PASI Summer School

Advanced Algorithmic Techniques for GPUs

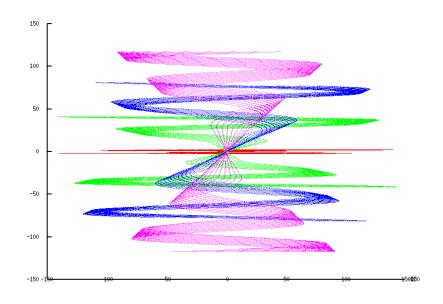
Lecture 6: Input Compaction and Further Studies

Objective

- To learn the key techniques for compacting input data for reduced consumption of memory bandwidth
 - Via better utilization of on-chip memory
 - As well as fewer bytes transferred to on-chip memory
- To understand the tradeoffs between input compaction and input binning/regularization

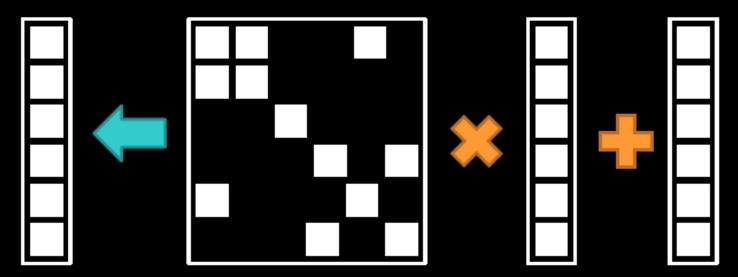
Sparse Data Motivation for Compaction

- Many real-world inputs are sparse/non-uniform
- Signal samples, mesh models, transportation networks, communication networks, etc.



Sparse matrix-vector multiplication

- Compute $y \leftarrow Ax + y$
 - where A is sparse and x, y are dense



- Unlike dense methods, SpMV is generally
 - unstructured / irregular
 - entirely bound by memory bandwidth

Parallelizing CSR SpMV

Compressed Sparse Row

- Straightforward approach
 - one thread per matrix row

Thread 0	3	0	1	0
Thread 1	0	0	0	0
Thread 2	0	2	4	1
Thread 3	1	0	0	1

CSR SpMV Kernel (CUDA)


```
int row = blockDim.x * blockIdx.x + threadIdx.x;
if ( row < num rows ) {</pre>
    float dot = 0;
    int row start = ptr[row];
    int row end = ptr[row + 1];
    for (int jj = row start; jj < row end; jj++)</pre>
        dot += data[jj] * x[indices[jj]];
    y[row] += dot;
                                  Row 0 Row 2 Row 3
      Nonzero values data[7] = \{ 3, 1, 2, 4, 1, 1, 1 \};
      Column indices [7] = \{ 0, 2, 1, 2, 3, 0, 3 \};
        Row pointers ptr[5] = \{ 0, 2, 2, 5, 7 \};
```

Problems with simple CSR kernel

- Execution divergence
 - varying row lengths

Thread 0	3	0	1	0
Thread 1	0	0	0	0
Thread 2	0	2	4	1
Thread 3	1	0	0	1

- Memory divergence
 - minimal coalescing

```
#0 #1 #0 #1 #0 #2 #1 Iteration

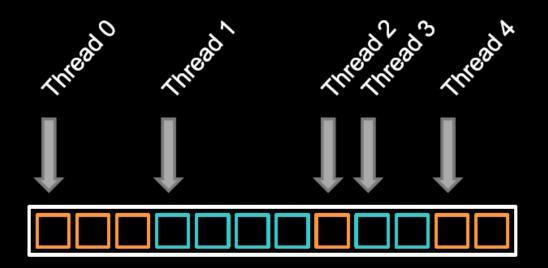
Nonzero values data[7] = { 3, 1, 2, 4, 1, 1, 1 };

Column indices indices[7] = { 0, 2, 1, 2, 3, 0, 3 };

Row pointers ptr[5] = { 0, 2, 2, 5, 7 };
```

Problems with simple CSR kernel

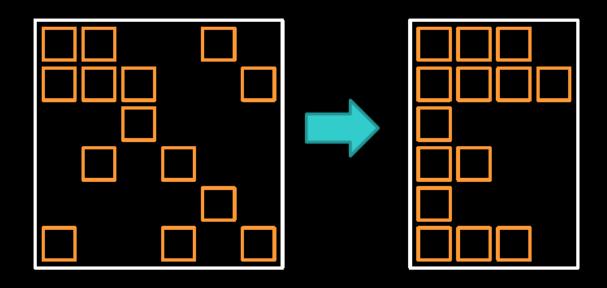
- Memory divergence
 - minimal coalescing



Regularizing SpMV with ELL format

- Storage for K nonzeros per row
 - pad rows with fewer than K nonzeros
 - inefficient when row length varies

ELLPACK



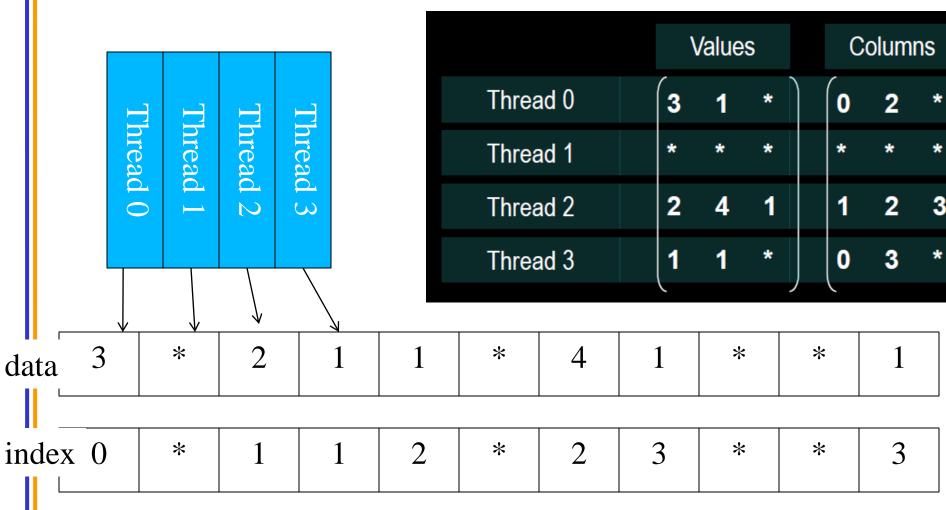
Regularizing SpMV with ELL format

Quantize each row to a fix length K

	\	Values			Columns		ns
Thread 0	3	1	*		0	2	*
Thread 1	*	*	*		*	*	*
Thread 2	2	4	1		1	2	3
Thread 3	1	1	*		0	3	*

- Layout in column-major order
 - yields full coalescing

Memory Coalescing with ELL



Exposing maximal parallelism

- Use COO (Coordinate) format
 - list row, column, and value for every non-zero entry

```
Nonzero values data[7] = { 3, 1, 2, 4, 1, 1, 1 };

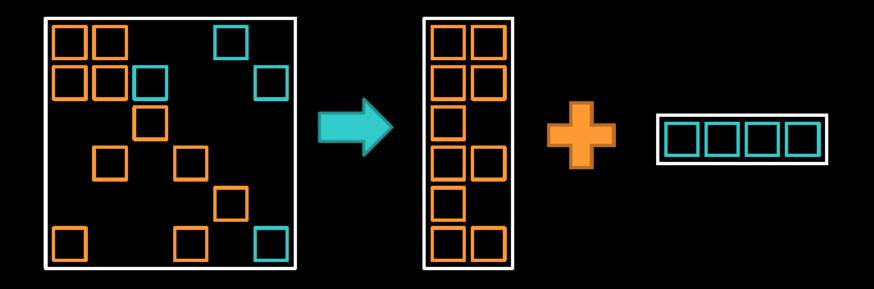
Column indices cols[7] = { 0, 2, 1, 2, 3, 0, 3 };

Row indices rows[7] = { 0, 0, 1, 1, 1, 2, 2 };
```

- Assign one thread to each non-zero entry
 - each thread computes an A[i,j]*x[j] product
 - sum products with segmented reduction algorithm
 - largely insensitive to row length distribution

Hybrid Format

- ELL handles typical entries
- COO handles exceptional entries
 - Implemented with segmented reduction

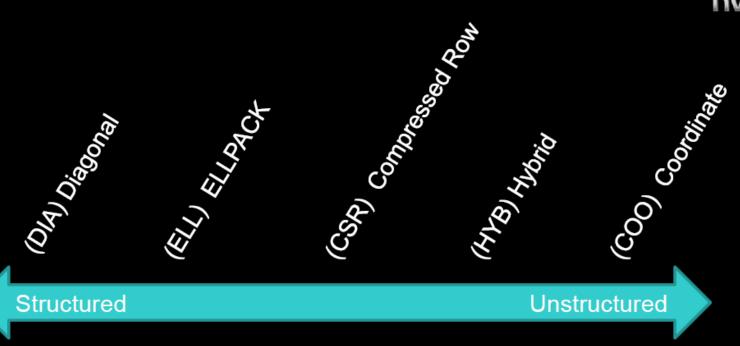


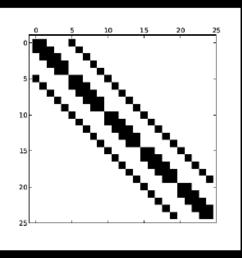
Any More Ideas?

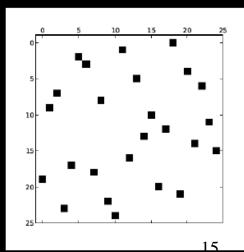
- JDS format
 - Sort rows according to their number of non-zero elements

 Can use Hybrid with JDS and and launch multiple kernels

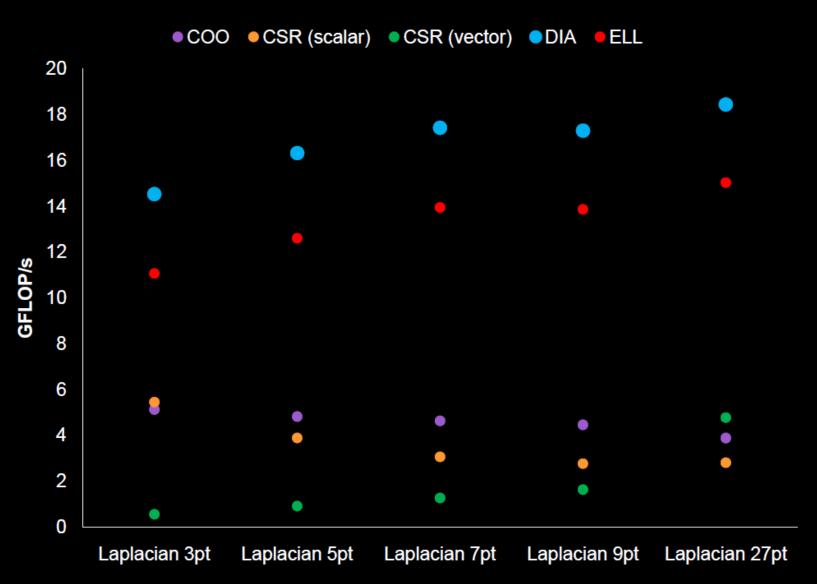
Sparse formats for different matrices



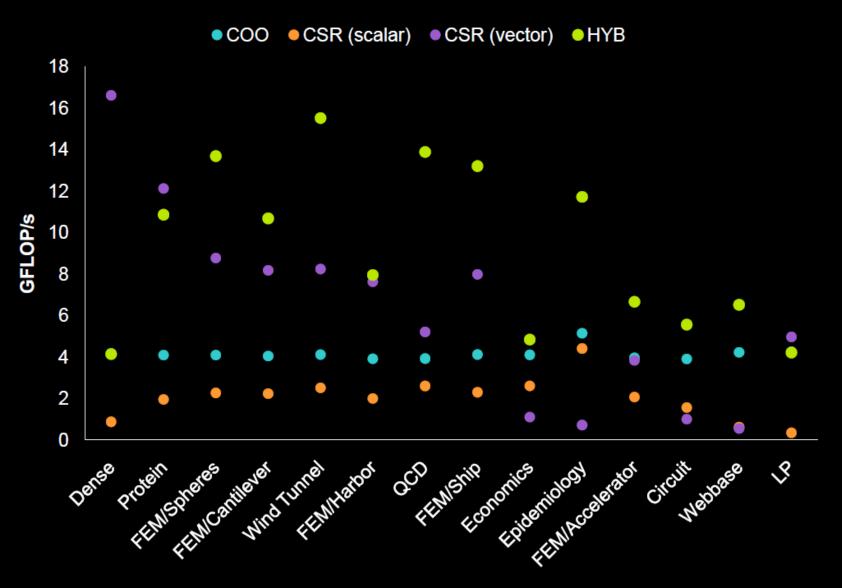




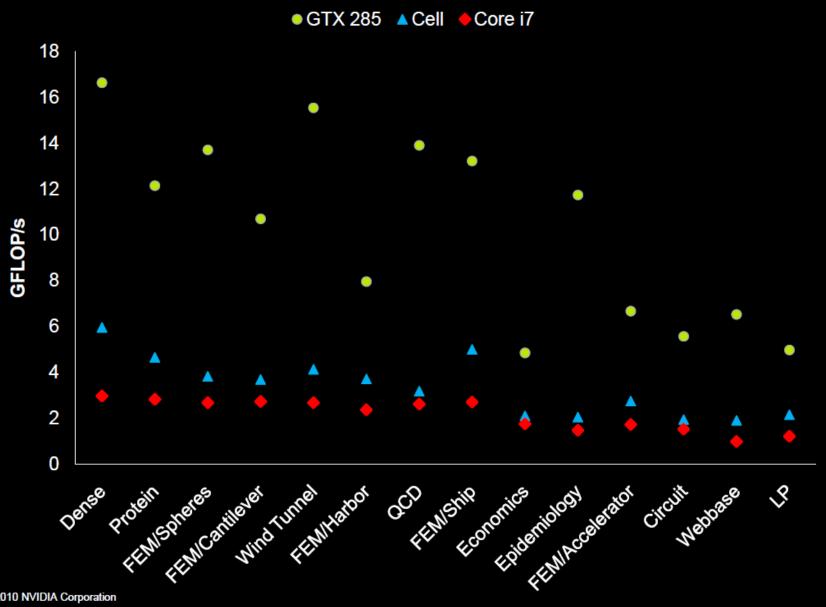
Structured Matrices



Unstructured Matrices

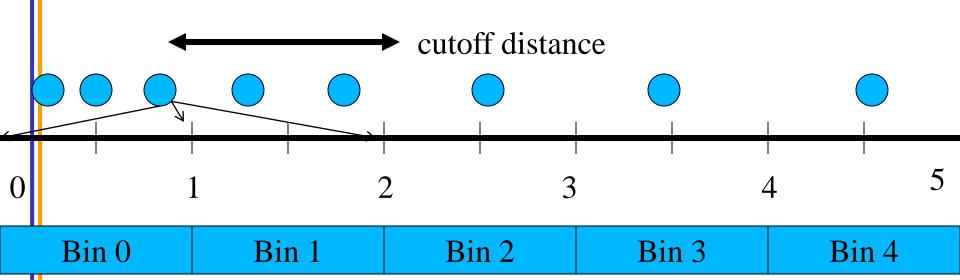


Performance Comparison

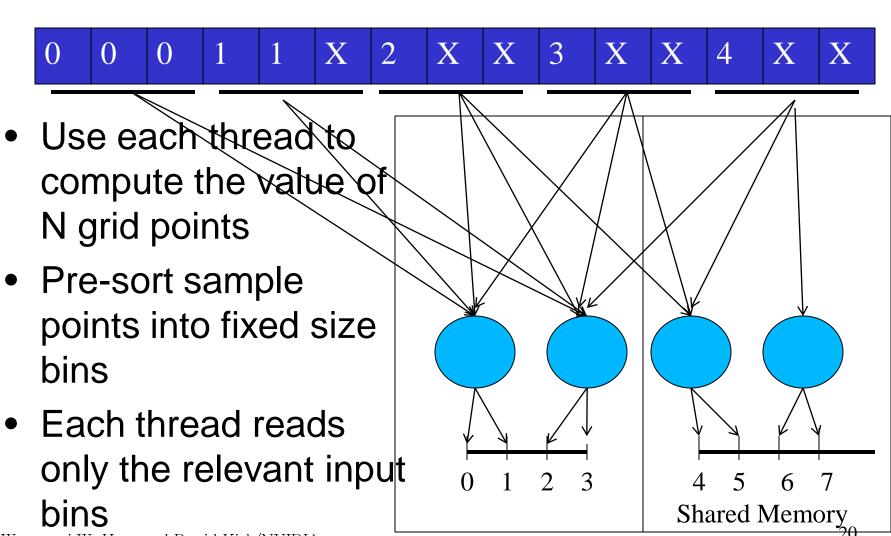


Binning of Sample Points

- For simplicity, we will use 1D gridding examples
- Each sample point has
 - S.x (will be represented with Bin#)
 - S.value (will be omitted unless necessary)

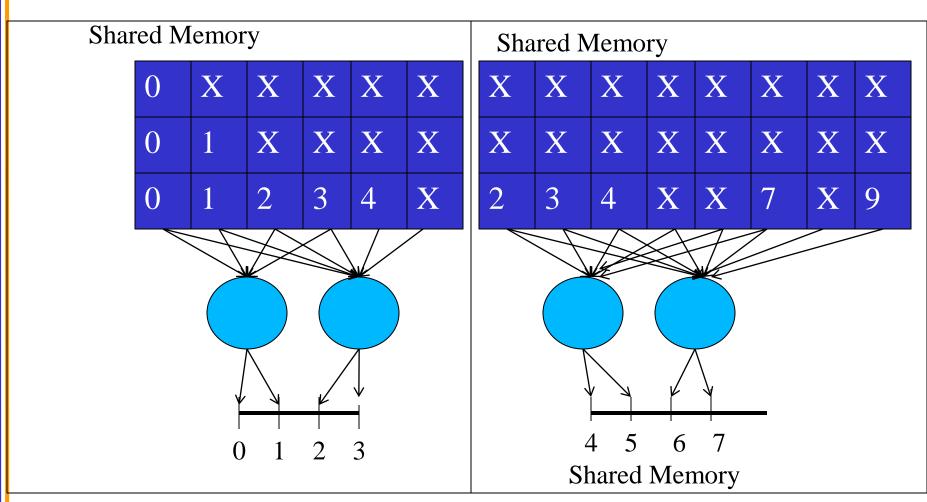


A Binned Gather Parallelization



©Wen-mei W. Hwu and David Kirk/NVIDIA Chile, January 5-7, 2011

A Tiled Gather Implementation

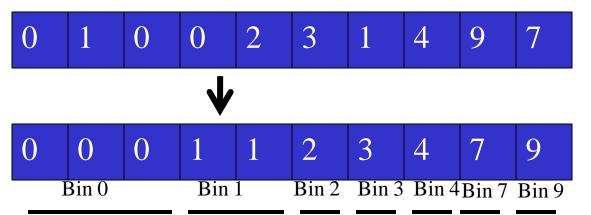


More on Tiled Gather

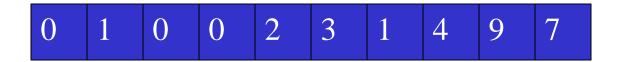
- Threads cooperate to load all the relevant bins from Global Memory to Shared Memory
- Each thread accesses relevant bins from Shared Memory
- Uniform binning for Non-uniform distribution
 - Large memory overhead for dummy cells
 - Reduced benefit of tiling
 - Many threads spend much time on dummy sample points

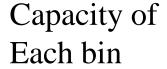
Compact Binning for Gather Parallelization

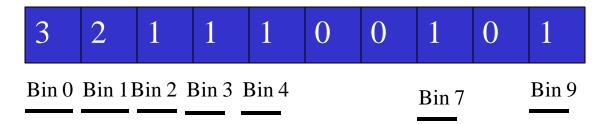
- Avoid pre-allocated fixed capacity bins (multidimensional array)
- Sort samples into bins of varying sizes in input array instead
 - Bins 5, 6, 8 are implicit, zero-sample



GPU Binning - Use Scatter to Generate Bin Capacities



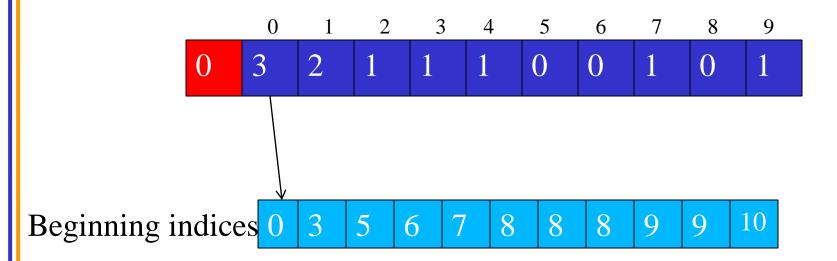




Need to use atomic operations for counting the capacity

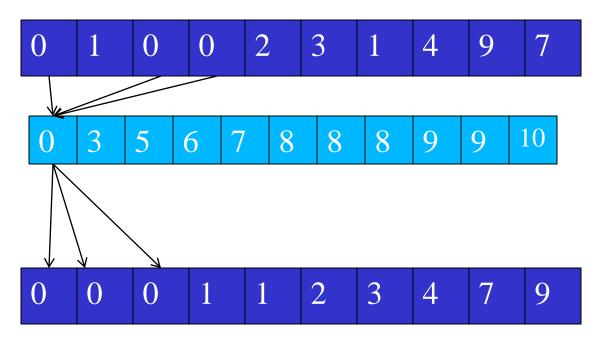
Determine Start and End of Bins

 Use parallel scan operations on the bin capacity array to generate an array of starting points of all bins (CUDPP)

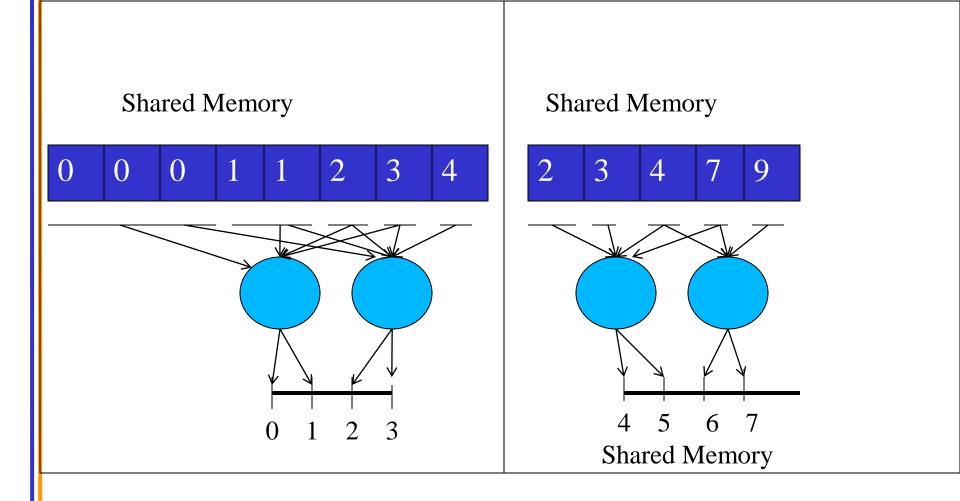


Actual Binning

 All inputs can now be placed into their bins in parallel, using atomic operations



A Tiled Gather Implementation



Controlling Load Balance (done during capacity generation)

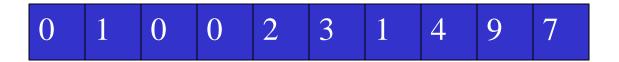
- Limit the size of each bin
 - When counter exceeds limit for a bin, the input samples are placed into a "CPU" overflow bin
 - CPU places excess sample points into a CPU list
 - CPU does gridding on the excess sample points in parallel with GPU
 - Eventually merge

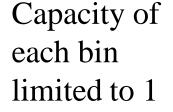
0 0 1

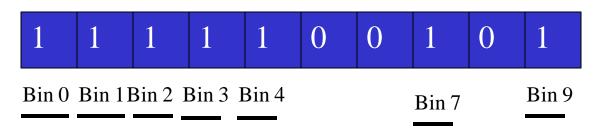
GPU

CPU

Set a Limit on Bin Capacities



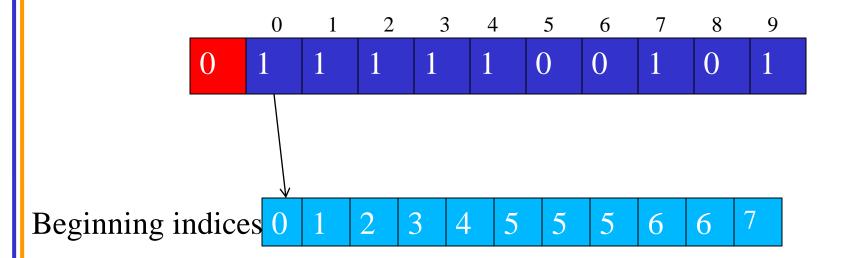




When a bin capacity reaches a preset limit, do not further increment the capacity counter But place the excess input into an overflow bin

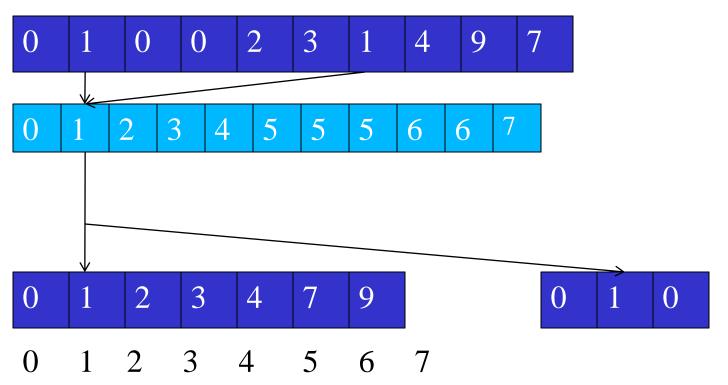
Determine Start and End of Bins

 Use parallel scan operations on the bin capacity array to generate an array of starting points of all bins (CUDPP)



Actual Binning

All inputs can now be placed into their bins in parallel



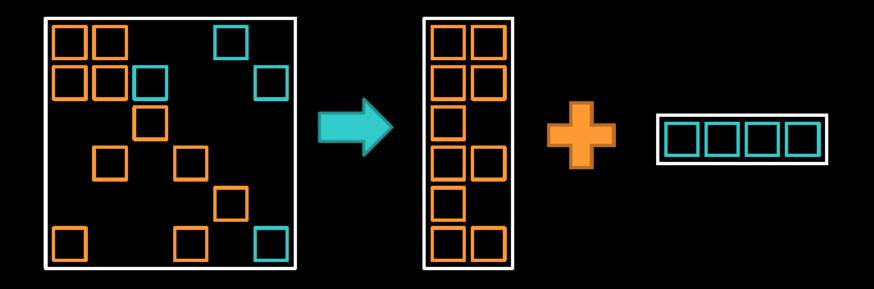
Note the similarity

- Compact bins CSR
- Overflow bins COO

 One could use ELL or JDS type of optimization on bins if desired

Hybrid Format

- ELL handles typical entries
- COO handles exceptional entries
 - Implemented with segmented reduction



Eight Optimization Patterns for Algorithms (so far)

Technique	Contention	Bandwidth	Locality	Efficiency	Load Imbalance	CPU Leveraging
Tiling		X	X			
Privatization	X		X			
Regularization				X	X	X
Compaction		X				
Binning		X	X	X		X
Data Layout Transformation	X		X			
Thread Coarsening	X	X	X	X		
Scatter to Gather Conversion	X					

http://courses.engr.illinois.edu/ece598/hk/

Impact of Techniques on Apps

Benchmark	Unoptimized Im-	Optimizations Applied	Optimized Implementation	Primary Limit of Effi-	
	plementation Bot-		Bottleneck	ciency	
	tleneck				
cutcp	Contention, Local-	Scatter-to-Gather, Binning, Regular-	Instruction Throughput	Reads/Checks of Irrel-	
	ity	ization, Coarsening		evant Bin Data	
mri-q	Poor Locality	Data Layout Transformation, Tiling,	Instruction Throughput	N/A (true bottleneck)	
		Coarsening			
gridding	Contention, Load	Scatter-to-Gather, Binning, Com-	Instruction Throughput	Reads/Checks of Irrel-	
	Imbalance	paction, Regularization, Coarsening		evant Bin Data	
sad	Locality	Tiling, Coarsening	Memory Bandwidth/Latency	Register Capacity	
stencil	Locality	Coarsening, Tiling	Bandwidth	Local Memory, Regis-	
				ter Capacity	
tpacf	Locality,	Tiling, Privatization, Coarsening	Instruction Throughput	N/A (true bottleneck)	
	Contention				
1bm	Bandwidth	Data Layout Transformation	Bandwidth	N/A (true bottleneck)	
dmm	Bandwidth	Coarsening, Tiling	Instruction Throughput	N/A (true bottleneck)	
spmv	Bandwidth	Data Layout Transformation	Bandwidth	N/A (true bottleneck)	
bfs	Contention, Load	Privatization, Compaction, Regular-	Bandwidth	Whole-Device Local	
	Imbalance	ization		Memory Capacity	
histogram	Contention, Band-	Privatization, Scatter-to-Gather	Bandwidth	Reads of Irrelevant	
	width			Input (alleviated by	
				cache)	

5

Challenges of Parallel Programming

- Computations with no known scalable parallel algorithms
 - Shortest path, Delaunay triangulation, ...
- Data distributions that cause catastrophical load imbalance in parallel algorithms
 - Free-form graphs, MRI spiral scan
- Computations that do not have data reuse
 - Matrix vector multiplication, ...
- Algorithm optimizations that are require expertise
 - Locality and regularization transformations

Benefit from other people's experience

- GPU Computing Gems Vol 1
 - Coming January 2011
 - 50 gems in 10 applications areas
 - Scientific simulation, life sciences, statistical modeling, emerging data-intensive applications, electronic design automation, computer vision, ray tracing and rendering, video and imaging processing, signal and audio processing, medical imaging
- GPU Computing Gems Vol 2
 - Coming in May 2011
 - 50+ gems in more application areas, tools, environments

THANK YOU!