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Abstract—Following our previous work on the control of mul-
tiple appliances in response to Independent System Operator
(ISO) Regulation Service Signals (RSS), we model the ISO’s
RSS dynamics - evolving in a time scale of seconds – as a
two level Markov process whose transition probabilities are
calibrated on actual data. Appliance response is modeled as
a Markov modulated process consistent with an exponentially
distributed time to switch off and an expected utility that is
concave in the price charged when an appliance turns on. Prices
are broadcasted dynamically by a Smart Building Operator
(SBO) with the objective of maximizing the time average of
utility gained when appliances turn on minus the cost of
imperfect RSS tracking. We prove certain properties of the
stochastic Dynamic Programming (DP) policies that allow us to
formulate the problem as an approximate Discrete State and
Control Space DP and propose a reasonable approximation that
renders the problem scalable to multiple appliance categories.
The discretized state DP solution can be obtained as a solution to
a Linear Program (LP). The LP provides the optimal dynamic
price control policies and in addition yields the requisite
information needed by the SBO to bid optimally for energy and
Regulation Service Reserve (RSR) Capacity in the hour ahead
balancing market. Solving for the discretized real time market
optimal price policies, using them to calibrate a continuous
analytic policy function, and extracting from the real time
optimal policies the optimal bid to the hour ahead forward
balancing market is the main contribution of this paper.

Index Terms—Distributed Demand Management, Regulation
Service Provision, Real Time Stochastic Control, Hour-Ahead
and Real Time Market Response

I. INTRODUCTION

The advent of the smart grid will undoubtedly enable
broader participation in Electric Power Markets including
Smart Building Operator (SBO) managed loads in com-
mercial and residential buildings [3, 4, 5]. Power Market
transactions cover a basket of related products that include
stand-by reserve capacity in addition to energy [4, 5, 6, 7,
8, 9]. In fact, reserve requirements are likely to increase
with the adoption of renewable generation which is clean but
intermittent and volatile [2]. The cost of reserves, particularly
fast up-and-down secondary reserves, is already substantial,
in fact it is comparable to that of energy [4, 5]. Today,
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secondary reserve requirements are approximately 1% of
peak load, are procured in the day ahead or hour ahead
forward markets, and utilized as needed by the Independent
System Operators (ISOs) in real time to deal with stochastic
demand and volatile uncontrollable generation fluctuations.
Whereas today, secondary reserves commonly known as
Regulation Service Reserves (RSRs) are provided for by
flexible generators who are capable of modulating their
output in positive as well as negative increments – hence the
up-and-down nature of RSRs – expectations for increased
RSR requirements as we go forward may pose unsustainable
costs to substantive integration of renewable generation.
Fortunately, the simultaneous increase in the adoption of
flexible or deferrable loads with storage-like capabilities
such as Electric Vehicle (EV) battery charging and duty
cycle appliances, may provide synergistic reprieve [16,17] by
augmenting the supply of RSRs and thereby controlling their
cost. In this paper, we provide a decision support framework
for flexible loads represented by SBOs to (i) participate in
forward power markets through the flexible loads with RSR
capabilities that the SBO represents, and, more importantly
(ii) to track optimally the dynamic regulation signal that the
ISO transmits in real-time. In fact, optimal bidding to the
forward market is dependent on the expected costs associated
with the optimal SBO dynamic policy used to respond to
the ISO regulation signal. The coupling of cascaded markets
such as the forward hour ahead market and the real time
management of regulation signal tracking, is examined in a
general manner in [18].

We start by describing the forward markets where RSR,
QR, and Energy, QE , bids are made by the SBO, and then
proceed to describe the task of the SBO in tracking the ISO
dynamic regulation signal.

In the forward power market, the SBO secures a base
Energy load QB , and offers a flexible load that can consume
at a controllable rate ranging between 0 and 2R. We model
here the market rules adopted by Eastern US Interconnection
ISOs such as PJM and NYISO, where the provider of RSR
promises to respond to up or down real time dynamic signals
broadcasted by the ISO in the aforementioned range, while
the ISO commits to broadcasting dynamic up and down
signals whose time average is 0. Because of the bidirectional
nature of RSRs, the energy, QE , and bidirectional capacity,
QR , that the ISO may schedule must conform to the
following constraints: 0 ≤ QR + QE ≤ 2R and QR ≤ QE .
As described in more detail in Section IV, if the SBO



reservation prices and the market clearing prices for energy
and RSRs satisfy a market event that schedules positive QR ,
then, the maximum RSR is scheduled and the market clearing
satisfies QR = QE = R. Denoting the market clearing
prices for energy and RSRs respectively by ΠE and ΠR,
the SBO (i) is charged by (QB + R)ΠE − RΠR , but the
cost reduction RΠR does not come for free, since (ii) the
SBO will have to take control actions in real-time to respond
to a regulation signal, y(t), that the ISO updates every few
seconds during the hour that follows the clearing of the hour
ahead forward market. More precisely, the SBO must regulate
the flexible load QE in real time, so that QE(t) ≈ R+Ry(t),
where y(t) is a regulation signal broadcasted dynamically
by the ISO taking values in the interval [−1, 1] with a time
average of 0. This results in a time average of QE(t) equal
to R. While, there are no additional payments during the
real time tracking period, there may be costs associated with
|QE(t)−R−Ry(t)| > 0 i.e., there are performance-based-
penalties 1 for the SBO. In addition, the SBO may inflict
utility loss to the users of the appliances constituting the
flexible load QE(t).

This paper is a follow up on related past work [14, 15] fo-
cusing on the problem where ISO real time regulation signal
is independent of SBO feedbacks, an assumption used in that
earlier work, and addressing the dynamic control policies as
opposed to static asymptotic control considered in that earlier
work. In addition, in this paper we consider explicitly the
interaction of optimal real time control and forward market
bidding strategy. The rest of the paper is organized as follows.
In Section II we develop the models used to represent flexible
load response to a dynamic price signal and the stochastic
dynamics of the ISO regulation signal. In Section III we
present the optimal SBO tracking policy problem and propose
several approximate SDP solution approaches, including one
that is scalable to multiple flexible appliance classes since it
decomposes the large multiple class problem to many single
class problems. In Section IV we present the relationship
between the hour ahead forward market optimal bid strategy
and the real time tracking control policy, and sketch an
algorithm for optimizing the hour ahead bid strategy. In
Section V we present numerical results and conclude in
Section VI.

II. CONSUMPTION AND REGULATION REQUEST SIGNAL
MODELS

A. Duty Cycle Appliances (HVAC, Refrigerators, Hot Water
Heaters)

Consider a building or a neighborhood with N appliances
for example heating zones - of which, at time t, n(t) are
connected and consume actively at a rate of r kW each,
while the rest, N − n(t), are idle or disconnected and not
consuming. We assume that when an appliance connects, i.e.

1For example, the PJM ISO RSR market rules provide RSR providers
with good performance based incentives or negative penalties that are
conceptually equivalent.

starts to consume, it joins the infinite server queue of active
appliances and continues to consume for a time period τ
with E[τ ] = 1/µ. When it stops consuming it starts idling.
The SBO acts as the appliance coordinator by broadcasting
dynamically a price u(t). Idle devices detect u(t) with a given
probability. An idle device that detects the SBO price u(t)
compares it to its utility and decides to either remain idle
or connect, pay the price, and for that price consume at the
rate r for a period τ .An idle device reconnects if its utility
exceeds u(t). The utility of idle appliances, U(θ(t), ṽ), is
defined as a function of θ(t), the heating zone temperature at
time t, and ṽ a random variable 2 whose distribution depends
on θ(t). That utility is associated with an average energy
consumption of rE[τ ] = r/µ. which is for a bounded range
space of ṽ, it follows that θ(t) is also bounded. In general, for
a given history of broadcasted prices It = {u(ξ),∀ξ ≤ t}, the
conditional density function of the utility of an idle appliance
f(U(θ(t), ṽ)|It) is obtainable in terms of the joint density
function of θ(t) and ṽ given It. [10, 11, 12, 13].

Assumption 1. The distribution, f(U(θ(t), ṽ)|It), depends
only on a single sufficient statistic, the time average of
u(t), is uniformly distributed conditional upon the suffi-
cient statistic, and is i.i.d. across appliances. Specifically,
f(U(θ(t), ṽ)|It) = 1/UM , namely, the utility of idle ap-
pliances is uniformly distributed over [0, UM ] where UM

is the maximal price broadcasted by the SBO which is
consistent with the sufficient statistic and the quantity of
regulation service that the SBO has sold to the ISO in the
hour ahead market. This is a reasonable approximation for
small variations in u(t). We will later show that for large t
and optimal selection of u(t), the sufficient statistic is known,
and equals ΠE , the clearing price of the hour ahead power
market.

Assumption 2. Idle appliances detect the price broadcast by
the SBO with a rate λ and the time elapsing between obser-
vation instances is exponential, or equivalently the number
of observations over a period ta is Poisson with parameter
λta.

Using Assumptions 1 and 2, when the SBO broadcasts
price u(t) during [t, t+ ∆t], the number of any of the [N −
n(t)] appliances that connect during [t, t + ∆t] is Poisson
distributed with parameter λ∆t(N−n(t))(UM −u(t))/UM .
3

Assumption 3. We assume that the controlled system will
exhibit n(t) such that n1 ≤ n(t) ≤ n2 with n2−n1 is small.

2The random variable represents different preferences amongst appliance
users, different local conditions e.g., windows are open, a heating zone is
or is not occupied -, or different future plans, for example an EV expects
to depart sooner, needs a high State of Charge etc.

3For ∆t→ 0, the same expression becomes the probability that a single
appliance will connect while the probability of additional connections is
negligible.



Using the above assumptions, letting ∆t = 1 by appropri-
ate selection of time unit and defining λM = λ

(
N − (n1 +

n2)/2
)

expressed in units of ∆t = 1, we can reasonably
approximate the Poisson arrival rate over the period [t, t+ 1]
as λM

(
UM − u(t)

)
/UM .

We have chosen to burden the reader with the details
of three Assumptions underlying the concluding statement
above in order to make transparent the shortcomings of
Assumption 1 which has been commonly adopted in dynamic
pricing models applied by Kelly and others to telecommuni-
cations bandwidth allocation and more recently to electricity
demand management [14, 20]. The shortcoming of this
Assumption, particularly when a non-trivial portion of market
participants (whether mobile telephone users or electricity
consuming appliances) is active, is that it introduces the
notion that the utility of connecting is state independent.
In fact, that utility depends on the past history of price
control. For example, receiving repeatedly a busy signal may
result in a higher utility associated with placing a phone call,
or observing a persistently high consumption price that has
repeatedly discouraged a heating zone from turning the heater
on will almost certainly result in a lower ambient temperature
and increase the utility to consume. Although we do not
attempt to correct the shortcomings of assumption 1 in this
paper, we wish to identify the issue and encourage future
work that relaxes this restrictive Assumption. We are in fact
engaged in such future work which we are eager to report
on in the near future.

B. Electric Vehicles (EVs)

Defining (i) by λMev the rate at which an EV arrives in the
Smart Buildings charging station, or a plugged in but non-
charging EV monitors the price broadcasted by the SBO,
and (ii) by U(SoC(t), T ) the utility of charging rev/µev

kW∆t when the State of Charge of their battery is SoC(t),
0 ≤ SoC(t) ≤ 100%, and the desired departure time is T ,
(see [16]) we can similarly write the Poisson arrival rate as
λMev
(
UM
ev − eev(t)

)
/UM

ev .

C. Generalization of Appliance Classes

Denoting different classes of appliances by the subscript
i, the above can be generalized as Poisson arrival rate of
connections by appliances of class i when the SBO broad-
casts to that appliance class a price ui(t) over the time period
[t, t+ 1] is λMi

(
UM
i −ui(t)

)
/UM

i . The expected utility rate
that appliances of class i experience at time t when the SBO
broadcasts price ui(t) is

[λMi
(
UM
i − ui(t)

)
/UM

i ][(UM
i + ui(t))/2]

=

(
λMi /(2U

M
i )

)(
(UM

i )2 − (ui(t))
2

)
Noting that when an appliance of class i connects it pays

ui(t) to consume on average ri/µi kW∆t, it is instructive
to think that when a price of ui(t)µi/ri per kW ∆t is
broadcasted, for a period ∆t, an additional amount of energy
equal to ri/µi kW∆t is purchased over the period [t, t+ dt]

regardless of the fact that it will be actually consumed over
the period [t, t + τ ] where τ is an exponentially distributed
random variable with mean 1/µ. Therefore, the expected
purchase rate of energy at time t when the broadcasted
price is ui(t) equals the arrival rate times times the expected
purchase by a single arrival, namely

λMi
[(
UM
i − ui(t)

)
/UM

i

]
ri/µi (1)

When a constant price ūi is broadcasted, then noting
that n(t) is an M/M/∞ queue whose length is a Poisson
distribution with rate

λMi
[(
UM
i − ūi

)
/UM

i

]
/µi

and hence

lim
t→∞

E
[
ni(t)

]
= n̄i(ūi)

= λMi
[(
UM
i − ūi

)
/UM

i

]
/µi

Hence, the average consumption rate when the constant
price ūi is broadcasted is

n̄i(ūi)ri = λMi
[(
UM
i − ūi

)
/UM

i

]
ri/µi (2)

Comparing equations 1 and 2 it may be seen that the expected
rate at which energy is purchased under dynamic pricing is
equal to the average rate at which energy will be consumed
when the same price is broadcasted for a long period of time.

Finally, it is clear that the following propositions hold:

Proposition 1. 1.1 Both the average consumption rate and
the expected purchase rates are linear functions of the
price charged for a packet of energy” of size ri/µi,
and

1.2 The expected utility rate realized when a price per
packet of energy ui is broadcasted during a period
[t, t+ dt], is a concave function of ui.

1.3 When dynamic packet prices are charged whose time
average is ūi = ΠEri/µi where ΠE is the hour ahead
clearing price, the linearity stated above will guarantee
that the average purchase rate will be

λMi
[(
UM
i − ui(t)

)
/UM

i

]
ri/µi

1.4 The time average of the expected utility rate under the
dynamic prices described above, i.e. prices with time
average limT→∞

1
T

∫ T

t=0
ui(t)dt = ūi = ΠEri/µi is

smaller than the average utility under a static constant
price, namely:

λMi
[
(UM

i )2 − (ūi)
2
]
/(2UM

i ) >

lim
T→∞

1

T

∫ T

t=0

{
λMi
[
(UM

i )2 − (ui(t))
2
]
/(2UM

i )

}
dt

= Eui

[
λMi
[
(UM

i )2 − (ui)
2
]
/(2UM

i )
]

and in fact their difference is proportional to the
variance of ui(t).

Proof: Suppose that a dynamic pricing policy is
applied over the period [0, T ] in such a way that the
constant price ui(k) is broadcasted over the interval



[(k−1)∆t, k∆t], such that, k = 1, . . . ,K and K∆t =
T . The average utility achieved over [0, T ] is given by

1

K∆t

K∑
k=1

[ λMi
2UM

i

(
(UM

i )2 − (ui(k))2
)
∆t
]

(3)

Represent the price using the definition ui(k) = ūi +
εi(k), where ūi is the average price over the period,
i.e., 1

K

∑K
k=1 ui(k) = ūi, and εi(k) is the deviation

from this average at time k. Recalling that the statistical
behavior of y(t) guarantees energy neutrality in the re-
quest of RSRs and the linearity of energy consumption
w.r.t. price, note that the time average of εi(k) equals
zero. For ∆t → 0, we can conclude that the average
utility over the period is represented by the expression

λMi
2UM

i

[
(UM

i )2 − (ūi)
2 − 1

T

∫ T

0

(εi(t))
2dt
]

(4)

This clearly shows that price deviations from the aver-
age price at any time t, i.e., all instances of εi(t) 6= 0,
for any t ∈ [0, T ] will subtract from the constant price
utility. An important implication of this result is that
the term (λMi )/(2UM

i T )
∫ T

0
(εi(t))

2dt in fact quantifies
the utility loss due to the fluctuation of ui(t) about the
static average price that would have been broadcasted
in the absence of RSR provisioning. In conclusion,
as T → ∞ the time average of εi goes to zero and
the average utility loss is directly proportional to the
variance of the dynamic price broadcasted in order to
track the regulation signal y(t).

D. The Regulation Signal and Tracking costs

The ISO manages the regulation service reserves procured
in the hour ahead market by broadcasting a regulation signal
y(t) at time intervals of 4 seconds [4]. The regulation signal
y(t) indicates the portion of R that should be offered at time
(t + 4sec). y(t) takes values in [−1, 1] and is allowed to
change by approximately 0, 0.033, or −0.0334. Using the real
historical data, we estimated transition probabilities of a two
layer (D = up, down) Markov chain. For D = up there is a
higher probability that y(t+4sec) = y(t)+0.033 and a lower
probability that y(t+4sec) = y(t)−0.033. The opposite trend
holds when D = down. The state of the regulation signal is
denoted by the pair D(t), y(t). When y(t + 4sec) > y(t)
we set D(t + 4sec) = up. When y(t + 4sec) < y(t) we
set D(t + 4sec) = down. When y(t + 4sec) = y(t) we set
D(t+ 4sec) = D(t).

An SBO who has sold R kW of regulation service reserves,
is obliged to regulate the number of its connected appliances
to track R̄+y(t)R, where R̄ is the average consumption rate
in the absence of regulation reserve offerings5. The SBO is

4The update time period in different ISO balancing areas ranges in the US
from 4 to 8 seconds depending on the type of regulation service. Similarly,
the maximal increment in y(t) between consecutive broadcasts conforms to
a maximal ramp of 1/150 to 1/300.

5more explicitly, R̄ = QB +R =
∑

i n̄iri where over bar denotes time
average and QB the base load secured by the SBO

assessed a tracking cost over the period ∆t = 4sec of

K

[∑
i

ni(t+ 4sec)ri − R̄− y(t)R

]2

∆t

Proposition 2. The SBO broadcasts prices so as to maximize
the utility enjoyed by all classes minus the tracking costs.
The linearity of Proposition 1.1 suggests that marginal utility
of consumption is constant. In addition, the SBO must be
broadcasting the same price per kW∆tto all classes. Thus for
a price of u(t) $ /kW∆t, the price ui(t) broadcasted to class i
for consuming ri∆t/µi kW∆t satisfies ui(t) = u(t)ri∆t/µi,
which for ∆t = 1 implies ui(t) = u(t)ri/µi.

III. OPTIMAL REAL TIME TRACKING POLICY

A. Formulation of Optimal Stochastic Control Problem

The SBOs task is to broadcast dynamically class spe-
cific prices that maximize expected total class utility minus
tracking costs. For a two class case, given the class specific
utility and arrival (connection) and departure (disconnection)
rates, and the stochastic dynamics of regulation signal, we
have a uniformized, infinite horizon average cost problem
formulation with all rates expressed in units that correspond
to ∆t = 1, the following Bellman Equation

h(n1, n2, y,Dold) + J̄ =

min
u

E
∆n1,∆n2,∆y,Dnew|u

[
K
(∑

i

(ni + ∆ni)ri − R̄− y(t)R
)2

−
∑
i

(
λMi

2UM
i

(
(UM

i )2 − (
uri
µi

)2
))

+h(n1 + ∆n1, n2 + ∆n2, y + ∆y,Dnew)
]

Using Proposition 2, the probability distribution of
∆n1,∆n2,∆y,Dnew is given in terms of the arrival rates
(λMi /U

M
i )[UM

i − u(t)ri/µi], the departure rates, 1/µi, and
the regulation signal stochastic dynamics described in Section
II.

B. Solution Approach

We first solved the optimal stochastic problem described
above by discretizing the set of allowable prices 0 ≤ u ≤
UM , assuming that the positive probability states in the
optimally controlled system limits ni in the vicinity of
(λMi /U

M
i )(UM

i − ΠEri/µi)/µi as is suggested by Propo-
sition 1.3 and equation 2. The maximum ramp rate allows
us also to discretize ISO regulation signals y(t) rendering
the resulting state space discrete. Given the discrete state
and control spaces, the optimal differential cost satisfying
the infinite horizon average cost DP Bellman equation can
be obtained by a an LP problem with constraints equal to
the product of state and control space magnitudes [1]. The
optimal solution for the discretized control approximate DP
provides the optimal price for each state (n1, n2, y,D) as
well as the associated probability that the state will be visited
and the associated optimal price broadcasted [1]. Numerical
solution (see Section V) revealed the following properties:



1) The time averages of prices, and states are: E[ui] =
ΠEri/µi, E[ni] = (λMi /U

M
i )(UM

i −ΠEri/µi), E[y] =
0 and Pr(D = up) = Pr(D = down) = 0.5

2) The optimal prices are a function of three features of
the state, (i) x =

∑
i(ni)ri − y(t)R, (ii) y(t) and (iii)

D
3) The optimal price u and hence ui = uri/µi ap-

pear to be described by a sigmoid function u =
π(n1, n2, y,D) = [UM/(1 + eax−b(y,D))]. Controlling
for the value of D and for appropriate calibration of
parameter a and the linear function b, the sigmoid
approximation is observed to perform well. Further
discussion is provided in the numerical results section
below.

A much smaller LP can now be formulated and solved
since the number of constraints is now proportional to the
number of sigmoid functional policy approximations that are
of the order of 2 to 3 as opposed to the 11 different prices in
the discretized control set. More importantly, the average cost
obtained for the best sigmoid analytic approximation selected
by the LP solution, compared favorably to that obtained by
solving the discretized policy set LP. Additional work that we
do not report here due to space limitations, indicates that the
sigmoid function representation of optimal pricing policies
enables the use of promising stochastic gradient estimation
approaches [19] to optimize directly the parameters of the
function without discretization restrictions.

C. A Scalable Approximate SDP Formulation

Although the sigmoid function approximation of the con-
trol policy enhances computational efficiency, the state space
increases so fast that the problem becomes intractable when
the number of states increases due to existence of multiple
classes. A reasonable decomposition is to split the regulation
service, R, that the SBO sells in the hour ahead market,
to class specific Ri such that

∑
iRi = R, and select Ri

in proportion to n̄iri = (λMi /U
M
i )(UM

i − ΠEri/µi)ri/µi.
Solutions of the decomposed one class sub-problems were
obtained and simulated revealing comparable average cost to
the multiclass solution.

IV. HOUR AHEAD AND REAL TIME DECISION
RELATIONS

The SBOs participation in the hour-ahead Power market
consists of submitting its demand function to purchase energy
that corresponds to all demand with utility larger than the
hour ahead clearing market ΠE . At the same time it bids
a flexible load that does not exceed 2R, and whose utility,
UE , is in the vicinity of the SBOs estimate of the power
markets clearing price6 , ΠE . The flexible load bid is
accompanied by a reservation price for regulation service,

6See [16] for an example of how EVs with a given future departure
time can determine their utility of charging energy at a time preceding their
departure time as the incremental change in the expected cost of charging
fully by the departure time with respect to an incremental change in the SoC
at an earlier time.

Fig. 1: Market Event Outcomes and Associated Conditional
Costs

UR, and the following constraints are placed on the energy
QE and regulation service QR that the market can schedule:
0 ≤ QR ≤ QE ≤ 2R The ISO clears market participant bids
by solving the following optimization problem:

max UEQE − URQR + other participant terms.
Subject to
• Energy Balance equality constraint
• Regulation Service Reserve inequality constraint
• Capacity constraints taking into consideration the up and

down nature of regulation service reserves: 0 ≤ QR +
QE ≤ 2R, QR ≤ QE

Denoting by ΠE the shadow price of the energy balance
constraint by ΠR the shadow price of the R reserve re-
quirements constraint, we have the following market events:
If |UE − ΠE | + UR ≤ ΠR then the market clears at
QR = QE = R. Otherwise, if UE ≥ ΠE then QR = 0,
QE = 2R, while if UE ≤ ΠE then QR = 0, QE = 0. These
events are shown in the Figure 1.

In order to bid appropriately, the SBO must know its unit
costs UR, and it must also select R so as to maximize its
hour ahead income URR minus its losses during the real time
tracking of the regulation signal. More specifically it wants
to maximize: ΠRR∆t - { [( Expected Utility when QR = R)
- (Utility rate when QR = 0)] + (Expected Tracking costs
when QR = R) } or in terms of Section III results and
notation, we want to Maximize ΠRR∆t − Z(R) over R,
where

Z(R) =
∑
i

[
λMi [(UM

i )2 − (ΠEri/µi)
2]/(2UM

i )

−E
ui

[
λMi [(UM

i )2 − (ui)
2]/
]
(2UM

i )
]

+E
[
K
(∑

i

(ni + ∆ni)ri − R̄− y(t)R
)2]

The optimization described above can be done systematically
for concave Z(R) by finding the value of R at which
∂Z(R)/∂R = ΠR. The derivative above cannot be estimated
explicitly but can be estimated numerically. In Section V we
show numerical evidence that supports the theoretical expec-
tation that Z(R) is indeed convex. The theoretical expectation



of convexity derives from the dependence of Z(R) on the
variance of ui(t) see Proposition 1.4 - and the variance of
the tracking error, both increasing with R.

In conclusion, being able to solve the real time control
problem is useful in providing the means for solving the
hour ahead optimal bid problem. For example, UR must be
selected so that it is equal to Z(R)/R

V. NUMERICAL RESULTS

As already mentioned, the Stochastic DP defined in Sec-
tion III is equivalent after discretization of the control set to
an LP [1]. We calibrated the transition rates of the Two-Layer
Markov Chain that models ISO signals using actual PJM y(t)
time series data available in [4]. As this solution approach
requires a discrete control set, the continuous control space,
u ∈ [0, UM ], was discretized into 11 price levels, i.e.,
u ∈ {0, 0.1UM , . . . , UM}. Various instances of the single
class problem were then solved for. As mentioned in Section
III-B, the optimal price policy appears to fit in all cases
a sigmoid function representation. We thus proceeded to
represent the control policies with a small set of parameters,
each representing a continuous sigmoid policy function. The
corresponding sigmoid policy function approximations were
then allowed to compete in the LP solution. In fact, the LP
was formulated with each constraint for each state repeated
for each of the sigmoid policy function approximations and
the best sigmoid approximation was selected by the optimal
LP solution.

In all of the single class problem instantiations/cases
reported on in this Section, we used the following parameters
values: K = 0.5, r = 1, µ = 1,λM = 150,UM = 50,ΠE =
1/3UM hence R̄ = n̄r = n̄ = 100.

A. Accuracy of the Two-Layer Markov Chain model
An important factor in our model that makes it more real-

istic is the accurate performance of the Two-Layer Markov
Chain used to model the ISO RS signal. As can be seen
in Table I, the averages of the RS signal is invariably very
close to zero matching the behavior exhibited in the real data.
The variance of the signals is observed to be in the range
[0.143, 0.161] in our model, while the variance is 0.154 in
the PJM data. Moreover, the fraction of the time that the ISO
signal was in the D = up and D = down states was almost
equal in all cases (not shown in the table). This fidelity is
also observed in various Monte Carlo simulations of the RS
signal. In these simulations, the time statistics of the signal
states almost exactly matched the real PJM data.

TABLE I: Results of the LP Approach with the Discretized
Control Space

Case R E[u] σ2
u E[n] E[y] σ2

y

1 5 0.33 UM 0.104 (UM )2 100.07 0.014 0.161
2 10 0.34 UM 0.114 (UM )2 99.95 -0.005 0.160
3 15 0.33 UM 0.125 (UM )2 100.12 0.008 0.154
4 20 0.35 UM 0.140 (UM )2 99.8 -0.01 0.155
5 25 0.33 UM 0.150 (UM )2 99.8 0.01 0.143

Fig. 2: Optimal Price Structure: Price versus tracking error

B. Structure of the optimal policies

A very important result displayed in Table I is that the
average price in the LP solution was almost equal to the
energy clearing price ΠE = 1/3UM . With this average
price, the system would consume the same average energy
as purchased in the hour ahead market. In addition, it
was observed that the optimal policies exhibit a sigmoidal
structure. In Figure 2, the Y axis represents the optimal
price levels that correspond to the difference between the
number of the customers in the system n and the obligation
n̄ + Ry, represented on the X axis. Each line in the figure
represents the optimal price policy for different obligation
levels associated with the direction state D = up. When the
system is in the direction state D = down, a similar but
yet different graph is obtained. This structure of the optimal
policies shows that the optimal control depends on all on n,
y and D state components and helps us to determine how to
represent the control policies via appropriately parameterized
analytic sigmoid functional approximations.

C. Performance of the sigmoid functional representation of
control policies

Table II compares LP solutions corresponding to dis-
cretized control spaces relative to sigmoid functional ap-
proximation of control policies. The columns of the table
represents the number of constraints, the number of iter-
ations/base changes to reach the optimal solution and the
resulting objective values. It is noteworthy that sigmoid
function control policy approximation reduces computational
burden significantly through the employment of a smaller
number of constraints. In addition the sigmoid function policy
representation matches and in some cases betters the optimal
average cost of the policy space discretization solution. It is
important to emphasize that the competing sigmoid function
parameter sets were selected judgmentally. Later work has
shown that a formal parameter selection algorithm can indeed
increase the performance and desirability of the analytic
functional policy representation. The superior performance
of the continuous functional approximation of the control
policy is not surprising and can be understood to result from
the removal of the discretization error.



TABLE II: Comparison of Discretized and Sigmoidal
Control

Case R NoCD NoID J∗
D NoCS NoIS J∗

S

1 5 19624 6526 1802 7164 2927 1755
2 10 39244 16986 1484 14324 6585 1498
3 15 58864 30291 1120 21484 20492 1081
4 20 78484 55655 560 28644 24527 514
5 25 98104 +150000 -110 35804 39985 -147

Fig. 3: Utility, Price Variance and RS Provision
Relationship

Y1 axis: Exp. Utility and Exp. Tracking Cost, Y2 axis:
Price Variance, X axis: Reservation Service Provision R

D. Relationship among price variance, utility and RS provi-
sion

As shown in Proposition 1.3, an increase in the price vari-
ance decreases the utility gain and the loss is λMσ2

u/(2U
M ).

Figure 3 shows that the variance of the price increases
as the amount of the RS provision increases (also shown
in Table I in exact numerical values). As our Proposition
suggests, utility gain is less than what SBO would obtain if
it broadcasted a constant price (diamond curve in Figure 3)
and the loss exactly matches with the theoretical derivation
noted above. Moreover, Figure 4 represents the convexity of
Z(R) as described in Section IV.

Fig. 4: Z(R) vs. Reserve Service Provision R

VI. CONCLUSION

We have demonstrated that with a reasonable model of
the statistical behavior of each one of multiple load classes, a
distributed Load Aggregator can act as a SBO and effectively
control the degrees of freedom that flexible loads avail
themselves to. The benefits of such control are mutual to the
SBO as well as the System Operator and hence to society.
We showed that optimal control is computationally tractable
and can provide support to the design of optimal bidding
strategies to the forward markets where stand by regulation
service reserve capacity is transacted.

Work presented here indicates that future work is reason-
ably expected to be able to address pooling and economies
of scale issues, as well as more realistic appliance cluster
behavior modeling.
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