
PASI Summer School

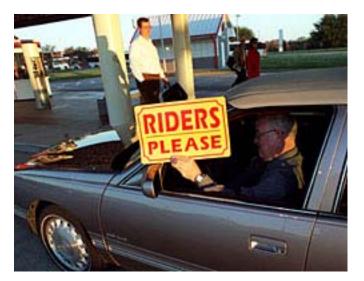
Advanced Algorithmic Techniques for GPUs

Lecture 3: Blocking/Tiling for Locality

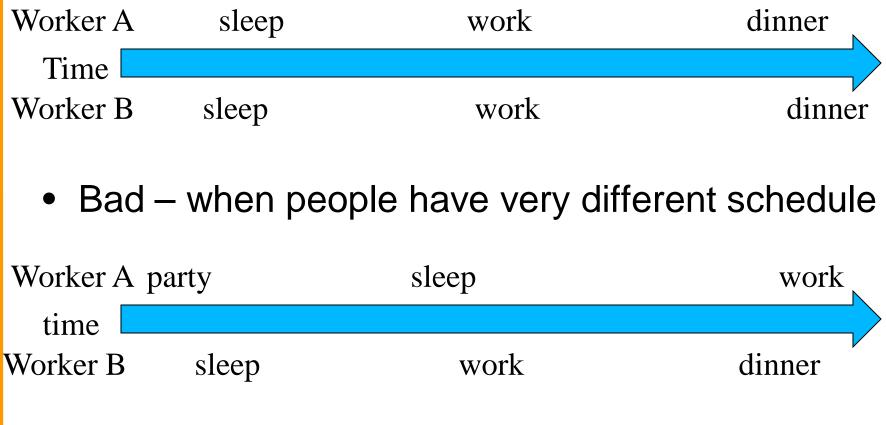
Objective

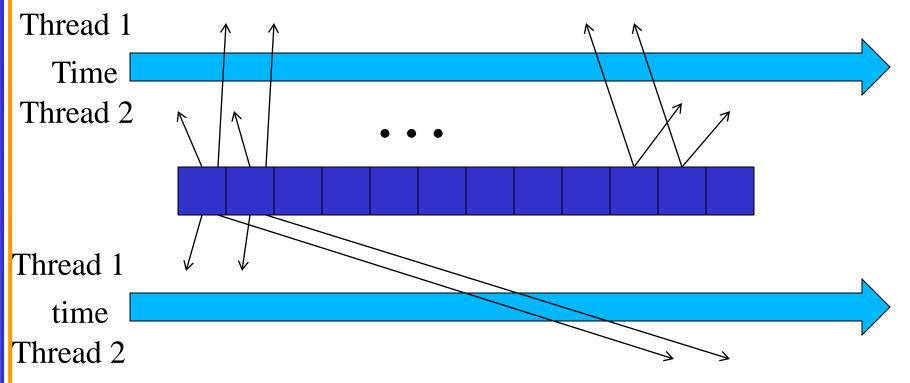
- Reuse each data accessed from the global memory multiple times
 - Across threads shared memory blocking
 - Within a thread register tiling
- Register tiling is also often used to re-use computation results for increased efficiency.

Basic Concept of Blocking/Tiling


- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
 - Carpooling for commuters
 - Blocking/Tiling for global memory accesses
 - drivers = threads,
 - cars = data

Some computations are more challenging to block/tile than others.

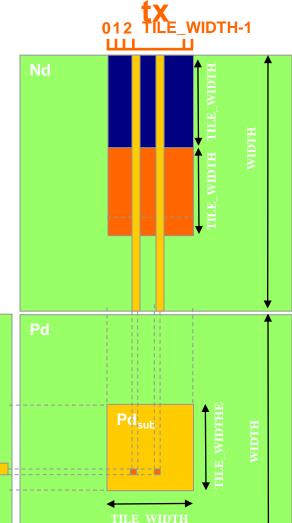

- Some carpools may be easier than others
 - More efficient if neighbors are also classmates or coworkers
 - Some vehicles may be more suitable for carpooling
- Similar variations exist in blocking/tiling


Carpools need synchronization.

Good – when people have similar schedule

Same with Blocking/Tiling

Good – when threads have similar access timing

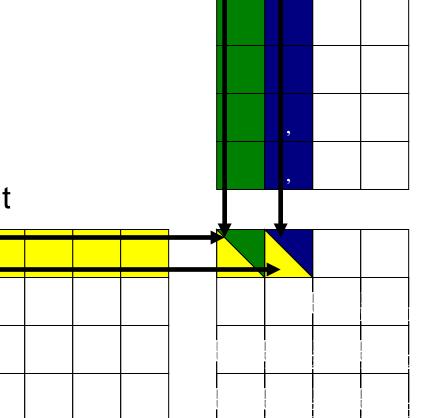

• Bad – when threads have very different timing

Outline of Technique

- Identify a block/tile of global memory content that are accessed by multiple threads
- Load the block/tile from global memory into onchip memory
- Have the multiple threads to access their data from the on-chip memory
- Move on to the next block/tile

Tiled Matrix Multiply

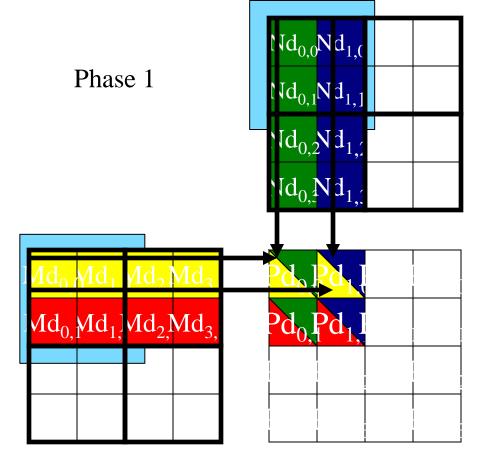
- Each row of Md is accessed by multiple threads
- Problem: some threads can be much further along than others
 - An entire row may need to be in on-chip memory
 - Not enough on-chip memory for
 large input matrices
 Thread 1

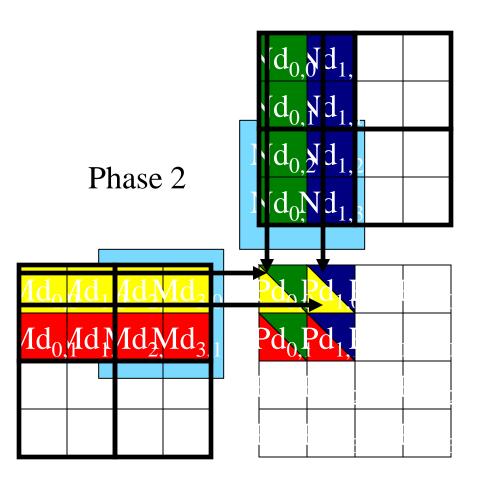


2

9

A Small Example

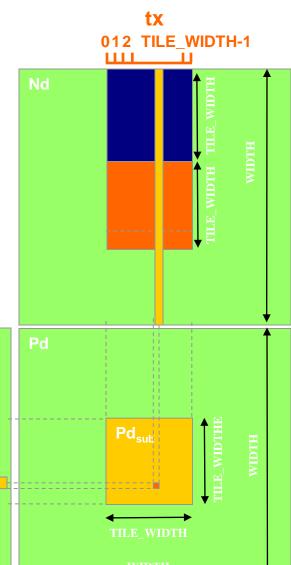

- Can we use two onchip memory locations to reduce the number of M accesses by the two threads?
 - Not if the two threads can have very different timing!


Every M and N Element is used exactly twice in generating a 2X2 tile of P

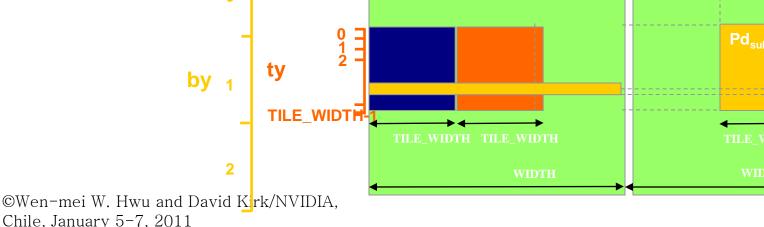
	P _{0,0}	P _{1,0}	P _{0,1}	P _{1,1}
	thread _{0,0}	thread _{1,0}	thread _{0,1}	thread _{1,1}
	M _{0,0} * N _{0,0}	$M_{0,0} * N_{1}$	M _{0,1} * N _{0,0}	M _{0,1} * N ₁
Access order	$M_{10} * N_{0,1}$	$M_{1,0} * N_{1,1}$	M _{1,1} * N _{0,1}	M _{1,1} * N _{1,1}
	M _{2,0} * N _{0,2}	M _{2,0} * N _{1,2}	M _{2,1} * N _{0,2}	M _{2,1} * N _{1,2}
	M _{3,0} * N _{0,3}	M _{3,0} * N _{1,3}	M _{3,1} * N _{0,3}	M _{3,1} * N _{1,3}

Breaking Md and Nd into Tiles

Breaking Md and Nd into Tiles (cont.)

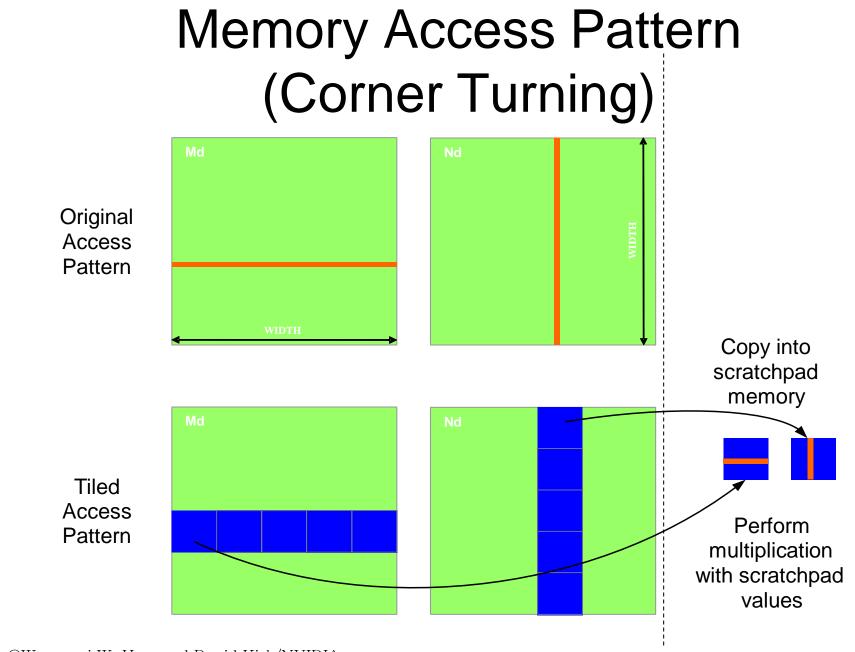

Each phase uses one tile from Md and									
	one from Nd								
Phase 1			Phase 2						
T _{0,0}	Md _{0,0} ↓ Mds _{0,0}	Nd _{0,0} ↓ Nds _{0,0}	$PValue_{0,0} += Mds_{0,0}^*Nds_{0,0} + Mds_{1,0}^*Nds_{0,1}$	Md _{2,0} ↓ Mds _{0,0}	Nd _{0,2} ↓ Nds _{0,0}	$PValue_{0,0} += Mds_{0,0}*Nds_{0,0} + Mds_{1,0}*Nds_{0,1}$			
T _{1,0}	Md _{1,0} ↓ Mds _{1,0}	Nd _{1,0} ↓ Nds _{1,0}	PValue _{1,0} += Mds _{0,0} *Nds _{1,0} + Mds _{1,0} *Nds _{1,1}	Md _{3,0} ↓ Mds _{1,0}	Nd _{1,2} ↓ Nds _{1,0}	$PValue_{1,0} += Mds_{0,0}*Nds_{1,0} + Mds_{1,0}*Nds_{1,1}$			
T _{0,1}	$Md_{0,1}$ \downarrow $Mds_{0,1}$	Nd _{0,1} ↓ Nds _{0,1}	PdValue _{0,1} += MdS _{0,1} *NdS _{0,0} + MdS _{1,1} *NdS _{0,1}	Md _{2,1} ↓ Mds _{0,1}	Nd _{0,3} ↓ Nds _{0,1}	$\begin{array}{l} PdValue_{0,1} += \\ Mds_{0,1}^* Nds_{0,0} + \\ Mds_{1,1}^* Nds_{0,1} \end{array}$			
T _{1,1}	Md _{1,1} ↓ Mds _{1,1}	Nd _{1,1} ↓ Nds _{1,1}	PdValue ₁₁ += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}	Md _{3,1} ↓ Mds _{1,1}	Nd _{1,3} ↓ Nds _{1,1}	PdValue _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}			

©Wen-mei W. Hwu and David Kirk/NVIDIA, Chile, January 5-7, 2011 time

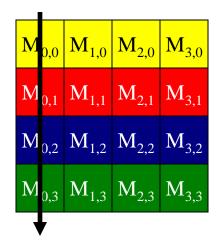

Tiled Multiply – Large Matrices

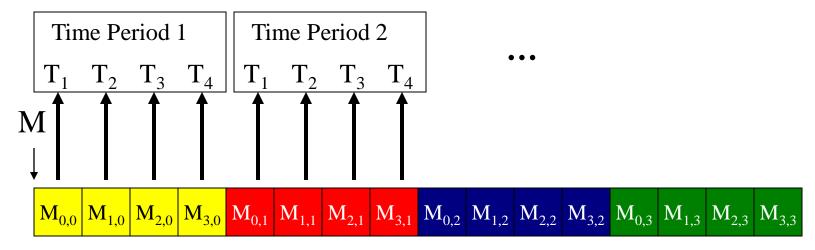
- Make sure that tiles are all loaded in vertical patters from the global memory
- Md data can then be accessed from shared memory in horizontal direction

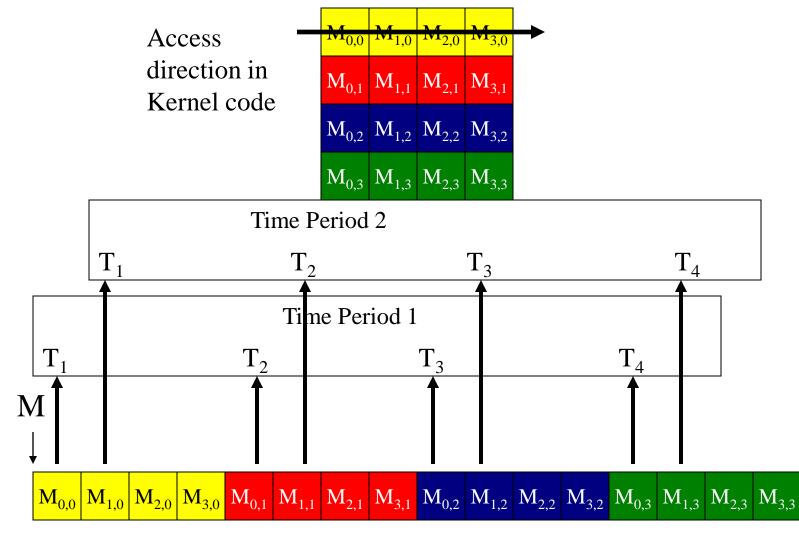
0


2

First-order Size Considerations


• Assume


- TILE_WIDTH of 16 gives 16*16 = 256 threads
- A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
- Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 - Memory bandwidth no longer a limiting factor
 - Could use thread coarsening to further reduce traffic
- Each thread block can have up to 1024 threads
 Can use 32*32 tiles to further reduce traffic


Memory Layout of a Matrix in C

Access direction in Kernel code

Memory Layout of a Matrix in C

Loading a Tile

- All threads in a block participate
 - Each thread loads one Md element and one Nd element in based tiled code
- Assign the loaded element to each thread such that the accesses within each warp is coalesced

CUDA Code – Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

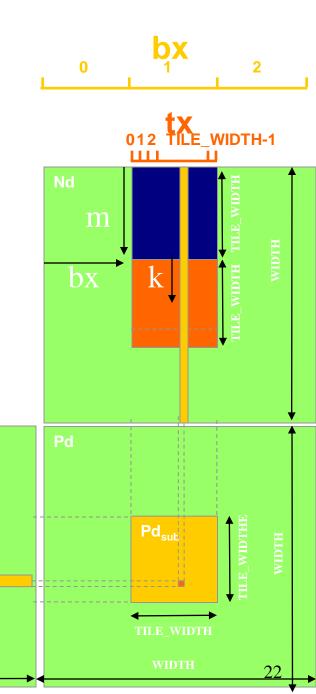
dim3 dimGrid(Width / TILE_WIDTH,

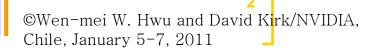
Width / TILE_WIDTH);

Tiled Multiply

bv

K


m


12

F WIDTH

- Each block computes one square sub-matrix Pd_{sub} of size TILE_WIDTH
- Each thread computes one element of Pd_{sub}

0

by

```
Tiled Matrix Multiplication Kernel
  _global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    shared float Mds[TILE_WIDTH][TILE_WIDTH];
2.
     shared float Nds[TILE WIDTH][TILE WIDTH];
    int bx = blockIdx.x; int by = blockIdx.y;
3.
    int tx = threadIdx.x; int ty = threadIdx.y;
4.
   Identify the row and column of the Pd element to work on
11
5.
    int Row = by * TILE_WIDTH + ty;
    int Col = bx * TILE WIDTH + tx;
6.
    float Pvalue = 0;
7.
  Loop over the Md and Nd tiles required to compute the Pd element
     for (int m = 0; m < Width/TILE_WIDTH; ++m) {</pre>
8.
   Coolaborative loading of Md and Nd tiles into shared memory
//
9.
       Mds[tx][ty] = Md[Row*Width + m*TILE WIDTH + tx];
      Nds[tx][ty] = Nd[(m*TILE_WIDTH + ty) * Width + Col)];
10.
      _____syncthreads();
11.
      for (int k = 0; k < TILE_WIDTH; ++k)
12.
13.
         Pvalue += Mds[tx][k] * Nds[k][ty];
14.
      ____syncthreads();
15.}
16.
     Pd[Row*Width+Col] = Pvalue;
```

23

Shared Memory and Threading

- Each SM in Fermi has 64KB on-chip SRAM, partitioned into 48KB L1 cache and 16KB shared memory, or vice versa
 - SM shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - Can potentially have up to 8 Thread Blocks actively executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing 2 or 6 thread blocks active at the same time (Problem with earlier GPUs!)
- Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 - A 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!

ANY MORE QUESTIONS?