The Pan-American Advanced Studies Institutes Program

Tsunami Simulation on GPUs

Takayuki AOKI

Valdivia Earthquake, 1960

The Biggest earthquake: several times M7~M8

142 died in Japan 1743 died in Chile

USGS ShakeMap : Concepcion, Chile

PERCEIVED SHAKING	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC (%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL (cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL	I	11-111	IV	V	VI	VII	VIII	IX	X+

TSUNAMI Disaster

Real-time TSUNAMI Simulation

ADPC : Asian Disaster Preparedness Center

Data Base

Shallow-Water Eq.

Conservative Form:

Assuming hydrostatic balance

in the vertical direction,

$$\frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} = 0$$

$$\frac{\partial hu}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 \right) + \frac{\partial huv}{\partial y} = -gh\frac{\partial z}{\partial x}$$

$$\frac{\partial hv}{\partial t} + \frac{\partial huv}{\partial x} + \frac{\partial}{\partial y} \left(hv^2 + \frac{1}{2}gh^2 \right) = -gh\frac{\partial z}{\partial y}$$

Early Warning System:

TSUBAME2.0 System Overview (2.4 Pflops/15PB)

TSUBAME 2.0 Full Bisection Fat Tree, Optical, Dual Rail QDR Infiniband

TSUBAME2.0 Nov 1st, 2010

TOKYO TECH

TSUBAME2.0: A GPU-centric Green 2.4 Petaflops Supercomputer

Supercomputer in the world

2010 November

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH Cluster, X5670 2.93Ghz 6C, NVIDIA GPU, FT- 1000 8C / 2010 NUDT	186368	2566.00	4701.00	4040.00
2	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
3	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	2580.00
4	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00	2287.63	1398.61
5	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12- core 2.1 GHz / 2010 Cray Inc.	153408	1054.00	1288.63	2910.00

ORNL Jaguar vs Tsubame 2.0

Similar Peak Performance, 1/4 the Size and Power

Supercomputer in the world

The Green500 list -- November 2010

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype	38.80
2	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80
3	933.06	NCSA	Hybrid Cluster Core i3 2.93Ghz Dual Core, NVIDIA C2050, Infiniband	36.00
4	828.67	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	57.96
5	773.38	Forschungszentrum Juelich (FZJ)	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
5	773.38	Universitaet Regensburg	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
5	773.38	Universitaet Wuppertal	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
8	740.78	Universitaet Frankfurt	Supermicro Cluster, QC Opteron 2.1 GHz, ATI Radeon GPU, Infiniband	385.00

Power Efficiency

6600x Faster

3x efficient

Laptop: SONY Vaio type Z (VPCZ1) CPU: Intel Core i7 620M (2.66GHz) MEMORY: DDR3-1066 4GBx2 OS: Microsoft Windows 7 Ultimate 64bit HPL: Intel(R) Optimized LINPACK Benchmark for Windows (10.2.6.015) 256GB HDD

18.1 Gflops369 MFlops/Watt

Supercomputer: TSUBAME 2.0 CPU: 2714 Intel Westmere 2.93 Ghz GPU: 4071 nVidia Fermi M2050 MEMORY: DDR3-1333 80TB + GDDR5 12TB OS: SuSE Linux 11 + Windows HPC Server R2 HPL: Tokyo Tech Heterogeneous HPL 11PB Hierarchical Storage

1.192 Pflops 1037 MFlops/Watt

NVIDIA GPU

		Intel Core i7 Extreme	Tesla C2050 /M2050	GeForce GTX 580 Fermi	
	Peak Performance [GFlops]	51.2*,102.4	515*,1030	197*,1576	
GPU	Number of Processor	4	448	512	
	Core Clock [MHz]	3200	1476	1544	
	Bandwidth[GB/s]	32	148.8	192.1	
Memory	Memory Interface [bit]	64	384	384	
	Memory Clock [GHz]	1.333 (DDR3)	1.55 (GDDR5)	2.00 (GDDR5)	
B _{peak} /F _{peak}	Bandwidth/Performance	0.624	0.289	0.974	

GPU Architecture

Heterogeneous Computer

Several Bandwidth Bottle Necks

CFD Performances in GPU Computing

Partial GPU Implementation 30% up ~ × 3

 Only Hot spot (Intensive part) : small cost
 Overhead of host (CPU) memory device (GPU) memory communication

FULL GPU Implementation ×10 ~ ×10

X Limitation of device (GPU) on board memory size

Real-time TSUNAMI Simulation

ADPC : Asian Disaster Preparedness Center

Data Base

high accuracy

Real-time CFD

Shallow-Water Eq.

Conservative Form:

Assuming hydrostatic balance

in the vertical direction,

$$\frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} = 0$$

$$\frac{\partial hu}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 \right) + \frac{\partial huv}{\partial y} = -gh\frac{\partial z}{\partial x}$$

$$\frac{\partial hv}{\partial t} + \frac{\partial huv}{\partial x} + \frac{\partial}{\partial y} \left(hv^2 + \frac{1}{2}gh^2 \right) = -gh\frac{\partial z}{\partial y}$$

Early Warning System:

Tsunami Modeling

free surface flow

Directional-Splitting Method

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S \qquad U = \begin{bmatrix} h \\ hu \\ hv \end{bmatrix}, \quad F = \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{bmatrix}, \quad G = \begin{bmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \\ hv^2 + \frac{1}{2}gh^2 \end{bmatrix}$$

First Step: x-directional computation

$$\frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} = 0 \quad \frac{\partial hv}{\partial t} + \frac{\partial uhv}{\partial x} = 0 \quad \frac{\partial hu}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 \right) = -gh\frac{\partial z}{\partial x}$$

Second Step: y-directional computation

$$\frac{\partial h}{\partial t} + \frac{\partial hv}{\partial y} = 0 \quad \frac{\partial hu}{\partial t} + \frac{\partial vhu}{\partial y} = 0 \quad \frac{\partial hv}{\partial t} + \frac{\partial}{\partial y} \left(hv^2 + \frac{1}{2}gh^2 \right) = -gh\frac{\partial z}{\partial y}$$

For Characteristics-based Method For Conservative Semi-Lagrangian Method

CIP-CSL2 (Conservative Semi-Lagrangian)

R. Tanaka, T. Nakamura, and T. Yabe, Comp. Phys. Comm., 126, 232-243 (2000).

$$\begin{aligned} h_i(x) &= a(x - x_i)^2 + b(x - x_i) + h_i \quad a = \frac{3h_{i+1} + 3h_i}{\Delta x^2} - \frac{6h_{i+1/2}^X}{\Delta x^3}, \quad b = \frac{6h_{i+1/2}^X}{\Delta x^2} - \frac{2h_{i+1} + 4h_i}{\Delta x} \\ h_{x,i} &= \frac{6h_{i+1/2}^X}{\Delta x^2} - \frac{2h_{i+1} + 4h_i}{\Delta x} \qquad h_i(x_i) = h_i^n \quad h_i(x_i + \Delta x) = h_{i+1}^n \quad \int_{x_i}^{x_i + \Delta x} h_i(x) dx = h_{i+1/2}^X \\ \Delta h_{i+1}^X &= \int_{x_p}^{x_{i+1}} h_i^n(x) dx \\ h_i^{n+1} &= h_j^n(x_i - u\Delta t) \quad h_{i+1/2}^X = h_{i+1/2}^X - \Delta h_{i+1}^n + \Delta h_i^n \qquad = -\left(\frac{a^n}{3}\xi^3 + \frac{b^n}{2}\xi^2 + h_i^n\xi\right) \end{aligned}$$

2-dimensional Variable Configuration

Characteristics-Based Method

Riemann invariants :

$$\frac{\partial W}{\partial t} + \Lambda \frac{\partial W}{\partial x} = 0 \qquad W = \begin{bmatrix} \Gamma + \frac{1}{2}u \\ \Gamma - \frac{1}{2}u \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} u + \Gamma & 0 \\ 0 & u - \Gamma \end{bmatrix}$$

$$\Gamma^{\pm} = \Gamma \pm \frac{1}{2}u \qquad \Gamma^{n+1} = \frac{1}{2}\left\{\Gamma^{+n+1} + \Gamma^{-n+1} + \frac{1}{2}(u^{+} - u^{-})\right\}$$

$$\frac{\partial \Gamma^{\pm}}{\partial t} + \lambda^{\pm} \frac{\partial \Gamma^{\pm}}{\partial x} = 0 \qquad u^{n+1} = \frac{1}{2}\left\{u^{+} - u^{-} + 2(\Gamma^{+} - \Gamma^{-})\right\}$$

$$h^{n+1}$$

$$(hu)^{n+1}$$

Hydrostatic Balance (1/2)

$$H = h + z \qquad \square \qquad h = H - z \qquad$$

Hydrostatic Balance (2/2)

For characteristics-based method,

CUDA GPU Computing

CUDA GPU Computing

SCREEN Capture

Large-scale Real-time Tsunami Simulator

Overlapping between **Computation and Communication**

Large-scale Real-time Tsunami Simulator

8 GPU 400km×800km (100m mesh) within 3 min

CPU-GPU Performance Comparison

(1 CPU Core based)

Results on Multi-node Computing Tsubame 2.0

GPU

GP

Number of CPU / GPU

Multi-GPU Scalability

Tsubame 2.0

CPU-GPU Scalability Tsubame 2.0

Two-Phase Flow Simulation

EQUATIONs for Two-Phase Flow

Time Integration : 3rd-order TVD Runge-Kutta

3D Advection Computation

Advection equation

Discretization:

Space: 5th-WENO Time: 3rd TVD Runge-Kutta

312 GFlops (1GPU:GTX285)

Stencil Computation

Example: 2-dimensional diffusion Equation by FDM

Arithmetic INTENSITY: FLOP/Byte

FLOP = number of FP operation for applications Byte = Byte number of memory access for applications

- **F** = Peak Performance of floating point operation
- **B = Peak Memory Bandwidth**

Application Performances

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

GP GPU

Performance of Advection Computation

	flop/byte		GFlops	
Scheme	no-SMem	SMem	Tesla S1070	
1st-up FD	0.29	0.60	37.61	
2nd−c FD	0.34	0.71	42.46	Sc
3rd-up FD	0.38	1.06	75.49	iFlor
4th−c FD	0.34	0.96	66.64	
5th-up FD	0.45	1.55	94.58	
6th-c FD	0.4	1.36	89.62	
5th-WENO	2.40	8.22	289.66	

3D advection 416x416x416 cells Time integration: 3rd-order TVD Runge-Kutta

Level-Set method (LSM)

GP GPU

The Level-Set methods (LSM) use the signed distance function to capture the interface. The interface is represented by the zero-level set (zero-contour).

 $\phi\,$: Level-Set function(distance function)

 $H\,$: Heaviside function

$$\begin{cases} H(\phi) = \frac{1}{2} & \phi > \varepsilon \\ H(\phi) = \frac{1}{2} \left(\frac{\phi}{\varepsilon} + \frac{1}{\pi} \sin\left(\frac{\pi\phi}{\varepsilon}\right) \right) & |\phi| \le \varepsilon \\ H(\phi) = -\frac{1}{2} & \phi < -\varepsilon \end{cases}$$

Re-initialization for Level-Set function

$$\frac{\partial \phi}{\partial \tau} = sgn(\phi) \left(1 - |\nabla \phi|\right)$$

Advantage : Curvature calculation, Interface boundary Drawback : Volume conservation

Continuous Surface Force (CSF) model by Brackbill, Kothe and Zemach (1991)

Curvature

Surface tension force

$$\mathbf{F}_{S} = \sigma \kappa \mathbf{n} \qquad \text{Normal vector}$$

$$\kappa = -\nabla \cdot \mathbf{n} = -\nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}$$

$$\mathbf{F}_{S} = \sigma \kappa \delta(\phi) \nabla \phi$$

GP

GPU

Surface tension represented by volume force

Approximate delta function

$$\delta(\phi) = \frac{\partial H(\phi)}{\partial \phi} = \frac{1}{2} \left(\frac{1}{\varepsilon} + \frac{1}{\varepsilon} \cos\left(\frac{\pi\phi}{\varepsilon}\right) \right)$$
$$\int_{-\varepsilon}^{\varepsilon} \delta(\phi) \ d\phi = 1$$

Anti-diffusive Interface Capture

THINC (tangent of hyperbola for interface capturing) Scheme

[Xiao, etal, Int. J. Numer. Meth. Fluid. 48(2005)1023]

Interface

GPGPU

- ·VOF(volume of fluid) type interface capturing method
- Flux from tangent of hyperbola function
- Semi-Lagrangian time integration

$$F_{i}(x) = \frac{1}{2} \left(1 + \alpha \tanh\left(\beta \left(\frac{x - x_{i-1/2}}{\Delta x} - \tilde{x}_{i}\right)\right)\right) \qquad \stackrel{1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=$$

•1D implementation can be applied to 2D & 3D \rightarrow Simple

$$Fl_{x,i+1/2} = -\int_{x_{i+1/2}}^{x_{i+1/2}-u_{i+1/2}\Delta t} F_{up}(x) \ dx \qquad up = \begin{cases} i & (\text{if } u_{i+1/2} > 0) \\ i+1 & (\text{if } u_{i+1/2} \le 0) \end{cases}$$

a t.

• Finite Volume like usage

* THINC is the method how to compute flux

 \rightarrow 3 krenel (x, y, z) can be fused to 1 kernel. Merit in memory R/W

Sparse Matrix Solver

 $\mathbf{A} \mathbf{x} = \mathbf{b} \quad \text{for} \quad \nabla \cdot \left(\frac{1}{\rho} \nabla p\right) = \frac{\nabla \cdot \mathbf{u}}{\Delta t}$

Krylov sub-space methods: CG, BiCGStab, GMRes, , ,

Pre-conditioner: Incomplete Cholesky, ILU, MG, AMG, Block Diagonal Jacobi

Non-zero Packing: CRS \rightarrow ELL, JDL

BiCGStab + MG

Set
$$k = 0$$
 $r_0 = p_0 = M^{-1}(b - Ax_0)$
Mizuho Information & Research Institute
for $k = 0$; $k < N$; $k++$;
 $\alpha_k = \frac{(r_0, r_k)}{(r_0, M^{-1}Ap_k)}$ $q_k = r_k - \alpha_k M^{-1}Ap_k$ $\omega_k = \frac{(q_k, M^{-1}Aq_k)}{(M^{-1}Aq_k, M^{-1}Aq_k)}$
 $x_{k+1} = x_k + \alpha_k p_k + \omega_k q_k$
 $r_{k+1} = q_k - \omega_k M^{-1}Aq_k$
if $(r_{k+1}, r_{k+1}) < \varepsilon^2(b, b)$ exit;
 $\beta_k = \frac{(r_0, r_{k+1})}{\omega_k(r_0, M^{-1}Ap_k)}$
 $p_{k+1} = r_{k+1} + \beta_k(p_k - \omega_k M^{-1}Ap_k)$

Collaboration with

loop end

MG V-Cycle

Multi-Dimensional **Domain Decomposition**

3D domain decomposition1 GPU is assigned to each domain

Communication buffer for each face
Host buffer & Device buffer

4.0 m/sec impact speed

Rayleigh-Taylor Instability with Surface Tension Force

When a heavy fluid is supported against gravity by a light fluid, a Rayleigh-Taylor instability develops in which perturbations of the interface grow exponentially in time as exp(nt) for small amplitudes.

Bellman, R., Pennington, R.H.: Effect of surface tension and viscosity on Taylor instability. Q. Appl. Methods 12, 12, 151 (1954)
Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1967)
Daly, B.J.: Numerical study of the effect of surface tension on interface instability. Phys. Fluids 12, 1340 (1969)

Snapshots of the R-T Instability

Milk Crown

Drop on dry floor

Broken dam Problem

J.C.Martin and W.J. Moyce (1952)

FIGURE 2. Two dimensional collapse of $n^2 = 1$ section.

Initial stages of dam-break flow P.K.Stanby, A.Chegini and T.C.D.Barnes (1998) GP GPU (a)Dam-site 5.5 m 9.6 m *(b) (b)* Cable t = 0.20 s 0.36 s Flume Plate 7 kg mass Release point 0.4 m 0.44 s 0.60 s Container -Laboratory floor FIGURE 1. Sketch of experimental arrangment: (a) side view; (b) section showing pulley/weight system. 0.76 s 1.26 s

Experiment

Simulation

MULTI-GPU Performance

Next Generation

Weather Prediction

Collaboration: Japan Meteorological Agency

Meso-scale Atmosphere Model:

Cloud Resolving Non-hydrostatic model

Compressible equation taking consideration of sound waves.

Atmosphere Model

Dynamical Process:

Full 3-D Navior-Stokes Equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla P - 2\Omega \times \boldsymbol{u} - \Omega \times (\Omega \times \boldsymbol{r}) + \boldsymbol{g} + \boldsymbol{F}$$

Physical Process:

Cloud Physics, Moist, Solar Radiation, Condensation, Latent heat release, Chemical Process, Boundary Layer

So called "Parameterization" including many empirical rules.

WRF GPU Computing

WRF (Weather Research and Forecast)

Community Code developed by NCAR, NCEP, OU, NOAA/FSL, AFWA

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release

1 % of lines of code, 25 % of elapsed time

 \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

WRF-Chem**

provides the capability to simulate chemistry and aerosols from cloud scales to regional

 \Rightarrow x 8.5 increase

Full GPU Implementation

ASUCA Production Code

 A next-generation high resolution weather simulation code that is being developed by Japan Meteorological Agency (JMA)

 ASUCA succeeds the JMA-NHM as an operational nonhydrostatic regional model at JMA

Similar Structure as WRF

- ✓ HEVI (Horizontally explicit Vertical implicit) scheme
- ✓ Dynamical Core uses a numerical scheme with 3rd-order accuracy in time and space
 Flux-form non-hydrostatic compressible equation

Generalized coordinate

Computatinal Flow of ASUCA

Entire Porting Fortran to CUDA

1 Year

Introducing many optimizations, overlapping the computation with the communication, kernel fuse, reordering kernel execution

Copyright © Global Scientific Information and Computing Center, Tokyo Institute of Technology

Implementation : Advection

Block

Thread

64 x 4 threads (2D) in a block

Each thread specifies a (x, z) point, marching in y

 Improve data transfer performance using domain decomposition

Using Shared Memory

Using Registers in marching direction

Implementation : 1D Helmholtz equation

64 x 4 threads (2D) in a block

- 1D Helmholtz equation
 - Element in k depends on elements in k+/- 1
 - \Rightarrow marching in z direction

TSUBAME 2.0 (1 GPU)

Performance of 5 kernels

ASUCA Typhoon Simulation 5km-horizontal resolution 479 × 466 × 48

ASUCA Typhoon Simulation 500m-horizontal resolution 4792 × 4696 × 48

TSUBAME 2.0 Weak Scaling

SUMMARY

FEATURES of GPU

High Performance and Low Power

- Major differences from Previous Accelerators ClearSpeed, Grape, , ,
 - High Memory Bandwidth suitable for wide variety of applications

Consumer Product inexpensive

- **Software Development Environment**
 - CUDA, Open CL