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Outline• Motivation: multi-physics issues arising from Solid 
Earth Geodynamics

• Some Philosophy

• Advanced software for PDE based modeling 
(FEniCS/PETSc)

• A model multi-physics problem: thermal convection

• Discretization

• Physics-based Block-Preconditioners

• Results: Convergence/Performance

• The Future...
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Multi-Scale Multi-physics problems in 
Solid Earth Geodynamics

1

Multi Scale
Multi Physics
Dynamical Models

Observational Constraints

Synthetic Seismograms
(SpecFEM)

Geochemistry/Petrology (PetDB/GeoMapApp)

Global Mantle Convection

Crustal/Lithospheric 
Deformation

Small-scale magma
channel dynamics

Ridge Scale Magma Dynamics
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Example Solutions: Process ModelsExample Solutions: Process Models
Nonlinear Porosity Waves

Reactive Channel formation

Mechanical Melt Localization
(Katz et al., 2006, Nature)

•All suggest that Magmatism
is inherently time-dependent
and multi-scale

time

he
ig

ht
Basic Behavior of Magma PDEs

Spiegelman, JFM 93, W&S, GRL 94

Spiegelman et al, JGR, 2001,2003

• Spontaneous formation of coherent 
structures at multiple scales
•Small changes in assumptions of coupling can 
radically change the physics
•Many questions remain about interactions and 
implications of multiple instabilities
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Some Questions

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How do we manage the complexity of Multi-
Physics, Multi-Scale problems?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How do we sensibly explore model space and 
decide what is important and what can be 
ignored, homogenized etc?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How do we write Multi-Physics software that 

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

allows reuse, interoperability?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

takes advantage of advanced  hardware?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Gives flexibility to the end user to make their 
own decisions, and do their own science?
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The Structure of Computational Problems
(numerical PDE’s)

Error
Est. &Validation

VisualizationSolversDiscrete Eqs.Meshes
Geometry

Constitutive
 Eqs.PDEs

Au=f
A(u)=f

un+1=f(un,t) …

…

…

…

……
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The Structure of Computational Problems
(numerical PDE’s)

Error
Est. &Validation

VisualizationSolversDiscrete Eqs.Meshes
Geometry

Constitutive
 Eqs.PDEs

Au=f
A(u)=f

un+1=f(un,t) …

…

…

…

……

•Computation is really a set of (educated) choices
•Traditionally those choices are made early and hardwired into codes
•Some of this approach is still central to GPU programming. 
•Is there a better way?
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Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

PETSc (www.mcs.anl.gov/petsc)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Parallel Linear/non-linear solvers 

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Wide range of solver options

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

sparse Direct (umfpack/MUMPS etc.)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Algebraic Multi-Grid (HYPRE, ml)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Preconditioned Newton-Krylov

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Composite & FieldSplit Block 
Preconditioners

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

All chooseable at run time (command line 
options)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

The user is responsible for providing A,b or 
F(u),J(u), PETSc provides interfaces to 
everything else.

Software for Multi-physics computation
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The Structure of Computational Problems
(numerical PDE’s)

Error
Est. &Validation

VisualizationSolversDiscrete Eqs.Meshes
Geometry

Constitutive
 Eqs.PDEs

Au=f
A(u)=f

un+1=f(un,t) …

…

…

…

……

P
E
T
S
c

FEniCS
deal.ii

Sundance
?
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Software for Multi-physics computation

Text

https://launchpad.net/fenics-project
http://www.fenicsproject.org/
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Advanced Software for Multi-physics 
computation

• FEniCS (www.fenicsproject.org)

• UFL: (Unified Form Language), a python 
extension for describing variational forms

• FFC:  Form Compiler for automatic FEM 
code generation from .ufl 

• Dolfin: high-level C++ libraries (and 
Python bindings) for mesh handling, 
automatic discretization/assembly and 
Function abstraction (u.eval(x))

Wednesday, January 12, 2011
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Computational Seismology

Example: Poisson’s Equation

Strong form: Find u ∈ C2(Ω) with u = 0 on ∂Ω such that

−∇2
u = f in Ω

Weak Form: Find u ∈ H
1
0 (Ω) such that

�

Ω
∇v(x) · ∇u(x)dx =

�

Ω
v(x)f (x)dx for all v ∈ H

1
0 (Ω)

Standard notation: Find u ∈ V such that

a(v , u) = L(v) for all v ∈ V̂

with a : V̂ × V → R a bilinear form and L : V̂ → R a linear

form
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element = FiniteElement("Lagrange", triangle, 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Coefficient(element)
g = Coefficient(element)

a = inner(grad(v), grad(u))*dx
L = v*f*dx + v*g*ds

Poisson.ufl

compile with 
ffc -l dolfin -O Poisson.ufl

(generates 2110 lines of compilable C++ code as Poisson.h) 

Wednesday, January 12, 2011



from dolfin import *

# Create mesh and define function space
mesh = UnitSquare(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)

# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
    return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
g = Expression("sin(5*x[0])")
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds

# Compute solution
problem = VariationalProblem(a, L, bc)
u = problem.solve()

# Save solution in VTK format
file = File("poisson.pvd")
file << u

# Plot solution
plot(u, interactive=True)

Full solution of Poisson with Python interface
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from dolfin import *

# Create mesh and define function space
mesh = UnitSquare(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)

# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
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Issues for Multi-physics problems:

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How to rapidly explore/compose different 
multi-physics models/couplings

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How to maintain control on convergence 
of global non-linear problem

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How to rapidly change solvers/pre-
conditioners as problems change/evolve 
(defer solver bets)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 How to leverage existing algorithms and 
intuition in designing effective physics-based 
preconditioners
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A model problem:
Infinite Prandtl Number Thermal Convection

The Dynamics of Plate Tectonics
and Mantle Flow: From Local
to Global Scales
Georg Stadler,1 Michael Gurnis,2* Carsten Burstedde,1 Lucas C. Wilcox,1†
Laura Alisic,2 Omar Ghattas1,3,4

Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but
observationally constrained high-resolution models of global mantle flow remain a computational challenge.
We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global
mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of
1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper
mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow
high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere
at trenches amounts to ~5 to 20% of the total dissipation through the entire lithosphere and mantle.

Mantle convection and associated plate
tectonics are principal controls on the
thermal and geological evolution of the

Earth. These processes are central to our under-
standing of the origin and evolution of tectonic
deformation, the evolution of the thermal and
compositional states of themantle, and ultimately
the evolution of Earth as a whole. Plate creation
and motion largely govern the loss of heat from
the solid earth (1), and the strength of plates may
control the energy dissipation and hence heat loss
over geological time (2). However, despite the
central importance of plate dynamics, there are
fundamental uncertainties on the forces resisting
and driving plate motions.

Although there is consensus that the 1- to 10-
cm-per-year motion of plates is driven largely by
the thermal buoyancy within subducted slabs (3)
and perturbed by upper-mantle solid-solid phase
transitions (4) and cooling of oceanic lithosphere
from ridge to trench, the importance of the aseismic
extension of slabs within the lower mantle (5)
remains unresolved. The strength of subducted
slabs probably regulates the velocity of plate tec-
tonics. The vast majority of available negative
buoyancy driving plates is within the transition
zone and lower mantle, and if slabs are strong,
then this force can be coupled directly into the
edges of oceanic plates at trenches (6). However,
if the oceanic lithosphere is strong during initial
subduction as it bends below the trench, then the

dissipation within the narrow high-viscosity slab
could limit plate velocity (7). Although the im-
portance of plate margin and slab strength has
been studied in two- and three-dimensional Car-

tesian models aimed at understanding the physics
of subduction (4, 8–11) and in limited regional
models that assimilate observed structure (12, 13),
the incorporation of realistic rheologies into mod-
els with narrow slabs and plate boundaries has
remained an elusive goal of global geodynamics.
Whether slabs are weak or strong remains un-
resolved (4).

With the incorporation of strong slabs and real-
istic treatment of plate margins, the ability to ob-
servationally constrain models would increase
substantially. Observations constrain the deforma-
tion of slabs andwill prove useful in global models:
Examples include the strain rate and state of stress
within slabs from deep focus earthquakes (14) and
the kinematics of slab rollback in subduction zones
with present-day back-arc extension (15). Large
fractions of Earth’s surface (~15% globally) do not
follow a rigid plate tectonic model but undergo
deformation close to trenches and farther from
plate margins (16). Some oceanic plates are de-
forming diffusively within their interiors, especial-
ly the Indo-Australian plates (17). The rich array
of geodetic, topographic, gravitational, and seismic
observations from local to regional scales con-
strains these deformations and could validate global

RESEARCHARTICLES

1Institute for Computational Engineering and Sciences, The
University of Texas at Austin, Austin, TX 78712, USA. 2Seis-
mological Laboratory, California Institute of Technology,
Pasadena, CA 91125, USA. 3Jackson School of Geosciences,
The University of Texas at Austin, Austin, TX 78713, USA.
4Department of Mechanical Engineering, The University of
Texas at Austin, Austin, TX 78712, USA.

*To whom correspondence should be addressed. E-mail:
gurnis@caltech.edu
†Present address: HyPerComp, Westlake Village, CA
91361, USA.

A B

C
Fig. 1. (A) Splitting of Earth’s mantle into 24 warped cubes. The effective viscosity field is shown; the
narrow low-viscosity zones corresponding to plate boundaries are seen as red lines on Earth’s surface. (B)
Zoom into the hinge zone of the Australian plate [as indicated by the box in (C)] showing the adaptively
refined mesh with a finest resolution of about 1 km. (C) Cross section showing the refinement that occurs
both around plate boundaries and dynamically in response to the nonlinear viscosity, with plastic failure
in the region from the New Hebrides to Tonga in the SW Pacific. Plates are labeled Australian, AUS; New
Hebrides, NH; Tonga, TO; and Pacific, PAC.

www.sciencemag.org SCIENCE VOL 329 27 AUGUST 2010 1033
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A model problem:

Computational Seismology

Infinite Pr thermal convection

DT

Dt
=

1

Ra
∇2

T

−∇· η(∇V + ∇VT ) + ∇P = Tk

∇· V = 0

with η = η(T ,V, . . .)
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A model problem:
Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Coupled Parabolic/Elliptic problem (Adv diff + Stokes)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

usually solved with splitting/Picard iteration assuming 
quasi-linearity of each equation

Computational Seismology

Infinite Pr thermal convection

DT

Dt
=

1

Ra
∇2

T

−∇· η(∇V + ∇VT ) + ∇P = Tk

∇· V = 0

with η = η(T ,V, . . .)
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• FEM in space with mixed element [P2, (P2,P2), P1] for [T,V,P]

• 2nd order Semi-Lagrangian Crank-Nicolson scheme for Energy 
Equation

Discretization
Computational Seismology

Semi-Lagrangian Crank-Nicolson scheme for Energy Equation

T − T ∗

∆t
=

1

2Ra

�
∇2T + (∇2T )∗

�

where T ∗ = Tn(x∗) i.e. Temperature at the previous time step and
take-off point. Alternatively

SLCN

T − ∆t

2Ra
∇2T = g(x∗)

where

g(x) = Tn +
∆t

2Ra
∇2Tn
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Semi-Lagrangian Advection 
schemes in FEM
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Weak Forms
Computational Seismology

Weak form of Residual L = F [u] = FT + FV + FP

FT =

�

Ω

�
s(T − g∗) +

∆t

2Ra
∇s · ∇T

�
dx

FV =

�

Ω
[2η∇su : ∇sV− p∇· u− Tu · k] dx

FP =

�

Ω
q∇· Vdx

Weak form of Jacobian J[u]

a(v , δu) = δL = δF = J[u]δu
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RayleighBenard.ufl

#  Choose a mixed vector space 
#          for u = [ T, V, P]
P2 = FiniteElement("Lagrange", triangle,2)
P2v = VectorElement("Lagrange", triangle, 2)
P1 = FiniteElement("Lagrange", triangle, 1)
ME  =  MixedElement([P2,P2v, P1])

# quadrature element for Semi-Lagrangian 
QE = FiniteElement("Quadrature", triangle,4) 

#set test functions and trial functions
(s,u, q) = TestFunctions(ME)
du = TrialFunction(ME)

# solution from last iteration
u0 = Coefficient(ME)  

# split mixed functions
(dT,dv, dp,) = split(du)
(T,v, p) = split(u0)

# SemiLagrangianFunctions
gstar = Coefficient(QE) 
g = Coefficient(P2) 

#parameters and functions
Ra = Constant(triangle)
dt = Constant(triangle) # time step
hdt = 0.5*dt # half time step

# Viscosity function
b = Constant(triangle)
c = Constant(triangle)
x = P2.cell().x
eta = exp(-b*T + c*(1-x[1]))

# weak form of residuals
L1= (s*(T-gstar)+hdt/Ra*inner(grad(s),grad(T)))*dx
L2 = (inner(sym(grad(u)), 2*eta*sym(grad(v))) - div(u)*p - T*u[1])*dx
L3 = q*div(v)*dx

L = L1 + L2 + L3 

# Bilinear form for Jacobian with 
#         added approximate Semi-Lagrangian block

a = derivative(L,u0,du) +  s*hdt*inner(grad(g),dv)*dx
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RayleighBenard.ufl

#  Choose a mixed vector space 
#          for u = [ T, V, P]
P2 = FiniteElement("Lagrange", triangle,2)
P2v = VectorElement("Lagrange", triangle, 2)
P1 = FiniteElement("Lagrange", triangle, 1)
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# quadrature element for Semi-Lagrangian 
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# split mixed functions
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(T,v, p) = split(u0)

# SemiLagrangianFunctions
gstar = Coefficient(QE) 
g = Coefficient(P2) 

#parameters and functions
Ra = Constant(triangle)
dt = Constant(triangle) # time step
hdt = 0.5*dt # half time step

# Viscosity function
b = Constant(triangle)
c = Constant(triangle)
x = P2.cell().x
eta = exp(-b*T + c*(1-x[1]))

# weak form of residuals
L1= (s*(T-gstar)+hdt/Ra*inner(grad(s),grad(T)))*dx
L2 = (inner(sym(grad(u)), 2*eta*sym(grad(v))) - div(u)*p - T*u[1])*dx
L3 = q*div(v)*dx

L = L1 + L2 + L3 

# Bilinear form for Jacobian with 
#         added approximate Semi-Lagrangian block

a = derivative(L,u0,du) +  s*hdt*inner(grad(g),dv)*dx
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RayleighBenard.ufl

#  Choose a mixed vector space 
#          for u = [ T, V, P]
P2 = FiniteElement("Lagrange", triangle,2)
P2v = VectorElement("Lagrange", triangle, 2)
P1 = FiniteElement("Lagrange", triangle, 1)
ME  =  MixedElement([P2,P2v, P1])

# quadrature element for Semi-Lagrangian 
QE = FiniteElement("Quadrature", triangle,4) 

#set test functions and trial functions
(s,u, q) = TestFunctions(ME)
du = TrialFunction(ME)

# solution from last iteration
u0 = Coefficient(ME)  

# split mixed functions
(dT,dv, dp,) = split(du)
(T,v, p) = split(u0)

# SemiLagrangianFunctions
gstar = Coefficient(QE) 
g = Coefficient(P2) 

#parameters and functions
Ra = Constant(triangle)
dt = Constant(triangle) # time step
hdt = 0.5*dt # half time step

# Viscosity function
b = Constant(triangle)
c = Constant(triangle)
x = P2.cell().x
eta = exp(-b*T + c*(1-x[1]))

# weak form of residuals
L1= (s*(T-gstar)+hdt/Ra*inner(grad(s),grad(T)))*dx
L2 = (inner(sym(grad(u)), 2*eta*sym(grad(v))) - div(u)*p - T*u[1])*dx
L3 = q*div(v)*dx

L = L1 + L2 + L3 

# Bilinear form for Jacobian with 
#         added approximate Semi-Lagrangian block

a = derivative(L,u0,du) +  s*hdt*inner(grad(g),dv)*dx
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Computational Seismology

Assembled Block Newton form (iso-viscous Stokes)

Jδu =




A B 0
−M K G
0 GT 0








δT

δV
δP



 = −F

where

A = M +
∆t

2Ra
L

B = −∆t

2

�

Ω
s∇g · δVdx

Variable Viscosity adds additional blocks

Jδu =




A B 0
−M + ηT K + ηV G
0 GT 0








δT

δV
δP



 = −F

Assembled Weak Form for Newton
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Computational Seismology

Assembled Block Newton form (iso-viscous Stokes)

Jδu =




A B 0
−M K G
0 GT 0








δT

δV
δP



 = −F

where

A = M +
∆t

2Ra
L

B = −∆t

2

�

Ω
s∇g · δVdx

Variable Viscosity adds additional blocks

Jδu =




A B 0
−M + ηT K + ηV G
0 GT 0








δT

δV
δP



 = −F

Assembled Weak Form for Newton

Stokes
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Computational Seismology

Assembled Block Newton form (iso-viscous Stokes)

Jδu =




A B 0
−M K G
0 GT 0








δT

δV
δP



 = −F

where

A = M +
∆t

2Ra
L

B = −∆t

2

�

Ω
s∇g · δVdx
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




δT

δV
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

 = −F

Assembled Weak Form for Newton
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Computational Seismology

Assembled Block Newton form (iso-viscous Stokes)

Jδu =




A B 0
−M K G
0 GT 0








δT

δV
δP



 = −F

where

A = M +
∆t

2Ra
L

B = −∆t

2

�

Ω
s∇g · δVdx

Variable Viscosity adds additional blocks

Jδu =




A B 0
−M + ηT K + ηV G
0 GT 0








δT

δV
δP



 = −F

Assembled Weak Form for Newton

Computational Seismology

Assembled Block Newton form (iso-viscous Stokes)

Jδu =




A B 0

−M K G
0 GT 0








δT

δV
δP



 = −F

where

A = M +
∆t

2Ra
L

B = −∆t

2

�

Ω
s∇g · δVdx

Variable Viscosity adds additional blocks

Jδu =




A B 0

−M + ηT K + ηV G
0 GT 0








δT

δV
δP



 = −F
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Some Physics Based Preconditioners
(iso-viscous Stokes)

Computational Seismology

Some Options for Physics Based Block Preconditioners

GSP-Picard Splitting as approximate Jacobian

P =




A�
−M
0

� �
K G
GT 0

�




Nested GSP - iterative Stokes Solver

P =




A�
−M
0

� �
K̂ G
0 Ŝ

�



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Software Requirements

• Rapid and Flexible Composition and 
Assembly of residuals and block Jacobians.

• Flexible Composition of block 
preconditioners

• Both Functionalities currently exist in 
available software

• FEniCS (www.fenics.org): UFL/FFC/Dolfin

• PETSc (www.anl.gov/...): PCFieldsplit
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PETSc FieldSplit Preconditioners
• Define splits (memory layout done in main code):
• fieldsplit_0  T
• fieldsplit_1: Stokes [ V, P]
• Define Nested Splits (for fieldsplit stokes PC’s)
• fieldsplit_1_fieldsplit_0: P
• fieldsplit_1_fieldsplit_1: V

• Then individual (PC/KSP) pairs can be defined for any 
split at runtime with command line options
• For Block Triangular Preconditioners use
-pc_fieldsplit_type multiplicative 
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PETSc FieldSplit Preconditioners: Examples

# Options file describing (LU,preonly) 
# Direct solve of full Jacobian
#
# Set tolerance for Newton iteration
-snes_rtol 1.e-6
-snes_atol 1.e-9
-snes_monitor

# Set (KSP/PC) for Linear solve
-ksp_type preonly
-pc_type lu
-pc_factor_mat_solver_package umfpack

-options_file petsc_direct.options
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# Set Tolerance for Newton Iteration
-snes_rtol 1.e-6
-snes_atol 1.e-9

# KSP for full Jacobian
-ksp_type fgmres
-ksp_rtol 1.e-4

# Fieldsplit Block Preconditioner for Jacobian
-pc_fieldsplit_type multiplicative

# solve Temperature Block (split 0) directly
-fieldsplit_0_ksp_type preonly
-fieldsplit_0_pc_type lu
-fieldsplit_0_pc_factor_mat_solver_package umfpack
# solve Stokes Block (split 1) directly
-fieldsplit_1_ksp_type preonly
-fieldsplit_1_pc_type lu
-fieldsplit_1_pc_factor_mat_solver_package umfpack

PETSc FieldSplit Preconditioners: Examples
petsc_fieldsplit_direct.options

change to preonly for classic picard it
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PETSc FieldSplit Preconditioners: Examples

# Set Tolerance for Newton Iteration
-snes_rtol 1.e-6
-snes_atol 1.e-9

# KSP for full Jacobian
-ksp_type fgmres
-ksp_rtol 1.e-3 -ksp_atol 1.e-10

# Fieldsplit Block Preconditioner for Jacobian
-pc_fieldsplit_type multiplicative

# precondition Temperature Block (split 0) iteratively
-fieldsplit_0_ksp_type cg
-fieldsplit_0_pc_type sor
-fieldsplit_0_ksp_rtol 1.e-4

# precondition Stokes Block (split 1) with Fieldsplit UT

petsc_nested_fieldsplit.options
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PETSc FieldSplit Preconditioners: Examples
petsc_nested_fieldsplit.options (cont’d)

# precondition Stokes Block (split 1) 
# Stokes: use upper triangular preconditioner

-fieldsplit_1_ksp_rtol 1.e-4
-fieldsplit_1_ksp_type fgmres
-fieldsplit_1_ksp_monitor
-fieldsplit_1_pc_fieldsplit_type multiplicative 

# pressure split (1,0)
-fieldsplit_1_fieldsplit_0_ksp_type cg
-fieldsplit_1_fieldsplit_0_pc_type sor
-fieldsplit_1_fieldsplit_0_ksp_max_it 2

# Velocity split (1,1)
-fieldsplit_1_fieldsplit_1_ksp_type preonly
-fieldsplit_1_fieldsplit_1_pc_type hypre
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It actually works:
A hybrid FEniCS/PETSc code for

Infinite Prandtl Number Thermal Convection
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Results: Convergence
FS_direct_preonly FS_direct FS_Nested

 0 SNES norm 1.440775725816e-04 
 1 SNES norm 1.121163685700e-05 
 2 SNES norm 8.684216284984e-07 
 3 SNES norm 6.724036897955e-08 
 4 SNES norm 5.206153641239e-09 
 5 SNES norm 4.030909787299e-10 

0 SNES norm 1.440775934047e-04 
  0 KSP  norm 1.440775934047e-04 
  1 KSP norm 2.180436488650e-07 
  2 KSP norm 8.082898217229e-11 
1 SNES norm 4.501827567666e-07 
  0 KSP norm 4.501827567666e-07 
  1 KSP norm 8.111259702458e-09 
  2 KSP norm 1.591023715205e-11 
2 SNES norm 3.448948297201e-10 

0 SNES norm 1.440775934702e-04 
  0 KSP norm 1.440775934702e-04 
  1 KSP norm 8.547666994358e-05 
  2 KSP norm 5.143221835930e-06 
  3 KSP norm 1.625345646434e-06 
  4 KSP norm 1.066985886044e-07 
1 SNES norm 3.882662679061e-07 
  0 KSP norm 3.882662679061e-07 
  1 KSP norm 1.179958777726e-07 
  2 KSP norm 1.040916620187e-08 
  3 KSP norm 6.871221156164e-09 
  4 KSP norm 1.060162940204e-09 
  5 KSP norm 2.618492833850e-10 
2 SNES norm 9.208414734450e-10 

FS_direct_preonly FS_direct FS_Nested

0 SNES norm 7.209390761755e-05 
1 SNES norm 5.610105695322e-06 
2 SNES norm 4.345432491886e-07 
3 SNES norm 3.364588778704e-08 
4 SNES norm 2.605064460130e-09 
5 SNES norm 2.016992518469e-10  

0 SNES norm 7.209390761755e-05 
  0 KSP norm 7.209390761755e-05 
  1 KSP norm 1.090781352139e-07 
  2 KSP norm 4.037606468691e-11 
1 SNES norm 2.252626498074e-07 
  0 KSP norm 2.252626498074e-07 
  1 KSP norm 4.060434945128e-09 
  2 KSP norm 7.945568136744e-12 
2 SNES norm 1.726435313005e-10 

0 SNES norm 7.209390763950e-05 
  0 KSP norm 7.209390763950e-05 
  1 KSP norm 4.302281006644e-05 
  2 KSP norm 2.575155542825e-06 
  3 KSP norm 8.172703781034e-07 
  4 KSP norm 5.354585680104e-08 
1 SNES norm 1.942724998785e-07 
  0 KSP norm 1.942724998785e-07 
  1 KSP norm 5.946234196409e-08 
  2 KSP norm 5.243563962848e-09 
  3 KSP norm 3.441167666531e-09 
  4 KSP norm 5.364061333279e-10 
  5 KSP norm 1.317802056418e-10 
2 SNES norm 4.603579469808e-10 

(64x32x4 triangles, cfl=1, n=1)

(128x64x4 triangles, cfl=2, n=1)
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Results: Convergence/performance
PC KSP/SNESKSP/SNESKSP/SNESKSP/SNES time/FS_Direct_stime/FS_Direct_s

(64x32x4 triangles, 
cfl=1, n=1) n=1n=1 n=230n=230 n=1 n=230

FS_direct_preonly 1 5 1 8 2.17 3.34
FS_direct 2 2 4 4 1.00 1.89
FS_nested 4.5 2 6.5 4 1.00 2.18

Direct 1 2 1 4 1.09 1.89

PC KSP/SNESKSP/SNESKSP/SNESKSP/SNES time/FS_Direct_stime/FS_Direct_s
(128x64x4 triangles, 

cfl=2, n=1) n=1n=1 n=230n=230 n=1 n=230

FS_direct_preonly 1 5 1 7 10.19 11.04
FS_direct 2 2 4 4 4.38 8.21
FS_nested 4.5 2 6 4 6.00 12.62

Direct 1 2 1 4 5.95 10.70
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Magma Dynamics
(McKenzie Tutorial Notes (CIG), Katz et al, 2007 Pepi)

Compressible
Flow

“Incompressible”
Flow

Spiegelman: MMM, July 5, 2010 LavaLamps 5

Dφ

Dt
= (1− φ)

P
ξ

+ Γ/ρs

−∇· K

µ
∇P +

P
ξ

= ∇· K

µ
[∇P ∗ + ∆ρg] + Γ

∆ρ

ρfρs

∇· V =
P
ξ

∇P ∗ = ∇· η
�
∇V + ∇VT

�
− φ∆ρg

with

• ξ = (ζ − 2η/3) = η
�

1
φ −

2
3

�
≈ η/φ

• ∆ρ = ρs − ρf
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Comparison to TUCAN Data
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Conclusions

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Advances in  Software (FEniCS/PETSc) allows 
flexible and rapid composition of multi-physics 
models, discretization and block-preconditioners

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Allows choices of model coupling/solvers to be 
made at, or close to run time (but doesn’t help you 
make those choices.)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Newton with block pre-conditioners allows 
monitoring convergence of global non-linear 
problem. 

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

This approach has already led to working scientific 
codes.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Physics based fieldsplit pre-conditioners are more 
efficient than Picard splitting, and comparable to 
sparse-direct (which is hard to beat in 2-D)
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Ongoing Issues

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Performance tuning and profiling needs to be done 
to understand timing differences.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Selective block assembly is needed for efficiency.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Parallelism: Both FEniCS/PETSc are parallel (but 
need to implement parallel Semi-Lagrangian or 
choose a different advection scheme).  Questions of 
performance and scaleability.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Science Challenges: Full Magma Dynamics 
(RBConvection + fluids), 3-D, more non-linear 
couplings.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Comparison to other multi-physics approaches

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

But proof-of-concept exists.
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