GPU Computing with CUDA
Lecture 9 - Applications - CFD

Christopher Cooper
Boston University

August, 2011
UTFSM, Valparaiso, Chile

1

College of Engineering

Outline of lecture

» Overview of CFD
- Navier Stokes equations
- Types of problems
- Discretization methods
» “Conventional” CFD
» Port CFD codes to CUDA

» Efforts

» Example problem: implicit heat transfer

CFD - Introduction

» Numerical modeling of fluid systems

» Navier-Stokes equation: momentum conservation

ou Vp 5
L(u-V)u= - vVou

» Type of problems:

- Incompressible

- Compressible (non-viscous approximation)

- Shallow water

- Biphasic flows....

CFD - Introduction

» Earliest: Richardson (1910)
- Human computers

- Quickest averaged 2000 operations a week

» CFD development tied with computers!

- 50s-60s: use of digital computers, finite difference methods
- /0s: finite element methods, spectral methods
- 80s: finite volume methods

- 90s: application to diverse industries

CFD - Main discretization methods

» Finite difference

U Uit1,j — Uiy

or Ax

» Finite volume

oU OF

4.

Ny
L

LT LAY ATAN
o3 VAVATAVAE

S e
)
3 A7

AT ¥

Convergence of spectral differentiation

2
d
o
——
wind
)
£
2
wind
0]
N
wind
)
b =
4
2
d
=
=
i
Q
Li.
O

» Finite element method
» Spectral methods

CFD - Main discretization methods

» Mesh free methods
- Smoothed Particle Hydrodynamics
- Vortex methods

- Radial Basis Functions

CFD - Fluid Modeling

» Fluid flow is a multi-scale phenomena
- We need Re3 mesh points to reproduce all scales!
- Turbulence modeling

- Approximate turbulence effects

Mathew Wells 200

Conventional CFD

» Unstructured grids

- Unstructured sparse matrices
» Incompressible V - u = 0

- Projection methods
» Implicit

- Linear solvers

» Modeled turbulence

- Reduced number of points

Conventional CFD

» CFD is a tough problem for the GPU:

- Memory bound problems

» Also, needs to convince people

- Old legacy codes

- How to port old codes to the GPU?
» On the other hand, CFD codes are

- SIMD

- Single precision

- Large data sets

Porting a code to GPU

» Option T: accelerate the existing code

» Option 2: Rewrite code from scratch

Potential
acceleration

» Option 3: Rethink algorithms

Next slides credits: J. Cohen - NVIDIA

Option 1: Accelerate existing code

» Easiest way
» Probably not huge speedup

» Libraries like Cusp or CUFFT may be useful

Option 1: Accelerate existing code - SpeedIT

» Speedl T (OpenFOAM)

- Ported linear solvers to GPU

Mesh Speedup

20x20
- Supports multi-GPU

-100x

96x96Xx90

2.4X

128%x128x32

2.0x

Xeon X5650 CPU

M2050 G

Ville Tossavainen (Seeinside Ltd.)

PU

Option 1: Accelerate existing code - FEAST

» FEAST (Finite Element Analysis and Solution Tools)
- High level abstraction approach

- |solate "accelerable” parts of code

- Ports solver to GPU: Multigrid

Acceleration fraction: 75%
Local speedup: 11.5x
Global speedup: 3.8x

Opteron 2214 4 nodes CPU
GTX 8800 GPU

Strzodka, Goddeke, Behr (2009)

Option 2: Rewrite whole code

» First need to think about
- What is the total application speedup that you can get
- How does rewrite compare to accelerator approach
- Good design

- What global optimizations are possible

Option 2: Rewrite whole code - culBM

» Immersed Boundary Method on GPU (culBM)
- Finite difference code with immersed boundary no slip condition

- 2 linear systems: implicit diffusion and projection

2.5

- Reported speedup: 7x — N

I Conversion
1 | Il Force Calculation

B Force Output
I Generate bcl
[Generate r2

1 | [__]Generate rN
[IMMM

[]Mat-vec
[]Mem Transfer
1 |[_]Output

[|Preconditioner
[JSolve1

[Solve 2

1 | I Transfer q
I Transpose

I Update B
Il Update QT

Average over 16000 timesteps

Layton, Krishnan, Barlba 2011

Option 2: Rewrite whole code - culBM

pyAMG pyAMG | Cusp Cusp Cusp Cusp
blackbox Smoothed ; Non-PC Diagonal PC Scaled Smoothed
Aggregation, Bridson Aggregation :

With good pre-conditioner, GPU is 9x faster, not much
difference in other cases (best is 1.6x faster)

Option 2: Rewrite whole code - Open Current

» Developed by Jonathan Cohen in NVIDIA

» Compared a highly optimized CPU code and GPU code

- CPU: Fortran, 8-core 2.5 GHz Xeon (8 thredas with MPl and OpenMP)
- GPU: CUDA, Tesla C1060

» Solved the Rayleigh-Bernard with a finite difference code

cold

OOOVO

hot

Option 2: Rewrite whole code - Open Current

CUDA Fortran

Resolution time/step ms | time/step ms

04X04x32 24 47

128x128x64 79

250x256x1238

384x384x192

Option 3: Rethink numerical algorithms

» Most time consuming alternative!
» Maybe new architectures require new numerics
» Find methods that map well to the hardware

- Maybe we overlooked something in the past because it was
impractical

Option 3: Rethink numerical algorithms - DG

» Discontinuous Galerkin Methods
- Arithmetically intensive

- Mainly local

» Klockner et al. used DG to solve conservation laws
Flop Rates_and Speedups: 16 GPUs vs 64 CPU cores

B GPU LI Speedup
4000 mmm CPU |

N
o

Speedup Factor

GPU T1060

CPU: Xeon E III
0__-llI|

Polynomnal Order N

-
W

GFlops/s

W o
o

O

Implicit heat equation solver

» Conventional CFD usually is dominated by Poisson type solvers
- Projection methods

- Implicit solvers to avoid stability constraints

ou

» Heat equation with Crank-Nicolson == = V2

ot

- No stability constraint!

Implicit heat equation solver

@ = aVZu

ot

T =200

x = 0.645
kK=1e-5
N =128

Implicit heat equation solver

Implicit heat equation solver

I — RHS

ak
2h?

- |Poisson|

A] size (N-2)* x (N-2)°
RHS size (N-2)°
u" "t size (N-2)°

