Achieving Energy Efficiency in Existing Buildings

Development of Software System Prototype for Optimized Commissioning of Building HVAC

M. Gevelber & D. Wroblewski Mechanical Engineering, Boston University

- How achieve significant commercial building energy efficiency?
 ⇒ Focus on HVAC.
- Our solution: System that re-optimizes existing HVAC system airflow.
- Provides unique software based solution for hidden problem with high-payback.

Background/Overview

- Existing commercial buildings offer significant energy savings opportunity
 36% of US electricity
- HVAC ~ 50-70% of building energy use, but use is hidden.
 20-35% of electricity used to push air!
- Key: reduce air flow.
- Our solution: Re-optimize building HVAC system based on software approach.
 Works with existing Building Automation System (BAS)
- Unique: Solves problem not addressed by current tools.
 No previous patent.
- Nega-watt: cheapest energy "source" by 4-10x

Basis for Opportunity/Value & Core Concept

- Many buildings designed when energy was cheap so used high air flow to assure ventilation, humidity, and thermal needs were met.
- For existing buildings, hard to know "how low you can go"
- Should base design on minimum air flow for ventilation & lab safety
- Our system provides easy basis to re-optimize

Team

Michael Gevelber BS Physics Brown Univ. MS, PhD Mech. Engr. MIT

- Advanced sensors and control for electrospinning of nanofibers, plasma spray for TBC, crystal growth
- Energy Consulting & DOE experience
- Led BU Energy Audit over past 4 years
- University Sustainability Committee & Co-Chair, BU Energy Working Group

Donald Wroblewski BS Mech. Engr. Penn State MS, PhD Mech. Engr. Cal, Berkeley

- Broad Thermal-fluids expertise
- 8 years experience HVAC & Energy Building Experience-- Carrier
 Research
- Experiments and sensor development for Plasma Spray, Turbulent Transport
- Professional Engineer

Paul Gallagher MEng Aero. Engr. Bristol, UK Graduate Student, BU

- 8 months experience on project
- Data acquisition
- Building modeling
- Algorithm refinement
- Continuum BMS experience

Industry Collaborators: reality check

Domenic Armano, Johnson Controls, the leading supplier of Building Automation Systems

Paul Kondrat Director of HVAC Engineering at TRO Jung | Brannen, an Architecture/Engineering firm

BU Facilities

Tom Daley, Associate VP

Bill Walter, Assistant VP

Andy Rubin, Director of Business Development at AMERESCO

Preliminary Results: Single Room Test

- We based our approach on extensive study of 8 real buildings
- Addresses "hidden" energy use that can't be found by trending
- Based on real data from room-by-room controlled experiments, which achieves a robust solution.

Basis for Opportunity/Value

- Many buildings designed when energy was cheap so used high air flow to assure ventilation, humidity, and thermal needs were met.
- For existing buildings, hard to know "how low you can go"
- Should base design on minimum air flow for ventilation & lab safety
- Our system provides easy basis to re-optimize

