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Outline of lecture

‣Overview of CFD

- Navier Stokes equations

- Types of problems

- Discretization methods

‣ “Conventional” CFD

‣ Port CFD codes to CUDA

‣ Efforts

‣ Example problem: implicit heat transfer
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‣Numerical modeling of fluid systems

‣Navier-Stokes equation: momentum conservation

‣ Type of problems:

- Incompressible

- Compressible (non-viscous approximation)

- Shallow water

- Biphasic flows....
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CFD - Introduction
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‣ Earliest: Richardson (1910)

- Human computers

- Quickest averaged 2000 operations a week

‣CFD development tied with computers!

- 50s-60s: use of digital computers, finite difference methods

- 70s: finite element methods, spectral methods

- 80s: finite volume methods

- 90s: application to diverse industries 
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CFD - Introduction



CFD - Main discretization methods

‣ Finite difference

‣ Finite volume
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‣ Finite element method

‣ Spectral methods
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CFD - Main discretization methods
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‣Mesh free methods

- Smoothed Particle Hydrodynamics

- Vortex methods

- Radial Basis Functions

- ...
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CFD - Main discretization methods
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‣ Fluid flow is a multi-scale phenomena

- We need Re3 mesh points to reproduce all scales!

- Turbulence modeling

- Approximate turbulence effects
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CFD - Fluid Modeling

Re =
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Conventional CFD

‣Unstructured grids

- Unstructured sparse matrices

‣ Incompressible

- Projection methods

‣ Implicit

- Linear solvers

‣Modeled turbulence

- Reduced number of points
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∇ · u = 0



‣CFD is a tough problem for the GPU:

- Memory bound problems

‣Also, needs to convince people

- Old legacy codes

- How to port old codes to the GPU?

‣On the other hand, CFD codes are

- SIMD

- Single precision

- Large data sets
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Conventional CFD



Porting a code to GPU

‣Option 1: accelerate the existing code

‣Option 2: Rewrite code from scratch

‣Option 3: Rethink algorithms

11Next slides credits: J. Cohen - NVIDIA
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‣ Easiest way

‣ Probably not huge speedup

‣ Libraries like Cusp or CUFFT may be useful
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Option 1: Accelerate existing code



‣ SpeedIT (OpenFOAM)

- Ported linear solvers to GPU

- Supports multi-GPU

13

Option 1: Accelerate existing code - SpeedIT

Ville Tossavainen (Seeinside Ltd.)

Mesh Speedup

20x20 -100x

96x96x96 2.4x

128x128x32 2.0x

Xeon X5650 CPU
M2050 GPU



‣ FEAST (Finite Element Analysis and Solution Tools)

- High level abstraction approach

- Isolate “accelerable” parts of code

- Ports solver to GPU: Multigrid
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Option 1: Accelerate existing code - FEAST

Strzodka, Goddeke, Behr (2009)

Opteron 2214 4 nodes CPU
GTX 8800 GPU

Acceleration fraction: 75%
Local speedup: 11.5x
Global speedup: 3.8x



Option 2: Rewrite whole code

‣ First need to think about

- What is the total application speedup that you can get

- How does rewrite compare to accelerator approach

- Good design

- What global optimizations are possible
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Option 2: Rewrite whole code - cuIBM

‣ Immersed Boundary Method on GPU (cuIBM)

- Finite difference code with immersed boundary no slip condition

- 2 linear systems: implicit diffusion and projection 

- Reported speedup: 7x
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Layton, Krishnan, Barba 2011
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Option 2: Rewrite whole code - cuIBM
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Option 2: Rewrite whole code - Open Current

‣Developed by Jonathan Cohen in NVIDIA

‣Compared a highly optimized CPU code and GPU code

- CPU: Fortran, 8-core 2.5 GHz Xeon (8 thredas with MPI and OpenMP)

- GPU: CUDA, Tesla C1060

‣ Solved the Rayleigh-Bernard with a finite difference code
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Option 2: Rewrite whole code - Open Current
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Resolution
CUDA 

time/step ms
Fortran

time/step ms
Speedup

64x64x32 24 47 2.0x

128x128x64 79 327 4.1x

256x256x128 498 4070 8.2x

384x384x192 1616 13670 8.5x



Option 3: Rethink numerical algorithms

‣Most time consuming alternative!

‣Maybe new architectures require new numerics

‣ Find methods that map well to the hardware

- Maybe we overlooked something in the past because it was 
impractical
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Option 3: Rethink numerical algorithms - DG

‣Discontinuous Galerkin Methods

- Arithmetically intensive

- Mainly local

‣ Klockner et al. used DG to solve conservation laws
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GPU T1060
CPU: Xeon E5472



Implicit heat equation solver

‣Conventional CFD usually is dominated by Poisson type solvers

- Projection methods

- Implicit solvers to avoid stability constraints

‣Heat equation with Crank-Nicolson

- No stability constraint!
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Implicit heat equation solver
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Implicit heat equation solver
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Implicit heat equation solver

25

[A] = I +
αk

2h2
· [Poisson]

[A]un+1 = RHS

[A] size (N-2)2 x (N-2)2

RHS size (N-2)2

un+1 size (N-2)2


