GPU Computing with CUDA Lecture 9 - Applications - CFD

Christopher Cooper Boston University

August, 2011 UTFSM, Valparaíso, Chile

Outline of lecture

- Overview of CFD
 - Navier Stokes equations
 - Types of problems
 - Discretization methods
- "Conventional" CFD
- Port CFD codes to CUDA
- ▶ Efforts
- Example problem: implicit heat transfer

CFD - Introduction

- Numerical modeling of fluid systems
- Navier-Stokes equation: momentum conservation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{u}$$

- Type of problems:
 - Incompressible
 - Compressible (non-viscous approximation)
 - Shallow water
 - Biphasic flows....

CFD - Introduction

- Earliest: Richardson (1910)
 - Human computers
 - Quickest averaged 2000 operations a week
- CFD development tied with computers!
 - 50s-60s: use of digital computers, finite difference methods
 - 70s: finite element methods, spectral methods
 - 80s: finite volume methods
 - 90s: application to diverse industries

CFD - Main discretization methods

Finite difference

$$\frac{\partial u}{\partial x} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x}$$

► Finite volume

$$\frac{\partial \vec{U}}{\partial t} + \frac{\partial \vec{F}}{\partial x} = 0$$
$$\frac{\partial}{\partial t} \int_{\Omega} \vec{U} \mathbf{d}\Omega + \oint_{\partial \Omega} \vec{F} \hat{n} \mathbf{ds} = 0$$

CFD - Main discretization methods

Finite element method

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx.$$

Spectral methods

$$\frac{\widehat{\partial u}}{\partial x} = ik\hat{u}$$

CFD - Main discretization methods

- Mesh free methods
 - Smoothed Particle Hydrodynamics
 - Vortex methods

- ...

- Radial Basis Functions

CFD - Fluid Modeling

- ▶ Fluid flow is a multi-scale phenomena
 - We need Re³ mesh points to reproduce all scales!
 - Turbulence modeling
 - Approximate turbulence effects

$$Re = \frac{VD}{\nu}$$

Conventional CFD

- Unstructured grids
 - Unstructured sparse matrices
- \blacktriangleright Incompressible $\nabla\cdot\mathbf{u}=0$
 - Projection methods
- ▶ Implicit
 - Linear solvers
- Modeled turbulence
 - Reduced number of points

Conventional CFD

- CFD is a tough problem for the GPU:
 - Memory bound problems
- Also, needs to convince people
 - Old legacy codes
 - How to port old codes to the GPU?
- On the other hand, CFD codes are
 - SIMD
 - Single precision
 - Large data sets

Porting a code to GPU

- Option 1: accelerate the existing code
- Option 2: Rewrite code from scratch
- Option 3: Rethink algorithms

Potential acceleration

Next slides credits: J. Cohen - NVIDIA

Option 1: Accelerate existing code

- Easiest way
- Probably not huge speedup
- Libraries like Cusp or CUFFT may be useful

Option 1: Accelerate existing code - SpeedIT

- ► SpeedIT (OpenFOAM)
 - Ported linear solvers to GPU
 - Supports multi-GPU

Mesh	Speedup	
20x20	-100x	
96x96x96	2.4x	
128x128x32	2.0x	

Xeon X5650 CPU M2050 GPU

Ville Tossavainen (Seeinside Ltd.)

Option 1: Accelerate existing code - FEAST

- ► FEAST (Finite Element Analysis and Solution Tools)
 - High level abstraction approach
 - Isolate "accelerable" parts of code
 - Ports solver to GPU: Multigrid

Acceleration fraction: 75% Local speedup: 11.5x Global speedup: 3.8x Opteron 2214 4 nodes CPU GTX 8800 GPU

Strzodka, Goddeke, Behr (2009)

Option 2: Rewrite whole code

- First need to think about
 - What is the total application speedup that you can get
 - How does rewrite compare to accelerator approach
 - Good design
 - What global optimizations are possible

Option 2: Rewrite whole code - cuIBM

- Immersed Boundary Method on GPU (cuIBM)
 - Finite difference code with immersed boundary no slip condition
 - 2 linear systems: implicit diffusion and projection
 - Reported speedup: 7x

Average over 16000 timesteps

Layton, Krishnan, Barba 2011

Option 2: Rewrite whole code - cuIBM

With good pre-conditioner, GPU is 9x faster, not much difference in other cases (best is 1.6x faster)

Option 2: Rewrite whole code - Open Current

- Developed by Jonathan Cohen in NVIDIA
- Compared a highly optimized CPU code and GPU code
 - CPU: Fortran, 8-core 2.5 GHz Xeon (8 thredas with MPI and OpenMP)
 - GPU: CUDA, Tesla C1060
- Solved the Rayleigh-Bernard with a finite difference code

Option 2: Rewrite whole code - Open Current

Resolution	CUDA time/step ms	Fortran time/step ms	Speedup
64x64x32	24	47	2.0x
128x128x64	79	327	4.1x
256x256x128	498	4070	8.2x
384x384x192	1616	13670	8.5x

Option 3: Rethink numerical algorithms

- Most time consuming alternative!
- Maybe new architectures require new numerics
- Find methods that map well to the hardware
 - Maybe we overlooked something in the past because it was impractical

Option 3: Rethink numerical algorithms - DG

- Discontinuous Galerkin Methods
 - Arithmetically intensive
 - Mainly local
- Klockner et al. used DG to solve conservation laws

Implicit heat equation solver

- Conventional CFD usually is dominated by Poisson type solvers
 - Projection methods
 - Implicit solvers to avoid stability constraints
- Heat equation with Crank-Nicolson

$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$

- No stability constraint!

$$\frac{\alpha k}{h^2} < 0.5$$

Implicit heat equation solver

$$au_{i,j-1}^{n+1} + au_{i,j+1}^{n+1} + au_{i-1,j}^{n+1} + au_{i+1,j}^{n+1} + bu_{i,j}^{n+1} = RHS_{i,j}$$

$$a = -\frac{\alpha k}{2h^2} \qquad \qquad b = 1 - 4a = 1 + \frac{2\alpha k}{h^2}$$

$$RHS_{i,j} = u_{i,j}^n + \frac{\alpha k}{2h^2} \left(u_{i,j-1}^n + u_{i,j+1}^n + u_{i-1,j}^n + u_{i+1,j}^n - 4u_{i,j}^n \right) - BC^{n+1}$$

Implicit heat equation solver

$$[A]\mathbf{u}^{n+1} = \mathbf{RHS}$$
$$[A] = I + \frac{\alpha k}{2h^2} \cdot [\text{Poisson}]$$

[A] size
$$(N-2)^2 \ge (N-2)^2$$

RHS size $(N-2)^2$
 u^{n+1} size $(N-2)^2$