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ABSTRACT

The ability to cap peak power consumption is a desirable feature
in modern data centers for energy budgeting, cost management,
and efficient power delivery. Dynamic voltage and frequency scal-
ing (DVFS) is a traditional control knob in the tradeoft between
server power and performance. Multi-core processors and the par-
allel applications that take advantage of them introduce new pos-
sibilities for control, wherein workload threads are packed onto
a variable number of cores and idle cores enter low-power sleep
states. This paper proposes Pack & Cap, a control technique de-
signed to make optimal DVFES and thread packing control decisions
in order to maximize performance within a power budget. In or-
der to capture the workload dependence of the performance-power
Pareto frontier, a multinomial logistic regression (MLR) classifier
is built using a large volume of performance counter, temperature,
and power characterization data. When queried during runtime, the
classifier is capable of accurately selecting the optimal operating
point. We implement and validate this method on a real quad-core
system running the PARSEC parallel benchmark suite. When vary-
ing the power budget during runtime, Pack & Cap meets power
constraints 82% of the time even in the absence of a power mea-
suring device. The addition of thread packing to DVFS as a control
knob increases the range of feasible power constraints by an aver-
age of 21% when compared to DVFS alone and reduces workload
energy consumption by an average of 51.6% compared to existing
control techniques that achieve the same power range.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Scheduling
General Terms

Measurement, Experimentation, Design

1. INTRODUCTION

With modern data centers growing larger and denser in order
to meet increasing computational demand, energy consumption is
fast becoming the largest contributor to the total cost of ownership
of data centers and high performance computing (HPC) clusters
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[10, 5]. Thus, it is critically important to plan and manage facil-
ity power and cooling resources. Traditionally, each data center is
given a maximum power constraint and is populated with the max-
imum number of server units that will stay within this limit minus a
safety margin. These margins are carefully designed to avoid power
consumption peaks that would trigger circuit breakers and interrupt
execution. Constraints on power consumption also implicitly limit
energy consumption and the associated costs.

A number of techniques for power capping have emerged to as-
sist data center administrators in maintaining average power bud-
gets [10, 5, 11] and in guaranteeing peak power constraints [13].
Some industry solutions manage the power budget of a set of nodes
within a rack by allocating more power capacity to busy units and
reducing the power constraints on idle nodes [1]. State-of-the-art
techniques with fast response capability to sudden power spikes
utilize fine-grained dynamic power monitoring enabled by power
meters [2]. Once a power budget is allotted by higher-level soft-
ware to server nodes, each node manages power within the desired
cap individually.

Modern chips come equipped with a set of power management
features: dynamic voltage and frequency scaling (DVES) (e.g., P-
states in Intel chips), clock gating, and automatic sleep states for
unused processor units (entire cores as well as individual functional
units, such as the L3-cache). Prior art has shown that it is possible
to significantly improve energy efficiency by augmenting hardware
energy-management features with OS-level control knobs, such as
thread allocation and scheduling (e.g., [22]). These techniques are
further enhanced when understood and performed at fine granular-
ities (e.g., [14]). Power capping allows for energy management
across multiple server nodes using these chip-level control mecha-
nisms [10].

This paper proposes a novel technique for maximizing perfor-
mance within variable power caps for multithreaded workloads.
Recent trends show that common workloads on data center and
HPC clusters are increasingly employing thread-level parallelism in
order to capitalize on the increased hardware parallelism in multi-
core systems. These workloads span a wide range of application
domains, from modeling and scientific computing to financial ap-
plications and media processing. Parallel workloads bring addi-
tional challenges as well as opportunities for control. Parallel work-
loads have complex thread synchronization methods, making run-
time performance and power analysis significantly more compli-
cated. On the other hand, parallel workloads offer additional con-
trol knobs, such as selecting the number of active threads, for man-
aging power-performance tradeoffs.

The proposed technique, Pack & Cap, is designed to optimally
manage two control knobs within a single server node during run-
time: (1) the voltage-frequency (V-F) setting, and (2) thread pack-



ing. Thread packing specifies how many threads should run on how
many cores, and is used for packing multithreaded workloads onto
a variable number of active cores. Pack & Cap employs thread
packing and DVFS during runtime in order to optimize workload
performance within a power cap, thus increasing energy efficiency.
Our specific contributions are as follows:

e We elucidate the impact of DVFS and thread packing on the per-
formance and energy consumption of a server operating within
a power cap. We quantify the difference between thread pack-
ing and thread reduction (i.e., decreasing the number of threads),
and demonstrate that our technique is capable of meeting a larger
range of possible power caps in comparison to DVFS alone.

o We devise an offline multinomial logistic regression (MLR) clas-
sifier that characterizes the optimal thread packings and V-F set-
tings as a function of user-defined peak power constraints. A
large volume of performance counter data, power measurements,
and temperature sensor data are collected on a real quad-core (In-
tel’s Core i7) based system and are used to train the MLR clas-
sifier. We propose L1-regularization techniques to find the best
set of inputs for the classifier.

e We query our MLR classifier during online operation to esti-
mate the probability of each operating point (V-F setting and
thread packing combination) yielding the optimal workload per-
formance within a power constraint, and to select the likeliest
optimal operating point. Our online classifier only makes use of
performance counter and thermal sensor data. It does not require
power measurements during online operation, which makes it an
attractive low-cost technique.

e We implement Pack & Cap on a real quad-core (Intel’s Core
i7) based server and evaluate the performance and energy dy-
namically for the PARSEC parallel benchmark suite [6]. In our
experiments, we adjust the desired power cap during runtime and
conclusively demonstrate that our method maximizes workload
throughput while adhering to the power budget 82% of the time.
We also demonstrate that a DVFS-focused version of our clas-
sifier (i.e., without thread packing) outperforms existing DVFS
techniques in the literature.

The remainder of the paper begins with a detailed explanation of
the motivation for integrating thread packing and DVFS in Section
2. Section 3 explains the MLR classifier and the runtime control. In
Section 4, we provide the experimental setup and evaluate Pack &
Cap in comparison to various DVFS and thread packing settings.
Section 5 discusses prior work and Section 6 concludes the paper.

2. MOTIVATION

Parallel workloads executing on multi-core processors introduce
new challenges in optimization as performance and power con-
sumption depend on the number of threads, thread interactions,
and the number of available cores. In this paper, we investigate
new techniques for maximizing the performance of parallel work-
loads running on a multi-core based system within a power cap. We
consider two control knobs: DVFES and thread packing, where we
define thread packing as the process of confining workload threads
onto a variable number of cores. Thread packing differs conceptu-
ally from thread allocation in that we make no distinction among
identical cores; i.e., if n of the threads are packed onto x < n
cores with identical resources, it does not matter which cores are
chosen. Thread packing is plausible due to core symmetry in exist-
ing homogenous multi-core processors. In this work we consider
a homogenous system without hyperthreading, which we disable
for our test system in the BIOS settings. However, our approach is

bodytrack canneal i ' canneal
| streamcluster facesim | H dedup
3 fluidanimate ferret : : facesim
freqmine raytrace i H ferret
dedup swaptions | : raytrace

! blackscholes :
i fluidanimate |

vips X264 | streamcluster 3
\\\\L 77777777 S
4 thread: 4 threads
2 thread 2 threads
1 thread 1 thread
N N N N NN N N N N N N N NN N NN
e e ol o e e e o o I III LI IITI
[CRCECRCECECINCURG] [CRCRCRCICRCICIRORG]
OO~ O oN O @ OO NO ®N O ™I
@~ Qo =N ¥ WO © KN ®S —AN ¥ 0O
~ - - N NN N NN - - - AN NN N NN
(a) settings for unconstrained (b) settings for unconstrained

runtime minimization energy minimization

Figure 1: Optimal settings in the absence of power constraints.

sufficiently flexible that it could easily be modified to distinguish
between sets of logical cores on a hyperthreaded or heterogenous
system if necessary.

Operation under Unconstrained Power. To motivate our ap-
proach we first explore the optimal V-F settings and thread con-
figurations in the absence of power consumption constraints. Our
quad-core processor test platform offers 9 V-F settings and we ex-
ecute each PARSEC benchmark with 1, 2 or 4 threads using the
native input set, where each thread is assigned to a different core.
This yields a total of 27 possible settings corresponding to each V-F
and thread-count combination. We identify the optimal settings for
the first 100 billion retired pops in the parallel phase of each PAR-
SEC benchmark. In Figure 1 we demonstrate (1) the settings that
give the minimum runtime and (2) the settings that give the min-
imum energy. In both cases the results unanimously show that in
the absence of any constraints on power consumption, the 4-thread
setting is the best regardless of the objective. While it is obvious
that the highest V-F setting will always give the minimum work-
load runtime, this is not necessarily the case for energy minimiza-
tion. To provide more insight into the behavior of the workloads at
various V-F settings, we plot in Figure 2 the workload energy (in
KJ) versus runtime (in s) for four representative PARSEC work-
loads. The plots show convex-like energy-runtime curves, where
the optimal point of each workload is determined by the tradeoff
between power consumption and runtime savings as a function of
frequency. In many cases the increased power consumption associ-
ated with higher V-F settings is not offset by sufficient reductions
in runtime, leading to higher energy consumption.

Thread Packing versus Thread Reduction. We define thread re-
duction as the traditional process of launching an application with
fewer number of threads than there are available cores. We seek to
understand the difference in power and runtime between executing
4 threads of an application packed on ¢ cores, versus executing ¢
threads of the same application on ¢ cores, where each thread is as-
signed to a different core. If ¢ = 4 there is no difference between
thread packing and thread reduction in terms of runtime and power
consumption. If ¢ < 4, there are two relevant comparison cases to
investigate. In the first case, 4 threads packed onto a 1 core is com-
pared to 1 thread executing on 1 core. In the second case, 4 threads
packed on 2 cores is compared to 2 threads executing on 2 cores.
While it is possible to pack 4 threads on 3 cores, some PARSEC
workloads do not support execution with 3 threads.

To conduct a systematic comparison across all benchmarks, we
execute a static comparison, where the number of threads does not
change once a workload is launched. There are a total of 117 com-
parison points, where each point corresponds to one V-F setting
(from a total 9 V-F settings) and one PARSEC benchmark (from a
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Figure 2: Impact of V-F settings on energy and runtime for the first 100 billion pops retired within the parallel phase of four
representative workloads running with 4 threads. Optimal runtime and energy settings are marked with red squares.

First case: 1 active core Second case: 2 active cores
packing reduction packing reduction
4 threads on 1 core | 1 thread on 1 core || 4 threads on 2 cores | 2 threads on 2 cores
runtime 1.000x 1.021x 1.000 x 1.010x
power 1.000x 0.990x 1.000x 0.993 x

Table 1: Comparison between thread packing and thread reduction. Results are an average of 117 comparison points (9 V-F settings

x 13 PARSEC workloads) and normalized with respect to thread packing.

total of 13 benchmarks). Table 1 gives a summary of the compari-
son between thread packing and thread reduction.

e Runtime. For the first case of 1 active core, the runtime of
thread reduction is larger by 2.1% in comparison to thread
packing. For the second case of 2 active cores, thread reduc-
tion is larger by 1.5%.

e Power. For the first case of 1 active core, the power con-
sumption of thread reduction is smaller by 1.01% than thread
packing. For the second case of 2 active cores, it is smaller
by 0.70%.

Ideally, we would also like to contrast thread reduction and thread
packing in a dynamic setting. However, we are not aware of grace-
ful mechanisms for changing the number of active threads of a par-
allel workload at an arbitrary execution point without considerable
modification to the application code.! The results from thread re-
duction and thread packing show that the power and performance
values are comparable to each other, with packing having a slight
advantage in performance. In contrast to thread reduction, thread
packing has the advantage of being easily modifiable. In a Linux
environment, thread packing is implemented by setting the core
affinities of the threads using the associated thread IDs. Thread
packing has negligible implementation overhead as it does not re-
quire modifications to applications. Thus, thread packing is a more
feasible and efficient solution for adaptive computing.

"Depending on the parallelization model and the software struc-
ture, it is possible to change the number of active threads dur-
ing workload execution for each parallel region of the application.
pthreads and OpenMP are the two commonly used paralleliza-
tion models, and are represented in the PARSEC suite. Our exper-
iments with the bodytrack benchmark show that changing the
number of active threads from 2 to 4 through OpenMP schedul-
ing clauses has similar performance in comparison to maintaining
4 threads and packing them on 2 or 4 cores.

Impact of Packing on Power Range. The combination of DVFS
and thread packing increases the system’s power range for a given
application. We define the power range as the difference between
the maximum peak power attained at the highest setting (4 active
cores at 2.67 GHz) and the minimum peak power attained at the
lowest setting (1 active core at 1.60 GHz). Figure 3 gives the power
range of the PARSEC workloads on our system. The results show
that the DVFS and thread packing combination consistently deliv-
ers a larger range than with DVFS alone, with an average increase
in the power range by 21%.

Optimal DVFS and Thread Packing Under Power Caps. We
previously examined the optimal operating points in the case of
unconstrained power operation. We next compute the optimal op-
erating points under a range of possible server power caps. We first
consider runtime minimization under power constraints. Our sys-
tem has 4 cores and 9 V-F settings for a total of 36 V-F and thread
packing combinations. Figure 4 gives the peak power and runtime
of the first 100 billion retired pops at all possible settings in the par-
allel phase of 4 representative PARSEC workloads. We also mark
power-runtime Pareto frontier with a red line. For each point along
the Pareto frontier, there is no alternative point that achieves lower
peak power and shorter runtime. Thus, these points dominate the
remaining points, and the Pareto frontier gives the optimal settings
for runtime minimization as a function of the power cap. Note
that each workload segment has its own characteristic Pareto fron-
tier. Identifying the most suitable setting is dependent on workload
characteristics, which may vary during execution.

Second, we consider energy minimization within power con-
straints. Figure 5 gives the peak power and energy of the first 100
billion retired pops at every settings in the parallel phase of four
representative PARSEC workloads. We also mark power-energy
Pareto frontier with a red line, where the points on the frontier
dominate the other settings with reduced peak power and energy.
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Figure 4: Impact of V-F and #thread settings for runtime minimization under power caps. Red line gives Pareto frontier of optimal

settings at various power caps.
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Figure 5: Impact of V-F and #thread settings for energy minimization under power caps. Red line gives Pareto frontier of optimal

settings at various power caps.

The Pareto frontier gives the optimal settings for energy minimiza-
tion as a function of the power cap. Note that the first point of the
Pareto frontier naturally starts at the energy optimal setting given
earlier in Figure 1. We denote the power consumption of this start-
ing point for unconstrained minimum-energy operation with p. and
the power cap with p.. Figure 4 and Figure 5 reveal the two fol-
lowing observations regarding runtime and energy minimization.
1. If p. > pe then energy and runtime minimization lead to
different settings. If the objective is energy minimization,
the system should not scale its settings to utilize the avail-
able power budget because it will negatively impact energy
consumption as given in Figure 5.
If p. < pe then the system should scale its settings to give
the closest power consumption to the given cap in order to

minimize both runtime and energy. Thus, energy and runtime

minimization lead to identical control decisions.
Because the second condition is often true for low to mid-range
power constraints, in the process of optimizing for runtime we
are simultaneously inducing significant energy savings in many
cases. The important question of how to identify the optimal set-
tings given workload dependencies is explored in depth in the fol-
lowing section.

3. PACK & CAP METHODOLOGY

Our approach for runtime thread packing and DVFS control is
split between an offline step and an online step. In the offline step,
we use an extensive set of data gathered for the parallel workloads
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Figure 6: Overview of the Pack & Cap methodology.

in the PARSEC benchmark suite to train the workload-dependent
classifiers. Each classifier takes performance counter and per-core
temperature measurements as inputs, and outputs the system oper-
ating point with the highest probability of maximizing performance
within a given power constraint. A classifier instance is trained for
each desired power constraint. During runtime, we recall the model
associated with the desired power constraint using a lookup table,
and given the real-time measurements of various input metrics, the
control unit sets the system operating point with the highest prob-
ability of being optimal. During runtime, our model curbs the sys-
tem power within a power cap without using expensive server-level
power measurement devices. Figure 6 gives a general outline of
our approach.

3.1 Offline Characterization

The offline characterization step makes use of an L -regularized
multinomial logistic regression (MLR) classifier [3]. One primary
advantage of our offline characterization technique lies in the de-
gree of automation. While previous techniques require manual in-
put to select the performance metrics that are most relevant to en-
ergy, power and delay optimization, we use L;-regularization to
systematically find the relevant inputs and mask irrelevant ones. We
can therefore start with a large set of input metrics, as our learning
algorithm will only focus on the important ones. In determining
the optimal inputs, we are able to develop general models that do
not need to be tailored for specific workloads. Each objective for-
mulation only requires a single model to encapsulate a wide range
of workload behavior. In addition, by using a classifier that outputs
a discrete value corresponding to the optimal setting, our approach
does not require any intermediate estimates of the power or delay
during runtime. Previous modeling techniques [17] rely on linear
regression for estimating power and performance. Regression mod-
els predict continuous values representing power and performance
as a function of performance counter inputs which are then used
to inform the control decisions. By modeling the boundaries be-
tween the discrete decision outputs directly, we observe the MLR
classifier to be a more stable predictor of optimal outcomes when
compared to linear regression techniques, particularly when the test
data differs significantly from the training data.

3.1.1 Multinomial Logistic Regression

The MLR classifier is a generalized linear model that estimates
the probability of a discrete set of outcomes by fitting a multino-
mial logistic function to continuous input data [3]. In this work,

the set of outputs corresponding to the set of feasible system oper-
ating points. Because the cores in our test setup are homogenous
(identical resources) and hyperthreading is disabled, these operat-
ing points are only differentiated by the V-F setting and the number
of active cores onto which the workload threads are packed. How-
ever, in systems that have heterogenous cores or hyperthreading,
this approach can be easily adapted to differentiate various logical
core subsets when training the MLR model. Whereas the models in
our experiments treat 4 threads running on 2 logical cores at a par-
ticular V-F setting as a single operating point regardless of which
2 cores are active, in a heterogenous system the operating points
would be differentiated based on core type.

The inputs to the MLR classifier include a set of workload met-
rics, which are functions of the system performance-counter val-
ues, per-core temperatures, and the current operating point. The
logistic model classifier is trained using a set of sample inputs and
outputs gathered for a series of workloads at every possible con-
trol setting. Given the inputs during runtime, the logistic regres-
sion can then calculate a priori the probability of each candidate
operating point being optimal under a particular objective formu-
lation. The output with the highest probability is then chosen as
the current operating point during runtime. In Pack & Cap, the
optimal operating point corresponds to the setting that maximizes
performance within a power constraint. However, the MLR clas-
sifier can be easily trained for other objective formulations such
as energy, energy-delay product (EDP), or energy delay-squared
product (ED?P) minimization. The choice of objective formulation
depends on the application.

Let y denote the output of the MLR classifier, x denote the vector
of input values, and ¢(x) € R™ denote a fixed nonlinear vector-
valued function of x. The probability of a particular output c under
the multinomial logistic model is expressed in Equation (1).

exp(we" ¢(x))
ch;zl exp(wc/ T¢(x))

The variable we € R™ contains the weights associated with out-
put ¢, and w € RE™ is a vector concatenating the weights across
all outputs. T" denotes the transpose operator. Equation (1) maps
a continuous real-valued argument wa ¢(x) to a probability y = ¢
such that the probabilities across all of the possible outputs {1, ..., C'}
sum to 1. A positive weight w.r € w. implies that a positive value
on input ¢ (x) € ¢(x) increases the probability that y = ¢, and
likewise a negative weight implies a decrease in probability.

Pr(y =clx,w) = (D



The logistic weights are estimated using training data, which
in this case is an extensive set of data gathered for the PARSEC
benchmark suite. Measurements from the parallel phase of each
benchmark are taken at each available V-F setting and thread pack-
ing, and the resulting data is divided into windows of fixed size in
terms of the number of instructions retired (100 billion pops). By
aligning these fixed instruction windows across all possible oper-
ating points, we are able to determine the optimal setting under a
particular objective formulation at each stage of execution in the
workload. These true values for y and the measured values for x
for each fixed instruction window are then used to train the model.
The weights w in the logistic model are estimated by minimizing
the conditional log-loss function of the training data, expressed in
Equation (2):

W = argmin (— Z log Pr(y:|xi, w)) , 2)

w

where x; and y; represent the input values and output value respec-
tively for instruction window ¢. The weight-estimate W is found
using a standard gradient-descent method, which uses the gradient
of the objective function in Equation (2) to iteratively search for the
optimal value.

During runtime, the probability of each operating point being
optimal under a particular objective formulation is calculated ac-
cording to Equation (1). The classifier then selects the point that
achieves the highest probability. In order to prevent over-fitting of
the model to the training data, the accuracy of each classifier is eval-
vated on separate test data. We define accuracy as the percentage
of execution intervals for which the true optimal system operating
point is correctly predicted by the classifier.

3.1.2  Li-Regularization and Input Selection

With a large number of inputs, it is possible to over-fit the clas-
sification model to the training data, producing excessively high
weight estimates. While the model will fit the training data well,
any minute disturbance in any input data not used to train the model
will cause dramatic changes in the classifier output. One standard
method of preventing over-fitting is L -regularization, in which an
L1-loss term is added to the loss function in Equation (2) as is
shown in Equation (3).

W = argmin <a (Ilwll, — Zlog Pr(y¢|xi,w)> 3)

k3

The loss term induces a penalty for large weight values, and pre-
vents the model from being over-fit to the training data. As the
effect of the regularization is increased via the constant parame-
ter o, the logistic weight values are forced to smaller magnitudes
and the number of non-zero weights decreases. The optimal degree
of regularization « is experimentally determined by measuring the
cross-validated test accuracy for « for a series of values spanning
several orders of magnitude. The minimization in Equation 3 is per-
formed using an iterative projected gradient descent method, which
searches for the optimal weights within the boundaries induced by
L -regularization.

L -regularization also has another extremely useful property in
that it forces sparse solutions for w (i.e., solutions where many of
the coefficients are zero or of negligible magnitude). Thus, L;-
regularization can identify the inputs that are most relevant to clas-
sification and eliminate irrelevant ones. Given the high complexity
of parallel workload behavior, it is not immediately obvious what
sort of inputs are useful in classification for various power, energy
and delay objectives. Using L-regularization, however, the num-
ber of inputs can be almost arbitrarily high, and the most relevant

inputs will be identified while estimating w.

In our implementation, the input vector x consists of the follow-
ing values which can be measured in real-time: u-ops retired, load
locks, L3-cache misses, L2-cache misses, resource stalls, branch
prediction misses, floating point operations, average temperature
across all cores, V-F setting, active-core count, and a constant term.
However, the vector-valued function of the inputs ¢(x) has much
higher dimensionality, taking every possible ratio of any two inputs
in x. The L;-regularized MLR classifier subsequently determines
which ratios are important for a particular classifier and assigns
zero weight to irrelevant ones.

Because the MLR model must perform thread packing within the
power budget without significantly degrading performance, it must
take into account the complex synchronization behaviors among
the workload threads. We chose the PARSEC benchmarks for mod-
eling and testing purposes because the workloads span a large range
of thread interactions and parallelization models. By taking shared
memory behavior (L3-cache misses) and synchronization behavior
(load locks) into account, the MLR models encapsulate these de-
pendencies. For instance, if the L3-cache were to decrease in size,
the model would register this as a stronger negative correlation be-
tween performance and L2-cache misses, and the performance im-
pact of thread packing would increase. In fact, the ratio of L3- to
L2-cache misses is generally observed to be the metric with the
highest logistic weight magnitudes across the different outputs.

3.2 Adaptive Runtime Control

The runtime overhead of the proposed technique is minimal, as
the model weights are communicated from the offline method to
the runtime method in the form of a lookup table as illustrated in
Figure 6. The system simply logs performance counter and tem-
perature data, and at regular intervals calculates the probability of
each operating point being optimal according to Equation (1) using
the set of weights corresponding to the current power constraint p..
The system adapts to changes in the power constraint by retriev-
ing the associated set of model weights that were learned offline.
The overhead for each activation of our control algorithm is in the
range 10 ms - 50 ms. With a control activation period on the order
of seconds, which permits reasonable responsiveness, this overhead
represents a very tiny fraction of the overall execution time.

Once an optimal point is predicted, this information is passed to
a controller that enforces the setting on the system. The runtime
overhead for performing DVFES control is very low, and is on the
order of 100 us [15]. The overhead for shifting threads among the
cores for thread packing is potentially higher (reaching millisec-
ond range in some cases). However, these effects are automatically
factored into our delay estimation in the experiments, which never-
theless show significant improvement in performance, power, and
energy.

4. EXPERIMENTAL RESULTS

This section provides the details of the experimental setup, as
well as the results showing that our adaptive Pack & Cap approach
is capable of leveraging DVFS and thread packing to maximize per-
formance within an arbitrary power cap. We first quantify the abil-
ity of our runtime approach to adapt to changing power constraints
and workloads. We then compare the performance of our adaptive
approach in terms of the execution delay against the delay for a
known optimal static setting for each benchmark. Third, we show
that adding thread packing as a control knob leads to better tradeoff
between power and performance, and superior adherence to system
power cap when compared to pure-DVFS. Finally, we verify that
our L;-regularized MLR method for DVFS alone outperforms the



accuracy of existing energy-aware DVFS approaches.

In the offline characterization step, we use an extensive set of
power, temperature and performance counter data collected for each
PARSEC benchmark at all feasible system operating points (V-F
and thread packing combinations). For each workload’s parallel
phase (region of interest, ROI), we divide the data into 100 billion
p-op execution intervals. By aligning the data points for each work-
load across all available system settings, we are able to measure
the true optimal point for any objective function for each interval.
We then train an MLR classifier for each desired power constraint
using the methodology explained in Section 3. Our experimental
setup for data collection and online control is as follows:

e All collection and control experiments are performed on an In-
tel Core 17 940 45nm quad-core processor, running the 2.6.10.8
Linux kernel OS.

e Performance counter data are collected using the pfmon (ver-
sion 3.9) utility. We poll performance counters for each core at
100 ms intervals. The counters collect architectural information
used for differentiating workload behavior: p-ops retired, load
locks, L3-cache misses, L2-cache misses, resource stalls, branch
misses, and floating point operations. The PARSEC benchmarks
do not make use of the network card or graphical processor; thus,
we found no value for collecting usage statistics from these com-
ponents.

e Each core on the Core-i7 processor is equipped with a digital
thermal sensor, measuring the maximum junction temperature.
The pfmon tool is interfaced with the Linux 1m-sensors li-
brary to report these per-core temperatures at 100 ms intervals.

e The server’s total power consumption is measured using an Ag-
ilent A34401 digital multimeter.

e We control the system operating points (V-F settings and thread-
packing combinations) using Linux C library interfaces. The
Core-i7 processor frequencies are manipulated with the cpufreq
utility, and the available frequency settings are: {1.60 GHz, 1.73
GHz, 1.87 GHz, 2.00 GHz, 2.13 GHz, 2.27 GHz, 2.40 GHz, 2.53
GHz, 2.67 GHz}. The voltages associated with each frequency
are set automatically in hardware. The thread-packing assign-
ments are controlled using using the sched_setaffinity
interface in the Linux scheduler.

e We disable the hyperthreading feature in our processor using our
system’s BIOS settings.

e To implement data collection and runtime control, we interface
our data measurement and control apparatus to a MATLAB mod-
ule compiled as a C-shared library. This module is configured
to read lookup tables generated offline, buffer incoming perfor-
mance counter and temperature data, and periodically output con-
trol decisions to a control unit. The runtime overhead for each
activation of the control algorithm during runtime is in the range
of 10-50ms.

e The number of threads for each benchmark is set using the com-
mand line options provided in the PARSEC suite.

In our first experiment, we demonstrate that our adaptive runtime
approach consistently obeys a wide range of power constraints, re-
gardless of workload behavior or physical operating conditions.
During the execution of each parallel workload, we periodically
change the power constraint to a random value in the 110W - 180W
range, and measure the percentage of the execution time for which
the power is within a tolerance of the cap value. A cumulative dis-
tribution function (CDF) for each benchmark is given in Figure 7,
where the CDF plot gives the percentage of time the power caps
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Figure 7: Cumulative distribution function (CDF) for the pos-
itive deviation of the observed power from the power cap for
each PARSEC benchmark. The black dotted line represents
the CDF for the entire data set on the average.
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Figure 8: Measured power traces for facesim, ferret, fluidan-
imate, and streamcluster benchmarks as Pack & Cap adapts
performance to constrain the power consumption with the
power cap (black dotted line). The power cap is randomly mod-
ulated every 8 seconds.

are met within a certain tolerance. The average CDF is given by
the dashed line. The results show that we are able to constrain the
power consumption within the given cap (1) 82% of the time on av-
erage across all workloads, (2) 96% of the time within a SW margin
beyond the power cap, and (3) > 99% of the time within a 10W
margin.

The power traces in Figure 8 further confirm that Pack & Cap
consistently adheres to the power constraint. Figure 8 also confirms
that when operating along the Pareto frontier in power-delay space,
minimizing delay under a power constraint is equivalent to maxi-
mizing the power within that constraint. Thus, the measured power
for each benchmark follows closely below the power constraint. By
encapsulating the workload dependence of the power-delay Pareto
frontier in the MLR model, our runtime control scheme is able to
maximize power budget usage in the face of dynamic workload be-
havior and without using server-level power meters. While we use
power measurement data to verify this assertion and during offline
model generation, we do not utilize any power measurements dur-
ing runtime control. Figure 9 illustrates the changes in the DVFS
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Figure 9: Demonstration of DVFS and thread-packing control
for bodytrack under changing power caps.

and thread packing control knobs in response to the changing power
constraints for the bodyt rack benchmark.

Whereas in the first experiment we demonstrate that Pack &
Cap adheres to the power cap even without power measurement
devices, in our second experiment we demonstrate that the MLR
classifier successfully predicts the operating points that optimize
workload performance within the given power constraint. We exe-
cute each benchmark with a low-range and mid-range power con-
straint (120W and 150W respectively) and measure the execution
delay for the parallel phase of each workload. For reference, we de-
velop an oracle controller that knows a priori the global optimum
setting for each benchmark. We accomplish this by executing every
PARSEC workload at every available V-F setting and thread pack-
ing and selecting the setting with the lowest runtime that achieves
the same average power as the proposed approach.

Figure 10 compares the runtimes for adaptive MLR to the static
oracle for all workloads at power budgets of 120W and 150W. We
expect that if the proposed approach is truly operating along the
power-performance Pareto frontier, then the MLR delay should ap-
proximate the oracle delay. The results show that indeed the delays
are very close in value, and in fact adaptive MLR actually achieves
superior performance in many cases. These improvements are due
to the fact that the adaptive approach allows the system setting to
change in response to dynamic workload and operating conditions,
whereas the oracle only optimizes according to the average behav-
ior of the workload as a whole. The performance improvement
achieved by our dynamic approach compared to the static oracle
is more stark for the more constrictive power constraint. This is
due to the fact that in the static approach, the operating point is set
for the entire duration of the workload such that the most power-
intensive execution phase is within the low constraint. By allowing
the operating point to dynamically change depending on the work-
load characteristics, the dynamic approach introduces opportunities
for the controller to boost performance as the workload enters less
power-intensive phases.

In a third experiment, we quantify the benefits of thread pack-
ing as a control knob. In Figure 3, we have shown that thread
packing increases the range of achievable power constraints over
pure-DVES. In the absence of thread packing, one can only resort
to thread reduction in order to achieve the same range. This cor-
responds to running 1 or 2 threads on a quad-core machine (odd
number of threads not supported by many PARSEC workloads).
Barring special thread interfaces such as OpenMP, however, the
number of threads cannot be dynamically adjusted during runtime
for most workloads. Thus, if the power cap or workload behavior
vary significantly during runtime, it is highly likely that the sys-
tem operating point will not lie on the power-delay Pareto efficient

DVFS
+ Thread Packing

DVFS DVFS
1-Thread Fixed 2-Threads Fixed

blackscholes | 243 sec | 125 W NPE NPE NPE NPE
bodytrack 99sec | 124 W NPE NPE NPE NPE
canneal 119sec | 116 W NPE NPE 97sec | 123 W
dedup 25sec | 118 W NPE NPE 22sec | 121W
facesim 371sec | 123 W NPE NPE 421 sec | 122 W
ferret 218sec | 126 W || 510sec | 120 W NPE NPE
fluidanimate || 275 sec | 123 W NPE NPE NPE NPE
freqmine 301 sec | 127 W NPE NPE 461 sec | 123 W
raytrace 127 sec | 121 W || 404sec | 111 W || 181sec | 120 W
streamcluster || 312sec | 123 W || 504 sec | 121 W || 282sec | 124 W
swaptions 171 sec | 124 W || 508 sec | 117 W NPE NPE
vips 80sec | 123 W NPE NPE 104 sec | 121 W
x264 79 sec 121W NPE NPE NPE NPE

Table 2: A comparison of the average power and execution de-
lay of our MLR classifier with and without thread packing for
a 130W power cap. NPE stands for Not Pareto Efficient, mean-
ing that one of the other methods has lower delay and lower
average power.

curve (see Figure 4).

In contrast to pure-DVFS with thread reduction, thread pack-
ing assignments can always be smoothly adjusted during runtime
to operate along the Pareto frontier without special interfaces or
workload modifications. A comparison between thread packing
and DVFS with fixed thread reduction is summarized in Table 2.
The word fixed designates that the number of threads is held con-
stant for the entire workload execution to reflect the lack of flex-
ibility. For all methods, an MLR classifier is generated and each
benchmark is executed to completion under a static 130W power
budget. This low-range power budget is in the range of power val-
ues that is only attainable via thread packing or thread reduction.
The resulting power and delay values show that only thread pack-
ing maintains Pareto efficiency for all workloads. When perform-
ing DVFS with fixed thread reduction, for most workloads thread
packing achieves lower power and delay. The power and delay val-
ues for these workloads are marked NPE, or Not Pareto Efficient.

For workloads in which 1-thread fixed or 2-thread fixed is Pareto
efficient, the advantage in power or delay is not proportional to the
advantage offered by thread packing. Therefore, thread packing
is able to achieve lower energy consumption for each workload,
as illustrated in Figure 11. The improvement is especially stark
in comparison to the 1-thread case. Thread packing is capable of
matching the lower bound on the power cap associated with the
1-thread case, but achieves an average of 51.6% reduction in en-
ergy. When compared to the 2-thread case, thread packing is able
to achieve a better power range, and an average of 15.6% reduction
in energy.

It is interesting to look at the performance of our classifier if the
number of threads is fixed to 1. In this case our classifier reduces
to a pure DVES classifier. In a fourth experiment, we compare
the ability of our L;-regularized MLR classification methodology
in selecting optimal V-F settings to state-of-the-art energy-aware
DVES techniques proposed by Dhiman et al. [8] and Isci et al.
[14]. Both of these techniques utilize performance counter met-
rics and look-up tables to dynamically select the V-F settings that
optimize energy efficiency during runtime. The approach in [8]
uses a CPI-based metric, and [14] computes the ratio of memory-
bus transactions to p-ops. While both metrics are selected based on
their strong correlations to energy efficiency, they are a small subset
of the exhaustive set of ratios employed by the MLR approach. Be-
cause the MLR approach uses L;-regularization to automatically
select the ratios that are most relevant to classification, it is signif-
icantly better at predicting the optimal DVFS settings across the
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Figure 11: Comparison of energy consumption for each benchmark with and without thread-packing with 130W power budget.

entire range of workload behavior. Table 3 displays the accuracy
of each technique in selecting the V-F setting that minimizes en-
ergy within a power constraint p. for fixed size instruction inter-
vals (100-billion pi-ops). As both of the previous approaches target
single-threaded workloads, this comparison is made while execut-
ing single-thread configurations for each benchmark. The reported
accuracies in Table 3 reflect the fraction of intervals in each bench-
mark for which the optimal setting matches the true optimal set-
tings obtained from our offline data.

For the p. < 130W objective, there are more variations across
benchmarks in terms of the optimal V-F settings in comparison to
the p. < 140W objective. As a result, accuracy percentages for
pe < 130W are significantly lower than p. < 140W. As we see in
Table 3, our technique (MLR, without thread packing) outperforms
the other two techniques in selecting the optimal V-F settings, es-
pecially for lower power budgets.

5. RELATED WORK

DVES is a popular method for power management due to the cu-
bic dependency of dynamic power on frequency (frequency scales

with voltage squared). To identify the best V-F setting, the major-
ity of recent work on DVFS control rely on information gathered
from performance counters during runtime without the need for
special compiler support or modifications to the applications [18,
26]. Some software-based approaches require application-level or
compiler-level support for power control [25, 4]. Most methods
optimize for energy, energy-delay-product (EDP) or energy-delay-
squared-product (ED?P). Isci et al. in [14] derive phase categories
based on a metric for the memory operation rate (mem ops/u-op),
and each category is a mapped to an optimal V-F setting. Similarly,
Dhiman et al. propose an online learning model for single-core
processors in [8]. In order to characterize workloads, they break
down the cycles per instruction (CPI) metric into various compo-
nents such as baseline CPI, miss events CPI, and stall CPI. This ap-
proach guarantees convergence to the optimum voltage-frequency
(V-F) setting using online learning. These approaches focus on en-
ergy, EDP or ED?P minimization without considering power caps.
Multi-core processors introduce new opportunities for power man-
agement as they enable larger degrees of freedom in job scheduling



Isci et al. [14] Dhiman et al. [8] Proposed
pe < 130W | pc < 140W [[ pc < 130W [ pc < 140W || pc < 130W [ p. < 140W
blackscholes 97.4% 81.8% 100% 99.9% 100% 88.8%
bodytrack 85.0% 99.9% 6.8% 94.7% 96.0% 79.8%
canneal 99.9% 96.6% 96.2% 96.2% 100% 100%
dedup 23.7% 100% 2.5% 62.2% 100% 100%
facesim 96.9% 100% 99.9% 96.2% 96.7% 80.7%
ferret 51.0% 97.0% 36.8% 66.3% 97.7% 92.4%
fluidanimate 11.4% 100% 19.9% 100% 98.6% 79.2%
freqmine 5.9% 56.0% 1.0% 5.0% 100% 90.2%
raytrace 99.9% 88.3% 0% 97.0% 100% 92.3%
streamcluster 99.6% 99.6% 27.3% 27.3% 93.1% 92.4%
swaptions 0% 21.2% 100% 100% 87.2% 86.1%
vips 99.1% 32.3% 99.0% 99.4% 100% 100%
x264 0.5% 1.9% 1.5% 99.2% 100% 94.4%
Average 59.3% 75.0% 45.4% 79.6% 97.7% 90.4%

Table 3: Accuracy of DVFS techniques in selecting the optimal operating points for single-threaded execution.

and allocation. Rangan et al. propose a scalable DVFS scheme
for multi-core systems that enables thread migration among homo-
geneous cores with heterogeneous power-performance capabilities
[22]. Rather than changing the V-F settings on demand, they assign
fixed V-F settings to different cores and migrate the applications to
reach the desired level of performance within a given power bud-
get. For applying DVFS under power constraints, Etinski et al.
propose a job scheduling policy that optimizes performance for a
given power budget [9]. Isci et al. evaluate global power manage-
ment policies with objectives such as prioritization, power balanc-
ing and optimized throughput for various benchmark combinations
and power budgets [13]. However, their approach does not pro-
vide dynamic adaptation to different workloads. Teodorescu et al.
propose algorithms for power management through scheduling and
DVES under process variations [27].

Most multi-core processors support setting independent frequen-
cies for the cores but a common voltage level is usually set to sup-
port the highest frequency. Independent voltages require extensive
design investments in the power-delivery network and the off-chip
power regulators. To increase the granularity of DVFS control,
multiple clock domain design and voltage frequency island parti-
tioning have been proposed [19, 12]. To reduce the overhead of
runtime voltage conversion, Kim et al. explore designing on-chip
regulators and perform core-level DVFS [15].

As the need for power capping and peak power management
grows, some of the recently proposed techniques have explicitly
focused on meeting power budgets or peak power constraints at
runtime. Cebrian et al. propose a power balancing strategy that
dynamically adapts the per-core power budgets depending on the
workload characteristics [7]. However, for balanced workloads
which have even power consumption among cores (e.g., highly par-
allel workloads such as blackscholes in PARSEC), this strat-
egy would not perform well as it relies on borrowing power bud-
gets from cores that consume lower power than the others. Sartori
et al. propose a peak power management technique for multi-core
systems by choosing the power state for each core that meets the
power constraints [24]. The power capping strategy proposed by
Gandhi et al. meets the power budget by inserting idle cycles dur-
ing execution [11]. This approach targets controlling the average
power consumption, and does not provide peak power guarantees.
A number of approaches meet the power budgets through hardware
reconfiguration. Meng et al. propose a power management strategy
through dynamic reconfiguration of cores by cache resizing [21].
Kontorinis et al. propose a table-driven adaptive core reconfigura-
tion technique that configures core resources such as floating point
units and load-store queues to meet peak power constraints [16].

Current processor and system vendors have begun to provide
peak power management features in commercial products. AMD
has introduced PowerCap Manager for 45 nm Opteron processors
[23]. For data center power management, HP and Intel jointly of-
fer a power capping technique which adjusts power caps accord-
ing to busy/idle states of the nodes [1]. This technique utilizes the
DVES states and the throttling (idle cycle insertion) capabilities at
the chip-level. Besides sleep modes, power nap modes, in which
the system can enter and exit from low-power modes in millisec-
onds, have been also proposed to cope with the demand variation
patterns in data centers [20].

This paper brings the following important innovations over the
state-of-the-art: (1) Our technique targets caps on peak server power,
while most prior techniques (such as throttling and DVFS) focus on
maintaining an average power consumption value; (2) we do not re-
quire any modifications to the hardware beyond fundamental DVFS
capabilities, which are already included in most processors; (3) we
do not require power metering during runtime which saves large in-
vestment in power metering infrastructure; (4) we use thread pack-
ing in addition to DVFS, which increases the power range and
improves performance compared to applying DVFS alone; (5) we
split our technique into offline and runtime phases, where the off-
line phase uses machine learning techniques to build models from
a large volume of characterization data, and the runtime phase uses
table look-ups to efficiently select the best settings; and (6) we con-
clusively demonstrate that our method successfully optimizes per-
formance and energy efficiency under power caps on a real quad-
core based system using realistic multi-threaded applications. Our
approach is also applicable to single-threaded applications running
on multi-core based systems.

6. CONCLUSIONS

Power capping is an increasingly prevalent feature in modern
servers as it enables administrators to control energy costs. In this
work we propose Pack & Cap, a novel technique for maximizing
the performance of multithreaded workloads on a multi-core pro-
cessor within an arbitrary power cap. We introduce thread pack-
ing as a control knob that can be used in conjunction with DVES
to manage the power-performance tradeoff. We demonstrate that
thread packing expands the range of feasible power caps, and it
enables fine-grained dynamic control of power consumption. In
devising a MLR classifier approach to identifying optimal operat-
ing points, we demonstrate that it is possible to automatically select
Pareto-optimal DVFS and thread packing combinations during run-
time. Using a large body of characterization data gathered from the
PARSEC benchmark suite, we train sophisticated classifier mod-



els that encapsulate the workload dependence of the power-delay
Pareto frontier. By performing model learning offline and expos-
ing the models via lookup tables, we reduce the runtime overhead
of our control scheme to a low-cost probability calculation. We
implemented Pack & Cap on a real quad-core based system with
a wide range multi-threaded workloads. Our experiments demon-
strate that our method is capable of adhering to a power cap 82%
of the time while maximizing performance, even in the absence of
a power measuring device. Thread packing increases the range of
feasible power constraints by an average of 21% when compared to
DVES alone and reduces workload energy consumption by an aver-
age of 51.6% compared to existing control techniques that achieve
the same power range.
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