
©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

PASI Summer School

Advanced Algorithmic Techniques for GPUs

Lecture 6: Input Compaction and
Further Studies

1

Objective

• To learn the key techniques for compacting input
data for reduced consumption of memory
bandwidth
– Via better utilization of on-chip memory
– As well as fewer bytes transferred to on-chip memory

• To understand the tradeoffs between input
compaction and input binning/regularization

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

2

Sparse Data
Motivation for Compaction

 Many real-world
inputs are
sparse/non-uniform
 Signal samples,

mesh models,
transportation
networks,
communication
networks, etc.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

3

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

4

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

Compressed Sparse Row

5

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

6

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

7

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

8

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

ELLPACK

9

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

10

Memory Coalescing with ELL

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

Thread 0

Thread 1

Thread 3

Thread 2

3 * 2 1 1 * 4 1

0 * 1 1 2 * 2 3

* * 1

* 3*

data

index

11

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

12

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

13

Any More Ideas?

• JDS format
– Sort rows according to their number of non-zero

elements

• Can use Hybrid with JDS and and launch
multiple kernels

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

14

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

15

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

16

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

17

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

18

Binning of Sample Points

• For simplicity, we will use 1D gridding examples
• Each sample point has

– S.x (will be represented with Bin#)
– S.value (will be omitted unless necessary)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

0 1 32 4 5

Bin 1Bin 0 Bin 2 Bin 3 Bin 4

cutoff distance

19

A Binned Gather Parallelization

• Use each thread to
compute the value of
N grid points

• Pre-sort sample
points into fixed size
bins

• Each thread reads
only the relevant input
bins

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

0 0 0 1 1 2X X

0 21 63 74 5
Shared Memory

X 3 X X 4 X X

20

A Tiled Gather Implementation

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

k

0 21 63 74 5

Shared Memory

Shared Memory

0 1 2

0 1 X

0 X X

3

X

X

4

X

X

X

X

X

2 3 4

X X X

X X X

X

X

X

X

X

X

7

X

X
Shared Memory

X

X

X

9

X

X

21

More on Tiled Gather

• Threads cooperate to load all the relevant bins
from Global Memory to Shared Memory

• Each thread accesses relevant bins from Shared
Memory

• Uniform binning for Non-uniform distribution
– Large memory overhead for dummy cells
– Reduced benefit of tiling
– Many threads spend much time on dummy sample

points

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

22

Bin 4

Compact Binning for Gather
Parallelization

 Avoid pre-allocated fixed capacity bins (multi-
dimensional array)

 Sort samples into bins of varying sizes in input
array instead
 Bins 5, 6, 8 are implicit, zero-sample

0 0 0 1 1 32 4

0 1 0 0 2 13 4

Bin 0 Bin 2Bin 1 Bin 3

9 7

7 9
Bin 7 Bin 9

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

23

GPU Binning - Use Scatter to
Generate Bin Capacities

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

Bin 4

3 2 1 1 1 00 1

0 1 0 0 2 13 4

Bin 0 Bin 2Bin 1 Bin 3

9 7

0 1

Bin 7 Bin 9

Capacity of
Each bin

Need to use atomic operations for
counting the capacity

24

Determine Start and End of Bins

• Use parallel scan operations on the bin capacity
array to generate an array of starting points of all
bins (CUDPP)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

3 2 1 1 1 00 1

0 3 5 6 7 8 8

0 1
0 1 2 3 4 5 76 8 9

8 9 9 10

0

Beginning indices

25

Actual Binning

• All inputs can now be placed into their bins in
parallel, using atomic operations

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

0 1 0 0 2 13 4 9 7

0 0 0 1 1 32 4 7 9

0 3 5 6 7 8 8 8 9 9 10

26

A Tiled Gather Implementation

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

k

0 21 63 74 5

Shared Memory

Shared Memory

0 0 0 1 1 2 2 3 4 7 9

Shared Memory

3 4

27

Controlling Load Balance
(done during capacity generation)

• Limit the size of each bin
– When counter exceeds limit for a bin, the input

samples are placed into a “CPU” overflow bin
– CPU places excess sample points into a CPU list
– CPU does gridding on the excess sample points in

parallel with GPU
– Eventually merge

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

0 1 2 3 4 97 0 0 1

GPU CPU
28

Set a Limit on Bin Capacities

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

Bin 4

1 1 1 1 1 00 1

0 1 0 0 2 13 4

Bin 0 Bin 2Bin 1 Bin 3

9 7

0 1

Bin 7 Bin 9

Capacity of
each bin
limited to 1

When a bin capacity reaches a preset limit, do
not further increment the capacity counter

But place the excess input into an overflow bin
29

Determine Start and End of Bins

• Use parallel scan operations on the bin capacity
array to generate an array of starting points of all
bins (CUDPP)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

1 1 1 1 1 00 1

0 1 2 3 4 5 5

0 1
0 1 2 3 4 5 76 8 9

5 6 6 7

0

Beginning indices

30

Actual Binning

• All inputs can now be placed into their bins in
parallel

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

0 1 0 0 2 13 4 9 7

0 1 2 3 4 97 0 1 0

0 1 2 3 4 5 5 5 6 6 7

0 1 2 3 4 5 6 7
31

Note the similarity

• Compact bins – CSR
• Overflow bins - COO

• One could use ELL or JDS type of optimization
on bins if desired

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

32

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

33

Eight Optimization Patterns for
Algorithms (so far)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2

34

http://courses.engr.illinois.edu/ece598/hk/�

Impact of Techniques on Apps

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

35

Challenges of Parallel Programming
• Computations with no known scalable parallel

algorithms
– Shortest path, Delaunay triangulation, …

• Data distributions that cause catastrophical load
imbalance in parallel algorithms
– Free-form graphs, MRI spiral scan

• Computations that do not have data reuse
– Matrix vector multiplication, …

• Algorithm optimizations that are require expertise
– Locality and regularization transformations

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

36

Benefit from other people’s
experience

• GPU Computing Gems Vol 1
– Coming January 2011
– 50 gems in 10 applications areas
– Scientific simulation, life sciences, statistical modeling,

emerging data-intensive applications, electronic design
automation, computer vision, ray tracing and rendering,
video and imaging processing, signal and audio
processing, medical imaging

• GPU Computing Gems Vol 2
– Coming in May 2011
– 50+ gems in more application areas, tools, environments

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

37

THANK YOU!

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

38

	PASI Summer School��Advanced Algorithmic Techniques for GPUs���Lecture 6: Input Compaction and Further Studies
	Objective
	Sparse Data�Motivation for Compaction
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Memory Coalescing with ELL
	Slide Number 12
	Slide Number 13
	Any More Ideas?
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Binning of Sample Points
	A Binned Gather Parallelization
	A Tiled Gather Implementation
	More on Tiled Gather
	Compact Binning for Gather Parallelization
	GPU Binning - Use Scatter to Generate Bin Capacities
	Determine Start and End of Bins
	Actual Binning
	A Tiled Gather Implementation
	Controlling Load Balance�(done during capacity generation)
	Set a Limit on Bin Capacities
	Determine Start and End of Bins
	Actual Binning
	Note the similarity
	Slide Number 33
	Eight Optimization Patterns for Algorithms (so far)
	Impact of Techniques on Apps
	Challenges of Parallel Programming
	Benefit from other people’s experience
	Thank you!

