GPU Computing with CUDA
Lecture 2 - CUDA Memories

Christopher Cooper
Boston University

August, 2011
UTFSM, Valparaiso, Chile

1

College of Engineering

Outline of lecture

» Recap of Lecture T

» Warp scheduling

» CUDA Memory hierarchy

» Introduction to the Finite Difference Method

Recap

» GPU
- A real alternative in scientific computing
- Massively parallel commodity hardware
» Market driven development
» Cheap!
» CUDA

- NVIDIA technology capable of programming massively parallel
processors with general purpose

- C/C++ with extensions

- Many simple cores

- Fermi:
» 16 SMs
- 32 SPs (cores)
- Shared, registers, cache
- SFU, CU

Recap

» Programming model
- Based on threads
- Thread hierarchy: grouped in thread blocks
- Threads in a thread block can communicate

» Challenge: parallel thinking

Data parallelism G| (<

;ﬁ ,,)’)”55 >
v: ;Sév: ééﬁéﬁ

SN,
(i%ﬁ%ﬁ)
I<scsasiaasa

- Load balancing
- Conlflicts

- Latency hiding

CUDA - Programming model

» Connecting the hardware and the software

1 | BE
T

| | BEEL
T

Hardware

tware rep

CUDA - Programming model

» Connecting the hardware and the software
Thread Thread block

/

/

i

1 | BE
T

| | BEEL
T

Hardware

tware rep

CUDA - Programming model

» Connecting the hardware and the software

1 | BE
T

| | BEEL
T

Hardware

tware rep

CUDA - Programming model

» Connecting the hardware and the software

Hardware

tware rep

CUDA - Programming model

» Connecting the hardware and the software

1 | BE
T

| | BEEL
T

Hardware

tware rep

How a Streaming Multiprocessor (SM) works

» CUDA Threads are grouped in thread blocks

- All threads of the same thread block are executed in the same SM at
the same time

» SMs have shared memory, then threads within a thread block can
communicate

- The entirety of the threads of a thread block must be executed
before there is space to schedule another thread block

How a Streaming Multiprocessor (SM) works

» Hardware schedules thread blocks onto available SMs
- No guarantee of order of execution

- |1f a SM has more resources the hardware will schedule more blocks

Block 100

Block 15

Block 7

Block 1

How a Streaming Multiprocessor (SM) works

» Hardware schedules thread blocks onto available SMs
- No guarantee of order of execution

- |1f a SM has more resources the hardware will schedule more blocks

Block 100

Block 15

Block 7

How a Streaming Multiprocessor (SM) works

» Hardware schedules thread blocks onto available SMs
- No guarantee of order of execution

- |1f a SM has more resources the hardware will schedule more blocks

Block 100

Block 15

How a Streaming Multiprocessor (SM) works

» Hardware schedules thread blocks onto available SMs
- No guarantee of order of execution

- |1f a SM has more resources the hardware will schedule more blocks

Block 100

Block 15

Block 7

How a Streaming Multiprocessor (SM) works

» Hardware schedules thread blocks onto available SMs
- No guarantee of order of execution

- |1f a SM has more resources the hardware will schedule more blocks

Block 100

Block 15

Block 7

How a Streaming Multiprocessor (SM) works

» Hardware schedules thread blocks onto available SMs
- No guarantee of order of execution

- |1f a SM has more resources the hardware will schedule more blocks

Block 15

Block 7

Block 100

Warps

» Inside the SM\, threads are launched in groups of 32 called warps
- Warps share the control part (warp scheduler)
- At any time, only one warp is executed per SM
- Threads in a warp will be executing the same instruction

- Halt warps for compute capability 1.X

- Fermi:

» Maximum number of active threads 1024*8*32 = 262144

Warps

» Inside the SM\, threads are launched in groups of 32 called warps
- Warps share the control part (warp scheduler)
- At any time, only one warp is executed per SM
- Threads in a warp will be executing the same instruction

- Halt warps for compute capability 1.X

Max threads

. per block
- Fermi:

» Maximum number of active threads 1024*8*32 = 262144

Warps

» Inside the SM\, threads are launched in groups of 32 called warps
- Warps share the control part (warp scheduler)
- At any time, only one warp is executed per SM
- Threads in a warp will be executing the same instruction
- Half warps for compute capability 1.X

Max blocks
Max threads oer SM

. per block
- Fermi:

» Maximum number of active threads 1024*8*32 = 262144

Warps

» Inside the SM\, threads are launched in groups of 32 called warps
- Warps share the control part (warp scheduler)
- At any time, only one warp is executed per SM
- Threads in a warp will be executing the same instruction
- Half warps for compute capability 1.X

Max blocks
Max threads oer SM

. per block
- Fermi:

» Maximum number of active threads 1024*8*32 = 262144

Warp designation

» Hardware separates threads of a
block into warps

- All threads in a warp correspond
to the same thread block

- Threads are placed in a warp
sequentially

- Threads are scheduled in warps

Block N, Warp 1

Block N, Warp 2

Block N Block N, Warp 3

Block N, Warp 4

16x8 TB

~ Block 1 Warps — Block 2 Warps

| | —-—
t0 t1 t2 ... 131 t0 t1t2 ... t31

NANNNRNNESN

Streaming Multiprocessor
| Instruction L1 | DataL1 |

Instruction Fetch/Dispatch

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaignqg

Warp scheduling

» The SM implements a zero-overhead warp scheduling

- Warps whose next instruction has its operands ready for
consumption are eligible for execution

- Eligible warps are selected for execution on a prioritized scheduling
policy

- All threads in a warp execute the same instruction

TB1, W1 stall I
—TB2, W1 stall—j TB3, W2 stall

TB1 TEB3 TEB3 TB2 TB1 TB1
Wi Wi W2 W1 Wi W2

Instruction:

—Time-» TB = Thread Block, W = Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Warp scheduling

» Fermi
- Double warp scheduler

- Each SM has two warp
schedulers and two
Instruction units

Warp Scheduler

Warp 8 instruction 11

Warp 2 instruction 42

Warp 14 instruction 95

Warp 8 instruction 12
Warp 14 instruction 96

Warp 2 instruction 43

Warp 9 instruction 11
Warp 3 instruction 33

Warp 15 instruction 95

Warp 9 instruction 12
Warp 3 instruction 34

Warp 15 instruction 96

Memory hierarchy

» CUDA works in both the CPU and GPU

- One has to keep track of which memory is operating on

(host - device)

- Within the GPU there are also different memory spaces

« Each thread can:

— Read/write per-thread

registers

Read/write per-thread local

memory

Read/write per-block

shared memory

Read/write per-grid global

memory

Read/only per-grid
constant memory

lj:—

Figure 4.2 GeForce 8800GTX Implementation of CUDA Memories

Memory hierarchy

» Global memory i

Block (0,0) Block(1,0) Block(2,0)

- Main GPU memory gggggg ggggggg §§§§§§

Block (0,1) Block(1,1) Block(2,1)

- Communicates with host §§§§§§§ §§§§§§ §§§§§§§

- Can be seen by all threads Grid 1

Global memory

Block (0, 0) Block (1, 0)

- Order of GB gggggg

- Off chip, slow (~400 SIS
cycles) §§§§§

Block (0, 2) Block (1, 2)

__device float variable;

Memory hierarchy

» Shared memory Thread Block

§§§§§§§ Per-block shared
- Per SM memen

- Seen by threads of the same thread block

- Order of kB

- On chip, fast (~4 cycles) __shared__ float variable;

» Registers Thread
§ P > Per-thread local

memory

- Private to each thread

- On chip, fast
+loat variable;

Memory hierarchy

» Local memory Thread

g < > Per-thread local

memory

- Private to each thread

- Off chip, slow

- Register overflows float variable [10];
» Constant memory

- Read only

- Off chip, but fast (cached)

- Seen by all threads

~_constant float variable;
- 64kB with 8kB cache

Memory hierarchy

» Texture memory
- Seen by all threads
- Read only
- Off chip, but fast (cached) if cache hit
- Cache optimized for 2D locality

- Binds to global

texture<type, dim> tex var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);

tex2D(tex var, x _index, y index);

Memory hierarchy

» Texture memory
- Seen by all threads
- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global

texture<type, dim> tex var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);

tex2D(tex var, x _index, y index);

Memory hierarchy

» Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global
Coischanmedrornatpese (O
cudaBindTexture2D(...);
tex2D(tex var, x _index, y index);

Memory hierarchy

» Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global
texture<type, dim> tex_v
cudaChannelFormatDesc();
cudaBindTexture2D(...); «

tex2D(tex_var, x_index, y index);

Memory hierarchy

» Texture memory
- Seen by all threads
- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global
texture<type, dim> tex_v
cudaChannelFormatDesc();
cudaBindTexture2D(...); «

tex2D(tex_var, x_index, y index);

Memory hierarchy

Memory Location Cached Scope Lifetime
on/off chip

Register On n/a 1 thread Thread

Local Off T 1 thread Thread

Shared On n/a All threads in block | Block

Global Off i} All threads + host Host allocation
Constant Off Yes All threads + host Host allocation
Texture Off Yes All threads + host Host allocation

*Cached only on devices of compute capability 2.x. Device

GPU

Multiprocessor

Multiprocessor

To Host

Multiprocessor
Registers

Shared Memory

Memory hierarchy

» Case of Fermi
- Added an L1 cache to each SM
- Shared + cache = 64kB:
» Shared = 48kB, cache = 16kB

» Shared = 16kB, cache = 48kB

Fermi Memory Hierarchy
Thread

Memory hierarchy

» Use you memory strategically

- Read only: __constant__ (fast)

- Read/write and communicate within a block: _ shared _ (fast and
communication)

- Read/write inside thread: registers (fast)

- Data locality: texture

Resource limits

» Number of thread blocks per SM at the same time is limited by

- Shared memory usage
- Registers

- No more than 8 thread blocks per SM

- Number of threads

Resource limits - Examples

Number of blocks

How big should my blocks be? 8x8, 16x16 or 64x647

Max threads
y XS per block

8*8 = 64 threads per block, 1024/64 = 16 blocks. An SM can have up
to 8 blocks: only 512 threads will be active at the same time

» 16x16
16*16 = 256 threads per block, 1024/256 = 4 blocks. An SM can take
all blocks, then all 1024 threads will be active and achieve full capacity
unless other resource overrule

» 64x64
64*64 = 4096 threads per block: doesn’t fitina SM

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign 22

Resource limits - Examples

Registers

We have a kernel that uses 10 registers. With 16x16 block, how many
blocks can run in G80 (max 8192 registers per SM, 768 threads per
SM)?

10716*16 = 2560. SM can hold 8192/2560 = 3 blocks, meaning we will
use 3*16*16 = /68 threads, which is within limits.

't we add one more register, the number of registers grows to 11*16*16
= 2816. SM can hold 8192/2816 = 2 blocks, meaning we will use
271615 = 512 threads. Now as less threads are running per SM is more
difficult to have enough warps to have the GPU always busy!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007—20092
ECE498AL, University of Illinois, Urbana-Champaign

Introduction to Finite Difference Method

» Throughout the course many examples will be taken from Finite
Ditference Method

» Also, next lab involves implementing a stencil code

» Just want to make sure we're all in the same page!

Introduction to Finite Difference Method

» Finite Difference Method (FDM) is a numerical method for solution
of differential equations

» Domain is discretized with a mesh

» Derivative at a node are approximated by the linear combination of
the values of points nearby (including itself)

@ oY~ Yi—
8£Ei L, — Lij—-1

B : Example using first order
' L one sided difference

:

: . S
:hghn hovh ! h
I

I

I ! , ,
—;—;—;—* ; —o— P
Xy X1 X3 X3 X4 X5 X

FDM - Accuracy and order

» From Taylor's polynomial, we get

flxo+h) = f(xo) + f'(x0) - h 4 Ri(x)

» Sources of error
- Roundoff (Machine)

- Truncation (R(x)): gives the order of the method

FDM - Stability

» Stability of the algorithm may be conditional
ou O0%u

ot Ox2

» Explicit method

ntl _n — 2u" "
u; - uj _ U ; +uj Conditionally stable

» Implicit
un—l—l _yn un—l—l T n—+1 + un—l—l
J - J _ g+l fZ? J—1 Unconditionally stable

» Crank Nicolson

n+1 o n n+1l n-+1 n—+1
- o <J+1 2u7 +uy g uiyy — 2 —I—uj1>

h2 + h2

Unconditionally stable

FDM - 2D example

» We're going to be working with this example in the labs

» Explicit diffusion

FDM on the GPU

» Mapping the physical problem to the software and hardware

» Each thread will operate on one node: node indexing groups them
naturally!

FDM on the GPU

» Mapping the physical problem to the software and hardware

» Each thread will operate on one node: node indexing groups them
naturally!

Thread = node Thread block

e

/

|

\

FDM on the GPU

» Mapping the physical problem to the software and hardware

» Each thread will operate on one node: node indexing groups them
naturally!

