
GPU Computing with CUDA
Lecture 9 - Applications - CFD

Christopher Cooper
Boston University

August, 2011
UTFSM, Valparaíso, Chile

1

Outline of lecture

‣Overview of CFD

- Navier Stokes equations

- Types of problems

- Discretization methods

‣ “Conventional” CFD

‣ Port CFD codes to CUDA

‣ Efforts

‣ Example problem: implicit heat transfer

2

‣Numerical modeling of fluid systems

‣Navier-Stokes equation: momentum conservation

‣ Type of problems:

- Incompressible

- Compressible (non-viscous approximation)

- Shallow water

- Biphasic flows....
3

CFD - Introduction

∂u
∂t

+ (u · ∇)u = −∇p

ρ
+ ν∇2u

‣ Earliest: Richardson (1910)

- Human computers

- Quickest averaged 2000 operations a week

‣CFD development tied with computers!

- 50s-60s: use of digital computers, finite difference methods

- 70s: finite element methods, spectral methods

- 80s: finite volume methods

- 90s: application to diverse industries

4

CFD - Introduction

CFD - Main discretization methods

‣ Finite difference

‣ Finite volume

5

∂u

∂x
=

ui+1,j − ui,j

∆x

∂

∂t

∫

Ω

"UdΩ +
∮

∂Ω

"F n̂ds = 0

∂"U

∂t
+

∂ "F

∂x
= 0

‣ Finite element method

‣ Spectral methods

6

CFD - Main discretization methods

∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx.

∂̂u

∂x
= ikû

‣Mesh free methods

- Smoothed Particle Hydrodynamics

- Vortex methods

- Radial Basis Functions

- ...

7

CFD - Main discretization methods

∂u

∂x
=

N∑

i=0

αi
∂φi

∂x

‣ Fluid flow is a multi-scale phenomena

- We need Re3 mesh points to reproduce all scales!

- Turbulence modeling

- Approximate turbulence effects

8

CFD - Fluid Modeling

Re =
V D

ν

Conventional CFD

‣Unstructured grids

- Unstructured sparse matrices

‣ Incompressible

- Projection methods

‣ Implicit

- Linear solvers

‣Modeled turbulence

- Reduced number of points

9

∇ · u = 0

‣CFD is a tough problem for the GPU:

- Memory bound problems

‣Also, needs to convince people

- Old legacy codes

- How to port old codes to the GPU?

‣On the other hand, CFD codes are

- SIMD

- Single precision

- Large data sets
10

Conventional CFD

Porting a code to GPU

‣Option 1: accelerate the existing code

‣Option 2: Rewrite code from scratch

‣Option 3: Rethink algorithms

11Next slides credits: J. Cohen - NVIDIA

P
ot

en
tia

l
ac

ce
le

ra
tio

n

‣ Easiest way

‣ Probably not huge speedup

‣ Libraries like Cusp or CUFFT may be useful

12

Option 1: Accelerate existing code

‣ SpeedIT (OpenFOAM)

- Ported linear solvers to GPU

- Supports multi-GPU

13

Option 1: Accelerate existing code - SpeedIT

Ville Tossavainen (Seeinside Ltd.)

Mesh Speedup

20x20 -100x

96x96x96 2.4x

128x128x32 2.0x

Xeon X5650 CPU
M2050 GPU

‣ FEAST (Finite Element Analysis and Solution Tools)

- High level abstraction approach

- Isolate “accelerable” parts of code

- Ports solver to GPU: Multigrid

14

Option 1: Accelerate existing code - FEAST

Strzodka, Goddeke, Behr (2009)

Opteron 2214 4 nodes CPU
GTX 8800 GPU

Acceleration fraction: 75%
Local speedup: 11.5x
Global speedup: 3.8x

Option 2: Rewrite whole code

‣ First need to think about

- What is the total application speedup that you can get

- How does rewrite compare to accelerator approach

- Good design

- What global optimizations are possible

15

Option 2: Rewrite whole code - cuIBM

‣ Immersed Boundary Method on GPU (cuIBM)

- Finite difference code with immersed boundary no slip condition

- 2 linear systems: implicit diffusion and projection

- Reported speedup: 7x

16

Layton, Krishnan, Barba 2011

0

0.5

1

1.5

2

2.5

Average over 16000 timesteps

T
im

e
[s

]

AXPY
Apply BCs
Conversion
Force Calculation
Force Output
Generate bc1
Generate r2
Generate rN
MMM
Mat−vec
Mem Transfer
Output
Preconditioner
Solve 1
Solve 2
Transfer q
Transpose
Update B
Update QT

17

Option 2: Rewrite whole code - cuIBM

0

5

10

15

20

25

30

35

40

45

50

T
im

e
[s

]

pyAMG
blackbox

pyAMG
Smoothed

Aggregation

Cusp
Non−PC

Cusp
Diagonal PC

Cusp
Scaled

Bridson

Cusp
Smoothed

Aggregation

With good pre-conditioner, GPU is 9x faster, not much
difference in other cases (best is 1.6x faster)

CPU

GPU

Option 2: Rewrite whole code - Open Current

‣Developed by Jonathan Cohen in NVIDIA

‣Compared a highly optimized CPU code and GPU code

- CPU: Fortran, 8-core 2.5 GHz Xeon (8 thredas with MPI and OpenMP)

- GPU: CUDA, Tesla C1060

‣ Solved the Rayleigh-Bernard with a finite difference code

18

Option 2: Rewrite whole code - Open Current

19

Resolution
CUDA

time/step ms
Fortran

time/step ms
Speedup

64x64x32 24 47 2.0x

128x128x64 79 327 4.1x

256x256x128 498 4070 8.2x

384x384x192 1616 13670 8.5x

Option 3: Rethink numerical algorithms

‣Most time consuming alternative!

‣Maybe new architectures require new numerics

‣ Find methods that map well to the hardware

- Maybe we overlooked something in the past because it was
impractical

20

Option 3: Rethink numerical algorithms - DG

‣Discontinuous Galerkin Methods

- Arithmetically intensive

- Mainly local

‣ Klockner et al. used DG to solve conservation laws

21

GPU T1060
CPU: Xeon E5472

Implicit heat equation solver

‣Conventional CFD usually is dominated by Poisson type solvers

- Projection methods

- Implicit solvers to avoid stability constraints

‣Heat equation with Crank-Nicolson

- No stability constraint!

22

∂u

∂t
= α∇2u

αk

h2
< 0.5

Implicit heat equation solver

23

T = 200

T = 200

T = 0

T = 0

3.5

3.
5

α = 0.645
k = 1e-5
N = 128

∂u

∂t
= α∇2u

un+1
i,j − un

i,j

k
= α

2

(
un

i,j+1+un
i,j−1+un

i+1,j+un
i−1,j−4un

i,j

h2

+un+1
i,j+1+un+1

i,j−1+un+1
i+1,j+un+1

i−1,j−4un+1
i,j

h2

)

Implicit heat equation solver

24

aun+1
i,j−1 + aun+1

i,j+1 + aun+1
i−1,j + aun+1

i+1,j + bun+1
i,j = RHSi,j

a = − αk

2h2
b = 1− 4a = 1 +

2αk

h2

RHSi,j = un
i,j +

αk

2h2

(
un

i,j−1 + un
i,j+1 + un

i−1,j + un
i+1,j − 4un

i,j

)
−BCn+1

Implicit heat equation solver

25

[A] = I +
αk

2h2
· [Poisson]

[A]un+1 = RHS

[A] size (N-2)2 x (N-2)2

RHS size (N-2)2

un+1 size (N-2)2

