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Abstract—To accommodate the increasing presence of inter-
mittent renewable energy sources in power generation, electricity
providers offer incentives for demand response so as to stabilize
the grid load. This paper argues that data centers have the
ability to provide large capacity reserves to emerging smart grid
programs, and thus, provide opportunities for sustainable data
center growth and cost savings as well as more flexibility for the
grid. The paper first reviews the emerging smart grid opportu-
nities, and then proposes policies to deliver data center demand
response for peak shaving, regulation services, and frequency
control prorgrams. Experimental results indicate substantial cost
saving potential compared to solely applying energy management
strategies at the data centers.

I. INTRODUCTION

A 2007 EPA report to Congress [5] stated that the data
centers in the US consumed about 1.5% of the US electricity
production and projected that this would rise to 3% in 2011. To
put this in context, 3% of the US electricity production is about
120 billion kWh or equivalent to the average consumption of
a large city with 11.6 million households. A more recent 2013
report [37] puts the Information and communications Tech-
nologies (IT) ecosystem (including all computing, data centers,
internet infrastructure, mobile devices, cellular networks, etc.)
consuming about 10% of the world’s electricity generation.
The IT ecosystem is expected to continue to grow, especially
considering the wider-spread adoption of mobile and cloud
computing paradigms.

Currently, the vast majority of electricity production comes
from fossil fuels, which is long-term unsustainable and
has a tremendous environmental impact. Renewable sources
amounted to about 12% of the US electricity production
in 2012 (based on data from the US Energy Information
Administration). Globally, the figures are not much better with
the exception of a few European countries. One of the reasons
for limited renewable adoption is related to the challenge in
real-time matching of supply and demand in the grid. This
already significant challenge is tremendously growing because
of the intermittent nature of renewable energy generation and
the lack of large-scale, green energy storage solutions. As
a consequence, the providers have started to offer incentives
for the demand side, or the electricity consumers, to provide
reserves that can be modulated at the request of the providers.

We believe it would be highly appealing if the IT sector,
whose growth is contributing to increased electricity demand,
could emerge as a major enabler of substantial electricity
generation from renewables. This would effectively make

the growth of the IT sector sustainable and environmentally
neutral, or even beneficial. We envision that the way to achieve
this goal is through the participation of primarily data centers,
and more broadly computing systems, into the emerging smart
grid demand response programs.

In this context, this paper first reviews the energy manage-
ment mechanisms in data centers as well as the programs and
strategies emerging in the smart grid. We then propose policies
that enable a data center to regulate its power according to
the needs of the program it is participating in. These policies
leverage analysis of workload behavior and the available
hardware-software control knobs in data centers, and optimize
the modulation of these control knobs to achieve the dynamic
power consumption targets. We base our evaluation on real-life
power and performance data collected from servers, projected
to cluster level. Our results demonstrate that participating in
smart grid demand response programs, i.e., regulation services
and frequency control, can reduce data center electricity costs
by up to 59.9% and 68.3%, respectively, in a typical scenario
of 50% utilization, while meeting the service level agreements
(SLAs) for quality of service (QoS).

II. BACKGROUND AND RELATED WORK

This section first outlines the related work on data center
power management techniques. We then introduce the emerg-
ing smart grid demand response programs and strategies that
are suitable for the data center to participate.

A. Data Center Power Management and Energy Efficiency

Improving energy efficiency helps the data centers reduce
their operational costs. Power management and energy effi-
ciency at the server / processor level have been studied broadly.
As the number and size of data centers grow throughout
the world, especially following the wider adoption of cloud
services, a number of researchers start focusing on power
management and energy efficiency at the data center level.

A.1. Server / Processor Level Power Management

The majority of the processors today are designed to
support various energy-aware operation settings [10]. Widely
used control knobs include dynamic voltage-frequency scaling
(DVFS) and power gating features to turn off idle units [31].
Multi-core processors offer additional degrees of freedom for
managing power through workload allocation [45]. Recently,
voltage and frequency islands (VFIs) have been introduced for
achieving fine-grained system level power management [41].



Dynamic power management (DPM) at the processor level
typically focuses on designing efficient techniques to put
idle units into sleep states while minimizing the performance
overhead from switching between states [8]. PowerNap is a
similar approach at the server level for eliminating the server
idle power and reducing the state transition overhead [35]. Isci
et al. [29] explore the feasibility of low-latency power states
implemented at the server hardware and introduce a power-
aware virtualization management policy.

Today’s systems also employ power capping mechanisms
to prevent the power from exceeding the peak power con-
straints. DVFS is a popular control knob for capping [20].
For multi-threaded applications, DVFS can be combined with
thread allocation and migration to perform finer granularity
power capping [17], [44].

As the virtualization technique has advanced significantly
in recent years and provides advantages in ease of management
and consolidation, a class of power management techniques
specifically address virtualized servers. vGreen tries to improve
energy efficiency of virtualized servers by linking workload
characterization to dynamic virtual machine (VM) schedul-
ing [19]. Some work studies the power management effective-
ness of CPU consolidation on virtualized system [28]. Turning
CPU resource limits is a recently introduced power manage-
ment control knob on virtualized server that can achieve finer
granularity power consumption compared to DVFS [27].

A.2. Data Center Level Power Management

A data center consists of many servers. In addition to the
power management capabilities available within the servers, a
data center offers other power management knobs, including
power budgeting, job scheduling, and server provisioning.

Some power budgeting approaches consider the heteroge-
nous set of applications and divide total power caps based on
application properties [43], [49]. Gandhi et al. [21] develop
a queueing model and produce theorems that determine the
optimal power allocation under different scenarios including
different arrival rates of jobs, power-to-frequency relationships
in the processors, etc. The power budgeting problem has also
been studied on virtualized systems [39], [40].

Job scheduling impacts the power and performance of data
centers and, therefore, has been extensively studied. First-in
first-out (FIFO) policy is a widely used strategy today because
of its simplicity and fairness. Back-filling is another popular
strategy aiming to improve system utilization [38].

Server provisioning, which decides how many servers
should be active at a given time, is another essential topic
in the data center. Many data centers today leave all the
unused servers in idle states as a conservative approach for
guaranteeing high performance. Leaving many servers idle,
however, causes tremendous waste of energy. Some data
center researchers leverage sleep states to improve energy
efficiency [11], [36]; however, they typically ignore the wake-
up costs from sleep states or use hypothetical server states.
Gandhi et al. [22] propose a SoftReactive dynamic power
management policy, which determines the state of servers in
the data center based on the dynamic workload arrival rate,
and introduce a timeout-based mechanism to sleep servers.
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Fig. 1. Typical PJM 150sec ramp rate (F) and 300sec ramp rate (S) regulation
signal trajectories.

B. Data Center Demand Response Programs and Strategies

While data center energy costs can be reined in by im-
provements in energy efficiency, demand response to spatio-
temporally varying system costs and capacity reserve needs is
emerging as an even more effective money saver. We review
below both legacy demand response programs as well as
new demand response programs that are emerging from the
participation of loads in power markets on par with genera-
tion side participants. Legacy programs include peak shaving,
interruptible load contracts, load shedding and shifting across
time, etc. New power market related demand response includes
the primary, secondary and tertiary capacity reserves by loads.

B.1. Peak Shaving

Most legacy electricity rates for medium to large commer-
cial and industrial power consumers are binary rates including
capacity (i.e., the maximal consumption rate recorded over an
agreed upon period) and energy charges. Assuming coincident
system and individual consumer demand, electric utilities have
relied on a high penalty levied on customer peak kW demand
to lower system peak [26]. Data centers are often under
Coincident Peak Pricing (CPP) rates that charge a very high
cost for usage during the hour that is coincident to the system
peak hour [18]. Data Center power capping techniques have
been clearly motivated by CPP type rates. In fact, power
capping as well as DVFS are both common peak shaving
tools. Delaying or speeding up job processing or transferring
computational load to geographically distant data centers, to
the extent allowed by QoS agreements and available capacity,
provide additional opportunities for peak shaving. Finally,
storage options involving data center UPS facilities present
degrees of freedom for shifting power consumption from on-
peak to off-peak periods [26], [7].

B.2. Capacity Reserves

Load side provision of capacity reserves in cascaded day-
ahead, hour ahead and five minute markets [42], [4] is picking
up traction, with PJM, the largest US Independent System
Operator (ISO), pursing it since 2006 [3]. We consider all
three types of power capacity reserves under the following
notation: primary or frequency control (FC) reserves, R1, sec-
ondary or regulation service (RS) reserves, R2 and tertiary or
operating reserves, R3. Providers are obliged to modulate their
power consumption so as to track a stochastic non-anticipatory
dynamic power target, P target

i (t) for i ∈ 1, 2, 3. For pri-



mary and secondary reserves, the target varies symmetrically
about a fixed average power level P̄i allowing energy neutral
time averaged consumption. Although P target

i (t) dynamics are
stochastic and are revealed to reserve providers in short notice,
their statistical behavior is well known.

Primary or Frequency Control (FC) Reserves

A primary reserve provider that has offered R1 in the hour
ahead market, must modulate its power consumption P1(t) in
real time to track a target P target

1 (t) that is determined as a
function of the local (and hence fully distributed) frequency
measurement ω(t). Denoting frequency deviations from 60Hz
by ∆ω(t) = ω(t)− 60, we have:

P target
1 (t) =



P̄1 −R1, ∆ω(t) ≤ −0.2

P̄1 + (∆ω(t)+0.02)
0.2−0.02 R1, −0.2 < ∆ω(t) < −0.02

P̄1, |∆ω(t)| ≤ 0.02

P̄1 + (∆ω(t)−0.02)
0.2−0.02 R1, 0.02 < ∆ω(t) < 0.2

P̄1 +R1 ∆ω(t) ≥ 0.2

P target
1 (t) is a piecewise linear function of ∆ω(t), represent-

ing the local impact of system-wide supply-demand imbal-
ances. Under most circumstances the statistical behavior of
∆ω(t) constitutes a zero mean white noise, whose variance is
well known at the beginning of the hour.

In FC, P target
1 (t) varies in real time according to ˙∆ω(t).

We approximate the real time dynamics of ω(t) by discrete
time dynamics with a small time increment of 0.1 seconds.

˙∆ω(t) is generally unconstrained, but Ṗ1(t) is of constant
magnitude. More precisely, Ṗ1(t) = SGN(P target

1 (t) −
P1(t))R1/30 MW/sec. When P1(t) = P target

1 (t) then and
only then Ṗ1(t) = 0. As such, there is no tracking error
allowed in FC reserve power output modulation, as is instead
the case with secondary reserves. Although primary reserves
are not yet cleared in power markets, and are in fact provided
by centralized generation facilities [50], in anticipation of
markets evolving in this direction, we assume for purposes
of obtaining a reasonable estimate of primary reserve clearing
prices, ΠR1, that ΠR1

equals several times of the value of
energy clearing prices ΠE . This is a reasonable assumption
given that primary reserves are more valuable than secondary
reserves where we assume that ΠR2

is of the same order of
magnitude as ΠE . In the numerical results reported below we
use the relationship ΠEP̄1 − ΠR1R1 to evaluate the effective
energy cost of a data center that offers FC reserves R1.

Secondary or Regulation Service (RS) Reserves

A significant difference compared to primary reserves of
regulation service (RS) is that each provider is obligated to
track the same relative target determined generally by an ISO
signal that we denote by z(t). In fact, z(t) is the output of a
proportional-integral filter of system wide frequency deviation
and Area Control Error (ACE), determined carefully in order
to complement primary control reserves. Figure 1 depicts
actual historical data trajectories of z(t) corresponding to two
different normalized speeds of 1/150 and 1/300 MW/sec [4].
Note that energy neutrality renders z(t) a zero mean random
variable over the set [−1,+1]. z(t) is centrally determined and
broadcasted at 4 second intervals by the ISO. Although z(t) is
not known to RS reserve providers in advance, it follows a well

behaved two level Markov model whose transition probabilities
can be usually calibrated a few hours in advance.

An RS provider who has offered R2 in the hour ahead
market is obliged to modulate its power consumption P2(t)
to track the target P target

2 (t) = P̄2 + z(t)R2 at a constant,
albeit slower, speed than FC. With energy and reserve market
clearing prices, ΠE and ΠR2, that are of the same order of
magnitude, a RS reserve provider sees an effective energy cost
of ΠEP̄2−ΠR2R2. The credit received may be further reduced
as a function of the tracking error. A more detailed discussion
of data center provided RS reserves can be found in our recent
work published in [13], [12].

Recent studies on data canter RS provision include Aikema
et al. [6], where multiple ancillary service provision programs,
including RS, by data centers are considered. Brocanelli et
al. [9] propose to jointly leverage a data center and its
employees’ PHEVs to provide RS. Our previous work [14],
[12] considers a real-life data center model and examines
power management techniques that enable the provision of RS.

Tertiary or Operating Reserves

Concluding with tertiary reserve provision we note that
it is scheduled in the 5 minute power markets. It involves
rescheduling of the provider’s consumption from a pre-
contingency or pre-congestion level P̄3 to a post contingency
or post congestion level that is as much as R3 lower. That
lower level must then be maintained for up to a few hours.
Tertiary reserves provide the opportunity to computing loads
spread across distant geographic areas to re-route jobs between
them. The speed at which tertiary reserves must be offered
is far slower than that of primary or secondary reserves,
which is R3/900sec, compared to R1/30sec and R2/150sec.
While most flexible loads such as EVs are capable of inter-
temporal rescheduling, geographically dispersed but coordi-
nated computing loads, such as data centers with excess pooled
capacity, are uniquely qualified for geographic rescheduling.
Benefits from reduced computing load cost, as well as power
network congestion costs can be significant. For example, PJM
locational marginal prices on July 19, 2013, 4:05pm, range
from $30 to over $500/MWh [1]. This is a case in point
of the effectiveness of data transfers over fiber optic lines
undertaken in order to compensate for electricity transmission
line congestion. Tertiary reserves are often operated with load
migration discussed further below.

Participation of Data Center in Smart Grid Reserves

It is the aforementioned role of providing capacity reserves
we envision for data centers, and more broadly, for computing
systems. In today’s grid, the FC and RS needed to ensure sta-
bility by guaranteeing tolerable ACE and frequency deviation
errors amounts to about 0.1% for FC and 1% for RS related to
the total electricity load. This amount is in fact comparable to
the 2-3% figure attributed to electricity consumption by data
centers [30]. Tertiary reserves can be offered effectively by
geographically distributed, yet collaborating, data centers re-
lying on excess capacity auctions as those introduced recently
by Amazon [2].

Considering today’s market conditions, secondary reserves
are traded at a price comparable to the price of energy, while,
if primary reserves are introduced into power markets, they



will probably command higher clearing prices. This implies
that a data center able to provide RS reserves equal to 50%,
or alternatively FC reserves equal to 10%, of its average
energy consumption, may be able to reduce its energy cost
by up to 50%. There are, therefore, substantial increasing
economic incentives for data center operators to participate
in jointly clearing energy and reserve markets. The associated
societal and sustainability benefits that may result from greater
adoption of renewables enabled by effective data center reserve
provision are clearly enormous.

B.3. Load Shedding, Shifting and Migration

Load shedding, shifting and migration constitute data cen-
ter strategies applicable to various demand response programs,
e.g., peak shaving and interruptible contracts. Load shedding
refers to a temporary load reduction without a future pay
back. As such, load shedding is usually accompanied with
QoS degradation. Load shifting, on the other hand, refers to
temporary idling or shutting down of servers associated with
shifting computing tasks to a future time. Generally speaking,
all inter-temporal job rescheduling strategies come under load
shifting. Load migration refers to geographic shifting of load
to another data center or cluster [24].

Lawrence Berkeley National Laboratory (LBNL) investi-
gates various power management techniques, including load
shedding and shifting, and studies degrees of freedom in data
center power usage as demand response [24]. Liu et al. [34]
compare the capacity of data center demand response, mainly
load shedding, with large-scale storage in stabilizing the power
network. Ghamkhari et al. [23] examine potential data center
benefits associated with participation in a voluntary dynamic
load reduction program.

Load migration technique has been broadly studied re-
cently. Chiu et al. [15] propose a low-cost geographic load
migration solution to balance the grid. Liu et al. [33] explore
the benefits of geographical load balancing. Lin et al. [32]
propose an online algorithm for geographical load balancing
and study the potential environmental benefits of it. Some work
formulates and solves the interactions between power grid and
data centers in geographic load balancing as a game theory
problem [46], [48]. Wang et al. [47] propose to migrate the
workload geographically using VM migration techniques.

In this work, we focus mainly on comparing data center
energy management methods against peak shaving and ca-
pacity reserves. We leave investigation of geographical load
modulation methods to future work.

III. MODELS AND METHODOLOGY

In this section, we introduce the data center model and the
methodology we use in the experiments for evaluating benefits
of the data center participation in different demand response
programs and strategies.

A data center consists of hundreds to thousands of servers,
with each of them being able to operate at different power
states. There are three common states: active, idle, and
sleep [12]. The power consumption of an active server can be
modulated by power management techniques, such as DVFS
or CPU resource limits [27]. We use the CPU resource limits
knob in the hypervisor to modulate the dynamic power of

active servers in this work. CPU resource limits change the
resources allocated to a VM on the server, and as a result,
modulate the server dynamic power and the throughput.

To acquire the relation between active server dynamic
power and server throughput by using the CPU resource
limits, we virtualize a 1U server by VMware vSphere 5.1
ESXi hypervisor. Our server has an AMD Magny Cours
(Opteron 6172) processor, with 12 cores on a single chip.
We run applications from the PARSEC-2.1 [16] benchmark
suite under different power-performance settings by leveraging
CPU resource limits. Results show a linear relation between
the active server power, Pactive, and the server throughput,
represented by the retired instructions per second (RIPS), as
Pactive = k ∗RIPS + Pidle. Pidle is the power consumption
of the server idle states (when no user application is running)
and k is a constant that depends on the type of the workload.
Detailed results on server dynamic power and RIPS are shown
in our prior work [14], [13].

Compared to the “idle” state, a server in “sleep” state
consumes significantly lower power. Sleeping servers, how-
ever, cannot immediately serve new jobs, as they need to be
waken up first. The wake up time delay, Tup, ranges from tens
of seconds to several minutes, depending on available sleep
modes [29]. The delay of sleeping or turning off a server
typically is small and can be ignored. Moreover, during the
waking up process, servers usually consume power at the
maximal rate, Pmax [29], which lead to additional waking
up energy cost Eup = Tup ∗ Pmax. In this work, we do not
consider completely turning off servers because of the large
delays in booting. In fact, due to this reason, servers in a real-
life data center are rarely completely turned off.

We assume a first-in first-out (FIFO) queue for holding
incoming jobs that are not served immediately. Such a queuing
model is typically used in data centers that mainly aim at
serving high performance computing (HPC) type workloads or
research/study oriented workloads at universities and academic
institutes. Unlike interactive or transactional workloads (i.e.,
web request, stock exchange, etc.), these workloads are more
flexible and tolerable to servicing delays. Therefore, in our
model, some workloads may wait in the queue instead of being
immediately serviced once they arrive.

We assume jobs arrive following a Poisson process, which
is commonly used in data center workload simulation. Then
we generate the job queues using Monte Carlo simulation. For
each job j, a random number rj is generated. rj is used to de-
termine the job arrival time interval; i.e., τj = −ln(1− rj)/λ,
where λ is the job arrival rate. In our model, we assume
each server only serves one job a time and do not consider
server consolidation. We calculate λ based on our target data
center utilization, U , which is the average percentage of servers
that are active at each time interval. U is determined by
the workload arrival rate λ. We simulate a 1-hour period 10
times and evaluate the performance based on the mean and
standard deviation statistics. Without loss of generality, we
study homogeneous servers and workloads in this work. In
fact, a heterogeneous data center with different types of servers
and workloads can be split into homogeneous clusters. Also,
many HPC clusters include dedicated, optimized set of servers
assigned to specific jobs.



IV. PROPOSED POLICIES FOR DATA CENTER
PARTICIPATION IN SMART GRID PROGRAMS

In this section, we first propose a power control policy to
minimize the energy consumption while guaranteeing the QoS
in a data center. We then introduce policies for data center
participation in different demand response programs.

When participating in demand response programs, the data
center first sends requests to ISO for participation, daily
or hourly. The requests can be a provision of peak power
reduction, or a bid of RS, etc. Once the requests are approved,
a master node in the data center receives requirements (usually
peak power caps or regulation signals) from ISO dynamically.
It then calculates the power budget for each server and
broadcasts the information. Job scheduling is also performed
by the master node. Each server then runs workloads within
the given power budget, by leveraging DVFS or CPU resource
limits control. The QoS of workloads is sent back to the master
node by servers periodically. Based on the QoS feedback, the
master node alters the decisions.

We evaluate the job QoS by using a probabilistic SLA
constraint on the normalized performance. The normalized
performance, Dj , is the ratio of the job servicing time Tj
under the proposed policy, to the shortest possible processing
time on our server, i.e., Tj,min, for the job j. Tj,min refers
to the time of running the job j without any power capping
restrictions and without any waiting time in the queue. Thus,
Dj = Tj/Tj,min and Dj = 1 means that there is no
performance degradation. SLA is defined as (d, η), and the
SLA is violated if Probability{Dj < d} < η.

A. Minimizing Energy Consumption

Due to the waking up delay and cost, many data centers
simply use an All-on policy, which never puts any server to
sleep. Gandhi et al.’s [22] SoftReactive policy puts servers
into sleep state to save energy, if they have been idle longer
than a timeout threshold. However, SoftReactive does not
take the job QoS into account while making decisions. It
simply wakes up equal number of servers to the number of
arrival jobs at every time interval. In fact if a large QoS
degradation is tolerable, then energy may be further saved,
and the peak power can be reduced. Differently from prior
work, our proposed power control policy, QoS-feedback, not
only leverages power management and server provisioning, but
also takes real-time QoS into account while making decisions.

First, in order to avoid frequent transitions between “idle”
and “sleep” state, we implement the timeout mechanism similar
to the policy in prior work [22]: if a server has been in idle
longer than a timeout threshold, i.e., Ttout, then it automati-
cally sleeps. A good threshold could be: Ttout =

Tup∗Pmax

Pidle
,

recall that Tup is the server waking up time, Pmax is the
power consumption during waking up period, which equals to
the maximum, and Pidle is the server idle power. In addition,
in order to maximize the number of sleeping servers to save
energy, we sort servers based on their cumulative time in the
idle state at each moment t, i.e., Tidle(t). Servers with the
smallest Tidle(t) are activated first if some jobs are required
to be served at t. Similarly, servers with the largest Tidle(t)
are put to sleep first if needed.

Second, since we have a linear relation between the active
server power, Pactive, and the server throughput RIPS, as
Pactive = k ∗ RIPS + Pidle, for the energy saving purpose,
when we activate a server, setting it up at maximal throughput
to reduce the processing time helps minimize the energy waste
caused by Pidle. Therefore, we run the active servers at their
highest throughput and do not modulate their power, when the
goal is to minimize energy consumption. In other words, we
use server provisioning as the control knob when minimizing
energy with QoS constraints.

The main idea of QoS-feedback is to determine the minimal
number of servers needed at time t, i.e., Nmin(t), based on the
current length of queue and the overall QoS performance till t.
Let us assume at time t, there are S(t) jobs running, Q(t) jobs
waiting in the queue, and F (t) jobs that have already been
finished. The servicing time of finished jobs, i.e., Tj , j =
1, 2, ...F (t), are known. For jobs that are currently running,
we estimate the finishing time based on the current throughput
RIPSj(t), j = 1, 2, ...S(t). Recall that the QoS constraint is
defined as (d, η), we calculate the minimal number of jobs in
the queue, i.e., QSLA(t), that are required to meet their SLAs,
so that the overall SLA will be met:

QSLA(t) = η(S(t) + F (t) +Q(t))− SSLA(t)− FSLA(t)
(1)

where SSLA(t) and FSLA(t) are numbers of running and
finished jobs that are expected to meet or have met the SLA,
i.e., Tj/Tj,min < d, respectively. Then the estimated minimal
number of servers needed for these QSLA(t) jobs to meet their
SLAs is:

Nmin(t) =
QSLA(t)

d
(2)

Based on current states of all servers in the data center, we
calculate the number of additional servers that are required to
be waken up to meet the SLA (or the number of spare servers
that can be put towards sleep states), i.e., Nreq(t), as:

Nreq(t) = Nmin(t)− (Nactive(t) +Nwaking(t) +Nidle(t))
(3)

where Nactive(t), Nwaking(t), and Nidle(t) are the numbers
of active servers, servers in the waking up process, and idle
servers at time t, respectively. Nreq(t) > 0 indicates that some
servers should be waken up in order to satisfy the overall SLA
constraint, while Nreq(t) < 0 represents that there is additional
room for putting some servers to sleep to save energy. Then
the power management policy is as follows:

(1) If Nreq(t) > 0: the number of servers to wake up is
min(Nreq(t), Nsleep(t)), where Nsleep(t) is the total number
of sleeping servers the data center has at t.

(2) if Nreq(t) < 0, then there is no need to wake up any
server. Instead, we can put some idle servers to sleep states.
However, as we also apply the timeout mechanism, rather than
immediately putting spare servers into sleep states, we keep
them idle and wait for Tidle(t) to increase. In this case, the
number of idle servers that should be activated at t to serve
waiting jobs is:{

0, if Nmin(t) ≤ Nactive(t)

min( Nmin(t)−Nactive(t), Q(t), Nidle(t) ), otherwise.



B. Provision of Regulation Service (RS)

As introduced in Section II, the goal of the RS policy
in a data center is to track the power signal P target

2 (t) =
P̄2 + z(t)R2 accurately, while also guaranteeing the workload
QoS (i.e., satisfying the SLA), and improving the energy
efficiency if possible. P̄2 and R2 are estimated average power
consumption and capacity reserves that are bid by the data
center operator to ISO one hour ahead. In our RS policy, we
leverage both server provisioning and the CPU resource limits
knobs to track the ISO signal. We dynamically monitor power
consumption P2(t) of data center at every second t and tune
power based on the tracking performance. The RS policy is
briefly introduced as follows. More detailed descriptions of
the policy and the estimations of (P̄2, R2) are in our previous
work [12].

Case 1- If P2(t) < P̄2 + z(t)R2, i.e., the power consumption
needs to be increased, we do the following three steps in order
until P2(t) = P̄2 + z(t)R2 :

(1) Increase power consumption of some active servers that
are not running at maximal capacity to Pmax;

(2) If there are jobs in the queue and there are idle servers,
then activate some idle servers with jobs in the queue and run
them at maximal capacity with power consumption at Pmax;

(3) Resume some of sleeping servers.

Case 2- If P2(t) > P̄2 + z(t)R2, i.e., the power consumption
needs to be decreased, we do the following two steps in order
until P2(t) = P̄2 + z(t)R2:

(1) Decrease power consumption of some active servers to
Pmin. Pmin is the minimum power consumption that we set
when serving a job to avoid the job being stalled in the server
for a long time and to guarantee QoS. Pmin can be determined
by the QoS requirements;

(2) Sleep some idle servers following timeout mechanism.

C. Peak Shaving

The goal of peak shaving is to eliminate the peak power
so as to reduce the charges, while also guaranteeing the QoS.
We propose a peak shaving policy that leverages both server
power capping (using resource limits) and server provisioning.
Assuming the original peak power of the data center is Ppeak,
and a β percent of peak is required to be shaved to, i.e.,
during the peak shaving time period (either an hour or a
month), the data center has a strict power cap, βPpeak that
cannot be violated. Similar to the RS program, we have a
power consumption constraint to obey. However, unlike the
ISO power constraint in RS that is dynamically changed, the
constraint in peak shaving program is fixed during the time
period. Moreover, in RS we track the power signal with some
degrees of tolerable tracking error, while in peak shaving,
though the power consumption is strictly capped at βPpeak,
there is no further constraint on power consumption as long
as the power is lower than the cap. Therefore, our peak shaving
policy is a modified version of the RS policy introduced before
and defined as follows:

Case 1- If P (t) < βPpeak, i.e., the power consumption is
lower than the cap, then we do the following three steps in
order, and stop once power consumption hits the capping value:

(1) Increase power consumption of some active servers that
are not running at maximal capacity to Pmax;

(2) If there are jobs in the queue and there are idle servers,
then activate some idle servers with jobs in the queue and run
them at maximal capacity with power consumption at Pmax;

(3) If there are still jobs in the queue, but there is no spare
servers, then wake up some servers until either the number of
waken up servers equals to the number of jobs in the queue,
or the total power consumption hits the power cap.

Case 2- If P (t) > βPpeak, i.e., the power consumption
exceeds the cap, we do the following two steps in order until
P (t) = βPpeak:

(1) Decrease power consumption of some active servers to
Pmin. Pmin is the minimum power consumption that we set
when serving a job to avoid the job being stalled in the server
for a long time and to guarantee QoS. Pmin can be determined
by the QoS requirements;

(2) Sleep some idle servers following timeout mechanism.

D. Provision of Frequency Control (FC)

Similar to RS, the goal of frequency control (FC) is to
consume power dynamically following a signal, while also
guaranteeing the workload QoS (i.e., satisfying the SLA),
and improving the energy efficiency if possible. However, in
contrast to RS, which uses a centralized ISO signal that is
broadcast every 4 seconds, the signal of FC is generated based
on the local frequency deviation observation, and typically
varies continuously, or changes much faster (10x) than the
ISO signal in RS. In addition, demand side in FC is required
to react immediately and exactly following the dynamics of the
signal with its maximal possible capacity, i.e., tracking error is
not adjustable. These two requirements result in difficulties for
most demand side to participate in the FC program. However,
the price of reserves in FC is much higher (5x) than that of
reserves in RS, which may lead to more savings.

To modulate power consumption following a frequency
deviation based FC signal, ω(t), and the correlated power
target, P target

1 (t) introduced in Section II, in our FC policy,
the data center only leverages CPU resource limits (or DVFS),
and does not apply server provisioning as the control knob,
for the reason that the overhead of waking up a server is too
large to meet the requirement of FC. Therefore, only active
servers can provide reserves. DVFS can be modulated with µs
- level overhead, and CPU resource limits can be modulated
at ms - level in current hypervisors [25], thus, practically
at real-time for our purposes. We expect future hypervisors
or OS to provide finer granularity, lower overhead resource
control options. We first estimate the (P̄1, R1) for FC. Given
the workload information and data center utilization, U , we
estimate the number of servers that are needed to be active
during the hour as:

Nh
act = αUNdc (4)

recall that Ndc is the total number of servers in data center.
Here α > 1 is the slack provided in order to guarantee job QoS
performance, as the data center should be capable of handling
the situation when the number of new arrival jobs is larger than
the average. In our FC policy, these Nh

act servers are always



turned on, waiting for the incoming jobs and never sleep. We
sleep all the rest servers and do not wake up them during the
hour, i.e., we have Nh

sleep = Ndc − Nh
act sleeping servers in

that hour. A good α should guarantee QoS while also trying
to minimize the energy consumption.

Since reserves are provided only from active servers, and it
is assumed that all servers in the data center are homogeneous,
estimating (P̄1, R1) for the data center is equivalent to solve
(P̄ server

1 , Rserver
1 ) of each server. In order to guarantee job

QoS and meet the SLA requirement, i.e., (d, η), we set a
minimal power consumption for the active server, Pmin as:

Pmin =
β(Pmax − Pidle)

d
+ Pidle (5)

where Pmax−Pidle

d + Pidle is the minimal power required to
meet the constraint d, without considering job waiting time
in the queue. β > 1 is provided as the slack, considering the
job waiting time. One way to determine β is provided in our
previous work of the single server RS provision problem [13].
Then for each active server we have (P̄ server

1 , Rserver
1 ) as:

P̄ server
1 = (Pmax − Pmin)/2 (6)

Rserver
1 = Pmax − P̄ server

1 (7)

and thus, (P̄1, R1) of the data center are:

P̄1 = P̄ server
1 ∗Nh

act + Psleep ∗Nh
sleep (8)

R1 = Rserver
1 ∗Nh

act (9)

Since we do not leverage different server states to provide
reserves, our FC policy is similar to the single server RS
provision policy introduced in the previous work [13], with
an additional power budgeting strategy for the multiple server
scenario. Our FC policy is as follows:

(1) At each time t, we equally distribute the power cap
P target

1 (t) = P̄1 + ω(t)R1 to the active servers, hence the
power for each server is P target

server(t) =
P target

1 (t)

Nact(t)
, where

Nact(t) is the number of active servers at t, and Nact(t) ≤
Nh

act. The power cap can be equally distributed amongst
servers because of the server and workload homogeneity. Other
budgeting policies can be applied ([49], [21]).

(2) Each server modulates the power consumption
Pserver(t) with the CPU resource limits as follows, in order
to best track the FC signal and the correlated power cap
P target
server(t):

Pserver(t) = argmin|P target
server(t)− Pserver(t)|,

Pidle < Pserver(t) < Pmax.
(10)

V. EXPERIMENTAL RESULTS

In this section, we first compare the energy consumption,
the peak power and the overall cost of multiple data center
strategies proposed in Section IV, under the same data center
configuration, with the same workload trace, and the same QoS
SLA constraints. Then we modify the scenario by changing
system utilization, types of workload, and sleep state charac-
teristics. Finally we discuss how the control knobs of these
strategies can be used to obey different SLA requirements.

The number of servers in the data center of our exper-
iment is, Ndc = 1000. Two types of server sleep mode
are used for comparison: shallow sleep and deep sleep. For
shallow sleep, we have the wake up delay Tup = 10s, and
the power consumption in sleep state Psleep = 10%Pmax.
For deep sleep, Tup = 200s and Psleep = 5%Pmax [29].
Server idle power is Pidle = 63.0W , and maximal power is
Pmax = 152.94W , measured on our real-life AMD server in
the lab. Four workload traces are generated for testing: three of
them are of streamcluster workload under different data center
utilization levels as 20%, 50% and 80%, and the fourth one
is a trace of blackscholes workload for the 50% utilization.
Both streamcluster and blackscholes workload are from the
PARSEC-2.1 [16] benchmark suite. The shortest processing
time of streamcluster on our AMD server is T stc

min = 151.24s,
and of blackscholes is T bls

min = 23.5s. The SLA constraint
we use in experiments is (d, η) = (2, 95%), which represents
that at least 95% jobs need to have a servicing time less than
twice of the shortest processing time. Typically, data center
operators require that the 95th percentile of servicing time,
d95, stays below a certain threshold [22].

In our experiment, the clearing price of the energy con-
sumed is, ΠE =10.7 cents/KWh, and the peak power price
is ΠP =12 $/KW (monthly) [26]. Prices vary in different
regions and time. The price information that we use is from
Georgia Power [26]. This is a reasonable reference as the
world’s largest data center, the Google data center, is located
in Georgia. For emerging smart grid programs, e.g., the regu-
lation service (RS) and frequency control (FC) in this paper,
utilities do not charge peak power separately, and instead, the
peak power cost is implicitly included in the cost of energy
consumption. In order to make a fair comparison of total costs
among different strategies, we calculate the converted energy
consumption clearing price of RS and FC programs, Πcvt

E , by
taking peak power price into account, as follows:

Πcvt
E =

ΠE ∗ Em + ΠP ∗ P peak
m

Em

(11)

where Em is the monthly energy consumption and P peak
m is

the peak power in the month. We assume that a monthly power
trace is 24*30 repetitions of an hourly power trace, then we
have Em = 24 ∗ 30 ∗Ed

h and P peak
m = P d,peak

h , where Ed
h and

P d,peak
h are energy consumption and the peak power of the

hourly power trace. The hourly power trace selected to do the
price conversion in Eq. (11) is the one generated in the scenario
of 50% streamcluster workload with the All-on policy. After
conversion, Πcvt

E =12.58 cent/KWh. In RS we assume the price
of reserves, ΠR2 = Πcvt

E , and in FC we assume the price of
reserves, ΠR1 = 5Πcvt

E .

The policies evaluated in the experiment include: All-on,
SoftReactive, QoS-feedback, PeakShaving, RS and FC. For
All-on, SoftReactive, QoS-feedback and PeakShaving, the total
monetary cost is calculated as the sum of the cost of energy
consumed and the penalty cost of peak power, using the
price ΠE and ΠP , while for the RS and FC, the total costs
are calculated by Πcvt

E P̄2 − ΠR2R2 and Πcvt
E P̄1 − ΠR1R1

respectively, recall that the penalty cost of peak power is
included in the price Πcvt

E .
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Fig. 2. Comparison of energy consumption, peak power and monthly bill for different policies and programs under various scenarios. Figure 2(a), 2(b) and 2(c)
are the comparison of policies under different data center utilization U = 20%, 50% and 80%; Figure 2(d), 2(e) and 2(f) are the comparison of policies with
different workloads, i.e., blackscholes and streamcluster; Figure 2(g), 2(h) and 2(i) are the comparison of policies with server using “shallow” and “deep” sleep
states.

A. Energy Efficiency and Monetary Costs Comparison

Figure 2(a) to 2(c) show the results of energy consump-
tion in an hour, peak power and total monthly bill cost for
different policies of the streamcluster trace under different
utilization. In all these scenarios, the shallow sleep state is
used when sleeping servers. We also include the Oracle energy
consumption into comparison in Figure 2(a). Oracle energy
consumption is the minimal energy required to finish all jobs.
It theoretically sums up the energy needed for all jobs with
the energy consumed in sleep state by all the spare servers.

Figure 2(a) shows that QoS-feedback policy always
achieves the lowest energy consumption. It saves 8% - 46.4%
comparing to theAll-on policy and is only 1.2% - 2.4% greater
than the Oracle. When increasing the data center utilization,
the differences in energy consumption of various policies get
smaller, because the flexibility of energy consumption of the

data center with a high utilization is low. In addition, the
energy consumption of SoftReactive and QoS-feedback are
similar regardless of utilization. This is because that both of
them present close results to the Oracle, hence, the room for
further improvement is limited. One interesting result is, the
PeakShaving policy also has low energy consumption.

Figure 2(b) shows that PeakShaving policy always achieves
the lowest peak power in all scenarios as expected. It reduces
the peak power around 10.3% -46.8% comparing to the All-on
policy. It is also shown that lower utilization increases room
for PeakShaving to reduce the peak power. In addition, RS
policy always achieves the highest peak power, for the reason
that in order to maximize the capacity reserve R2 so as to
increase the monetary saving, RS policy tries to reach to a
very large dynamic power range. For FC policy, however, as
we put spare servers always in sleep state and only regulate



those active servers, the peak power is lower than that of the
RS policy.

Figure 2(c) shows the monthly bill of different policies.
The monthly bill is calculated based on the costs of the test
hour multiplied by 720 hours/per month. The results show
that comparing to the All-on policy, all the other policies
save money. Among them RS and FC save the most. RS
saves from 17.1% to 81.2% and FC saves from 67.1% to
71.7%. When utilization is low, RS saves the most, and when
utilization is high, FC saves the most. This is because RS
policy leverages different server states to provide reserves, and
when utilization is lower, there is more room for RS to enlarge
reserves. However, FC policy does not apply server states to
provide reserves, hence the savings from FC are not sensitive
to utilization.

Figure 2(d) to 2(f) compare the power consumption, peak
power and monthly bill of policies with two different types
of workloads, blackscholes and streamcluster, at 50% uti-
lization. We compare between this two workloads because
their processing time are quite different. Processing time of
blackscholes is about 6 times shorter than that of streamcluster.
There is no notable difference between these two cases shown
from the results. Thus, the energy consumption, peak power
and costs of these policies are not sensitive to types of
workloads.

Figure 2(g) to 2(i) show the results of using different sleep
state characteristics: shallow sleep and deep sleep. One notable
change is, the cost of RS increases around 66.4% when using
deep sleep instead of shallow sleep, while the cost of FC is
unaffected. In addition, there are notable increases in peak
power in both SoftReactive and QoS-feedback policies. This
is because that waking up servers from deep sleep state takes
longer time (200 sec), during which servers are at the maximal
power. Thus, servers have higher probabilities of staying in
a high power consumption state, which potentially leads to
higher peak power of the data center.

Overall, all the polices help data center eliminate the
monetary costs. Participating in emerging smart grid programs
such as RS and FC can achieve even higher savings. When the
utilization of data center is high or the sleep state is “deep”, FC
outperforms RS. When the utilization is low, RS can provide
more savings. Savings of all programs are insensitive to types
of workloads.

B. Control Knobs for Different QoS Constraints

Table I lists the control knobs that are able to be leveraged
in policies to satisfy different QoS constraints. There is no
adjustable control knob for All-on and SoftReactive policies,
as these two policies simply run workloads as soon as they
arrive and as fast as possible. In the QoS-feedback policy, QoS
constraints are guaranteed by the policy, as the policy always
makes decisions dynamically based on the QoS measurement.
However, the total energy consumed of QoS-feedback policy
is not sensitive to the QoS requirement, as it has already
been close to the Oracle bound and the room for further
improvement is limited. In peak shaving, QoS is adjustable by
changing the peak power cap, i.e., Pcap. A lower cap typically
leads to poorer QoS. In both RS and FC programs, the QoS
is adjustable by tuning the bidding values P̄i and Ri. In our

TABLE I. QOS TUNING KNOBS FOR VARIOUS POLICIES

Policies QoS Tuning Knobs

All-on N/A

SoftReactive N/A

QoS-feedback QoS feedback settings

PeakShaving Peak power capping value Pcap

RS P̄ and R

FC Percentage of sleeping servers, P̄ and R

previous work we have discussed the estimation of P̄ and R
based on the QoS requirement [13], [12]. For example, the
result of a sensitive analysis shows that QoS performance is
much more sensitive to P̄ rather than R [13]. Hence we first
do the coarse tuning by changing P̄ , then the finer grain tuning
by changing R. There is an additional control knob in FC that
is able to impact the QoS, i.e., the percentage of servers put in
sleep state. The larger number of servers are in sleep mode, the
poorer the QoS will be. Currently, we determine the number of
sleeping servers based on the data center estimated utilization
and some fixed slack. A smarter algorithm could be designed
to determine the percentage of sleeping servers based on both
the data center utilization and the QoS requirement.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a QoS based data cen-
ter level dynamic power management policy, QoS-feedback,
aiming at energy consumption minimization. We have also
proposed policies for the data center to participate in various
smart grid demand response programs, including peak shaving,
RS and FC. We have compared the energy consumption, peak
power and overall costs of different policies. Experimental
results show that with a prerequisite to meet the QoS SLA
requirement, in a typical 50% utilization data center, our
QoS-feedback policy reduces the energy consumption up to
21.2%. Our PeakShaving policy reduces the peak power up
to 21.0%. The proposed RS policy can reduce monetary costs
up to 59.9%, and the proposed FC policy can save money
up to 68.3%, compared to the All-on policy used in today’s
data center, regardless of types of workload. Overall, it has
been shown that participation in smart grid demand response
programs, especially the emerging RS and FC programs, can
help a data center achieve tremendous monetary savings, while
also providing the ISOs and the society in general with cost
effective demand side reserves that render massive renewable
generation adoption affordable.
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