close to
Adaptive-Random in terms of reducing the spatial gradients. We
cannot achieve significant reduction of gradients in comparison to
Adaptive-Random, because to reduce the hot spots more effectively,
our policy sometimes favors other policies.

DPM and DVS&DPM reduce the power consumption by about
13% and 16%, respectively, in comparison to the Default policy. The
online learning technique achieves close to 6% of power savings.
As Migration and Adaptive-Random are not integrated with DPM or
DVS in our work, they do not reduce power consumption. We also
computed the performance cost based on the average wait time for
jobs on the system. The average wait time of jobs are increased
by 2.1 times for Migration, 1.3 times for DPM, and 3.2 times
for DPM&DVS. Adaptive-Random does not increase the wait time,

Fig. 2. (a) Thermal Cycles, (b) Spatial Gradients

and OL only increases it by 1.1 times. Thus, while our technique
decreases the temperature induced problems at low performance cost,
we can also save about 6% power on average.

V. CONCLUSION

We have presented a MPSoC temperature management technique
that utilizes online learning to adapt to dynamically changing work-
loads. Online learning evaluates the management policies at runtime
by taking both thermal behavior and performance into account, and
guarantees convergence to the most beneficial policy for the desired
performance-temperature trade-off. We have shown that our technique
reduces the hot spots, thermal cycles and gradients significantly more
than running a single temperature or power aware policy.
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