
GPU Computing with CUDA
Lab 4 - Efficient AAT

Christopher Cooper 
Boston University

August, 2011
UTFSM, Valparaíso, Chile

1



Objectives

‣ Implement an efficient AAT multiplication considering

- Tiling

- Coalesced memory accesses

‣One thread will perform one dot product for one element of the 
resulting matrix

2



Efficient AAT

‣Naive approach

‣ Problems

- Redundant global memory accesses

- Uncoalesced reads for transpose 

3

float sum = 0.0f;
for (int k=0; k<W; k++)
sum += A.elements[j*MAX+k]*A.elements[i*MAX+k];



‣Use shared memory 

- Reduces redundant reads

- Transposing in shared memory has no coalescing penalty

- Try making your reads to shared memory coalesced

‣ Be aware that the transpose of a whole matrix can be obtained by 
transposing in shared memory inside the block and then transposing 
the whole blocks

4

Efficient AAT



‣Conventional matrix matrix

5

Efficient AAT



‣Conventional matrix matrix

5

Efficient AAT

Iteration 1



‣Conventional matrix matrix

5

Efficient AAT

Iteration 2



‣Conventional matrix matrix

5

Efficient AAT



‣AAT case

6

Efficient AAT



‣AAT case

6

Efficient AAT



‣AAT case

6

Efficient AAT



‣AAT case

6

Efficient AAT



‣My results (2048x2048)

- Naive 

‣ 2*2048+1 = 4097 loads per thread

‣ 2*2048 = 4096 operations per thread

‣ Kernel time = 2.11s (C2050) 8.1s (GTX295)

- Tiled

‣ 2*2048/16 + 1 = 257 loads per thread

‣ 2*2048 = 4096 operations

‣ Kernel time = 0.34s (C2050) 0.577s (GTX295)
7

Efficient AAT

Stops being bandwidth limited


