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Advanced Algorithmic Techniques for GPUs

Lecture 6: Input Compaction and 
Further Studies
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Objective

• To learn the key techniques for compacting input 
data for reduced consumption of memory 
bandwidth
– Via better utilization of on-chip memory
– As well as fewer bytes transferred to on-chip memory

• To understand the tradeoffs between input 
compaction and input binning/regularization
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Sparse Data
Motivation for Compaction

 Many real-world 
inputs are 
sparse/non-uniform
 Signal samples, 

mesh models, 
transportation 
networks, 
communication 
networks, etc.
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Memory Coalescing with ELL
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Any More Ideas?

• JDS format
– Sort rows according to their number of non-zero 

elements

• Can use Hybrid with JDS and and launch 
multiple kernels
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Binning of Sample Points

• For simplicity, we will use 1D gridding examples
• Each sample point has

– S.x (will be represented with Bin#)
– S.value (will be omitted unless necessary)
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A Binned Gather Parallelization

• Use each thread to 
compute the value of 
N grid points

• Pre-sort sample 
points into fixed size 
bins

• Each thread reads 
only the relevant input 
bins
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A Tiled Gather Implementation
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More on Tiled Gather

• Threads cooperate to load all the relevant bins 
from Global Memory to Shared Memory

• Each thread accesses relevant bins from Shared 
Memory

• Uniform binning for Non-uniform distribution
– Large memory overhead for dummy cells
– Reduced benefit of tiling
– Many threads spend much time on dummy sample 

points
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Bin 4

Compact Binning for Gather 
Parallelization 

 Avoid pre-allocated fixed capacity bins (multi-
dimensional array)

 Sort samples into bins of varying sizes in input 
array instead
 Bins 5, 6, 8 are implicit, zero-sample
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GPU Binning - Use Scatter to 
Generate Bin Capacities
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Determine Start and End of Bins

• Use parallel scan operations on the bin capacity 
array to generate an array of starting points of all 
bins (CUDPP)
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Actual Binning

• All inputs can now be placed into their bins in 
parallel, using atomic operations
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A Tiled Gather Implementation
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Controlling Load Balance
(done during capacity generation)

• Limit the size of each bin
– When counter exceeds limit for a bin, the input 

samples are placed into a “CPU” overflow bin
– CPU places excess sample points into a CPU list 
– CPU does gridding on the excess sample points in 

parallel with GPU
– Eventually merge
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Set a Limit on Bin Capacities
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Determine Start and End of Bins

• Use parallel scan operations on the bin capacity 
array to generate an array of starting points of all 
bins (CUDPP)
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Actual Binning

• All inputs can now be placed into their bins in 
parallel
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Note the similarity

• Compact bins – CSR
• Overflow bins - COO

• One could use ELL or JDS type of optimization 
on bins if desired
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Eight Optimization Patterns for 
Algorithms (so far)
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http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2
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Impact of Techniques on Apps
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Challenges of Parallel Programming
• Computations with no known scalable parallel 

algorithms
– Shortest path, Delaunay triangulation, …

• Data distributions that cause catastrophical load 
imbalance in parallel algorithms
– Free-form graphs, MRI spiral scan

• Computations that do not have data reuse
– Matrix vector multiplication, …

• Algorithm optimizations that are require expertise
– Locality and regularization transformations
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Benefit from other people’s 
experience

• GPU Computing Gems Vol 1
– Coming January 2011
– 50 gems in 10 applications areas
– Scientific simulation, life sciences, statistical modeling, 

emerging data-intensive applications, electronic design 
automation, computer vision, ray tracing and rendering, 
video and imaging processing, signal and audio 
processing, medical imaging

• GPU Computing Gems Vol 2
– Coming in May 2011
– 50+ gems in more application areas, tools, environments
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THANK YOU!
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