Progress and Challenges in Computational Geodynamics

Marc Spiegelman (Columbia/LDEO) Richard Katz (Oxford University) Gideon Simpson (U Toronto, Math)

Lecture III: Magma Dynamics

Outline

Overview and Motivation Equations for coupled fluid-solid dynamics Basic Physics: Localization phenomena on-linear waves Shear band formation, reactive flow Geodynamics Applications : Mid Ocean Ridges and Subduction Zones Open Questions/Future Directions © 2010 Europa Technologies

> US Dept of State Geographer 26.862691 Jon -76.907420 elev -4194 m

©20

Magma Dynamics is important for both geodynamics and geochemistry

Magma Dynamics is important for both geodynamics and geochemistry

Magma Dynamics is a natural extension of Mantle Convection (just add fluids)

Magma Dynamics is important for both geodynamics and geochemistry

Magma Dynamics is a natural extension of Mantle Convection (just add fluids)

 The addition of a low-viscosity fluid phase introduces new scales and dynamics.

- Magma Dynamics is important for both geodynamics and geochemistry
- Magma Dynamics is a natural extension of Mantle Convection (just add fluids)
- The addition of a low-viscosity fluid phase introduces new scales and dynamics.
- Goals of this lecture

- Magma Dynamics is important for both geodynamics and geochemistry
- Magma Dynamics is a natural extension of Mantle Convection (just add fluids)
- The addition of a low-viscosity fluid phase introduces new scales and dynamics.
- Goals of this lecture
 - develop better physical intuition into basic physics of magma dynamics

- Magma Dynamics is important for both geodynamics and geochemistry
- Magma Dynamics is a natural extension of Mantle Convection (just add fluids)
- The addition of a low-viscosity fluid phase introduces new scales and dynamics.
- Goals of this lecture
 - develop better physical intuition into basic physics of magma dynamics
 - understand the motivation for developing better abstractions
 © 2010 Google
 © 2010 Tele Atlas
 for multi-physics solvers
 © 2010 Tele Atlas
 © 2010 Tele Atlas

©20

- Mantle convection = Convection with Plates
- Plates are defined by their weak boundaries.
- Convergent and Divergent Boundaries are fundamentally magmatic
- How does magmatism affect the dynamics and structure of plate boundaries and global mantle convection?

Why Magma Dynamics? Global Geochemical Evolution

Brandenburg et al, EPSL 2008, 2-D Cylindrical High Ra convection calculation
Solid State Convection primarily stirs
Chemical Fractionation, mixing and sampling of the mantle requires a mobile liquid phase

• Can we use variation in composition of erupted lavas to infer rate and efficiency of convecting stirring in Earth?

- Large Scale Deformation of the Earth is in the solid-state
- Most melting occurs in small scale regions near plate boundaries, but may affect global flow and plate tectonics
- How do we understand the basic physics and interactions across scales and constrain it with chemical data?

- Large Scale Deformation of the Earth is in the solid-state
- Most melting occurs in small scale regions near plate boundaries, but may affect global flow and plate tectonics
- How do we understand the basic physics and interactions across scales and constrain it with chemical data?

• At least two phases (solid & liquid)

- At least two phases (solid & liquid)
- Significant mass-transfer between phases (melting/crystallization)

- At least two phases (solid & liquid)
- Significant mass-transfer between phases (melting/crystallization)
- The solid must be **permeable** at some scale

- At least two phases (solid & liquid)
- Significant mass-transfer between phases (melting/crystallization)
- The solid must be **permeable** at some scale
- In the absence of solid flow should look like porous media flow.

- At least two phases (solid & liquid)
- Significant mass-transfer between phases (melting/crystallization)
- The solid must be **permeable** at some scale
- In the absence of solid flow should look like porous media flow.
- In the absence of liquids, the system must be consistent with mantle convection (viscously deformable)

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi)\boldsymbol{\mathsf{V}}] = -\Gamma$$

Conservation of Momentum for fluid: Darcy's Law

$$\phi(\mathbf{v} - \mathbf{V}) = \frac{-K}{\mu} \left[\mathbf{\nabla} P - \rho_f \mathbf{g} \right]$$

Conservation of Momentum for Solid (viscous rheology)

$$\boldsymbol{\nabla} P = \boldsymbol{\nabla} \cdot \boldsymbol{\eta} \left(\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T \right) + \boldsymbol{\nabla} \left(\boldsymbol{\zeta} - \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \bar{\rho} \mathbf{g}$$

Plus Constitutive Relations/Closures

Permeability	$K \sim k_0(d, \ldots)\phi^n$
Viscosities	$\eta(\phi, T, d, P, \ldots), \zeta(\phi, T, d, P \ldots), \mu(T, P, X)$
Melting/Xstallization	$\Gamma(T, P, X, \ldots)$

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi) \mathbf{V}] = -\Gamma$$

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi) \mathbf{V}] = -\Gamma$$

Conservation of Momentum for fluid: Darcy's Law

$$\phi(\mathbf{v} - \mathbf{V}) = \frac{-K}{\mu} \left[\mathbf{\nabla} P - \rho_f \mathbf{g} \right]$$

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi) \mathbf{V}] = -\Gamma$$

Conservation of Momentum for fluid: Darcy's Law

$$\phi(\mathbf{v} - \mathbf{V}) = \frac{-K}{\mu} \left[\mathbf{\nabla} P - \rho_f \mathbf{g} \right]$$

$$\boldsymbol{\nabla} P = \boldsymbol{\nabla} \cdot \boldsymbol{\eta} \left(\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T \right) + \boldsymbol{\nabla} \left(\boldsymbol{\zeta} - \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \bar{\rho} \mathbf{g}$$

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi) \mathbf{V}] = -\Gamma$$

Conservation of Momentum for fluid: Darcy's Law

$$\phi(\mathbf{v} - \mathbf{V}) = \frac{-K}{\mu} \left[\mathbf{\nabla} P - \rho_f \mathbf{g} \right]$$

Conservation of Momentum for Solid (viscous rheology)

$$\boldsymbol{\nabla} P = \boldsymbol{\nabla} \cdot \boldsymbol{\eta} \left(\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T \right) + \boldsymbol{\nabla} \left(\boldsymbol{\zeta} - \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \bar{\rho} \mathbf{g}$$

Plus Constitutive Relations/Closures

Permeability	$K \sim k_0(d,\ldots)\phi^n$
Viscosities	$\eta(\phi, T, d, P, \ldots), \zeta(\phi, T, d, P \ldots), \mu(T, P, X)$
Melting/Xstallization	$\Gamma(T, P, X, \ldots)$

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi)\boldsymbol{\mathsf{V}}] = -\Gamma$$

Conservation of Momentum for fluid: Darcy's Law

$$\phi(\mathbf{v} - \mathbf{V}) = \frac{-K}{\mu} \left[\boldsymbol{\nabla} P - \rho_f \mathbf{g} \right]$$

Conservation of Momentum for Solid (viscous rheology)

$$\boldsymbol{\nabla} P = \boldsymbol{\nabla} \cdot \boldsymbol{\eta} \left(\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T \right) + \boldsymbol{\nabla} \left(\boldsymbol{\zeta} - \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \bar{\rho} \mathbf{g}$$

Plus Constitutive Relations/Closures

Permeability	$K \sim k_0(d,\ldots)\phi^n$
Viscosities	$\eta(\phi, T, d, P, \ldots), \zeta(\phi, T, d, P \ldots), \mu(T, P, X)$
Melting/Xstallization	$\Gamma(T, P, X, \ldots)$

Coupled through pressure

(McKenzie, 1984, JPet; Scott & Stevenson, 1984, 1986, JGR; Bercovici, Ricard et al., 2001, 2001, 2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

$$\frac{\partial(\rho_f \phi)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_f \phi \mathbf{v}) = \Gamma$$

Conservation of Mass: Solid

$$\frac{\partial [\rho_s(1-\phi)]}{\partial t} + \boldsymbol{\nabla} \cdot [\rho_s(1-\phi) \mathbf{V}] = -\Gamma$$

Conservation of Momentum for fluid: Darcy's Law

$$\phi(\mathbf{v} - \mathbf{V}) = \underbrace{\frac{-K}{\mu}} [\mathbf{\nabla}P - \rho_f \mathbf{g}]$$

Conservation of Momentum for Solid (viscous rheology)

$$\nabla P = \nabla \eta (\nabla \mathbf{V} + \nabla \mathbf{V}^T) + \nabla \left(\zeta - \frac{2\eta}{3}\right) \nabla \cdot \mathbf{V} + \bar{\rho} \mathbf{g}$$

Plus Constitutive Relations/Closures

Permeability	$K \sim k_0(d, \ldots)\phi^n$	Coupled through Constitutive
Viscosities	$\eta(\phi, T, d, P, \ldots), \zeta(\phi, T, d, P \ldots), \mu(T, P, X)$	Relations
Melting/Xstallization	$\Gamma(T, P, X, \ldots)$	

Coupled through

pressure

A Better (?) Formulation (<u>McKenzie Tutorial Notes</u> @ CIG, Katz et al, 2007 Pepi)

$$\boldsymbol{\nabla} P = \bar{\rho} \mathbf{g} + \boldsymbol{\nabla} \left(\zeta - \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \boldsymbol{\nabla} \cdot \eta \left(\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T \right)$$

A Better (?) Formulation (McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

A Better (?) Formulation (McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

A Better (?) Formulation (McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

A Better (?) Formulation (McKenzie Tutorial Notes (CIG/bSpace), Katz et al, 2007 Pepi)

Conservation of Momentum for Solid (viscous rheology)

$$\boldsymbol{\nabla} P = \bar{\rho} \mathbf{g} + \boldsymbol{\nabla} \left(\zeta - \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \boldsymbol{\nabla} \cdot \eta \left(\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T \right)$$

Decompose the pressure into 3 terms

$$P = P_l + \mathcal{P} + P^*$$

with

• Lithostatic Pressure,
$$P_l = \rho_s^0 g z$$

- "Compaction Pressure", $\mathcal{P} = (\zeta 2\eta/3) \boldsymbol{\nabla} \cdot \mathbf{V}$
- Dynamic Pressure, P^*

A Better (?) Formulation (<u>McKenzie Tutorial Notes</u> (CIG), Katz et al, 2007 Pepi)

$$\begin{split} \frac{D\phi}{Dt} &= (1-\phi)\frac{\mathcal{P}}{\xi} + \Gamma/\rho_s \quad \begin{array}{l} \text{Compressible} \\ \text{Flow} \end{array} \\ &- \nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\xi} = \nabla \cdot \frac{K}{\mu} \left[\nabla P^* + \Delta \rho \mathbf{g} \right] + \Gamma \frac{\Delta \rho}{\rho_f \rho_s} \\ &\nabla \cdot \mathbf{v} = \frac{\mathcal{P}}{\xi} \quad \begin{array}{l} \text{``Incompressible''} \\ \text{Flow} \end{array} \\ &\nabla P^* = \nabla \cdot \eta \left(\nabla \mathbf{v} + \nabla \mathbf{v}^T \right) - \phi \Delta \rho \mathbf{g} \end{split}$$

with

•
$$\xi = (\zeta - 2\eta/3) = \eta \left(\frac{1}{\phi} - \frac{2}{3}\right) \approx \eta/\phi$$

•
$$\Delta \rho = \rho_s - \rho_f$$

Comparison to Thermal Convection

(McKenzie Tutorial Notes (CIG/bSpace), Katz et al, 2007 Pepi)

$$\frac{D\phi}{Dt} = (1 - \phi)\frac{\mathcal{P}}{\xi} + \Gamma/\rho_s \quad \text{``Magma''}$$
$$-\nabla \cdot \frac{K}{\mu}\nabla \mathcal{P} + \frac{\mathcal{P}}{\xi} = \nabla \cdot \frac{K}{\mu} [\nabla P^* + \Delta \rho \mathbf{g}] + \Gamma \frac{\Delta \rho}{\rho_f \rho_s}$$
$$\nabla \cdot \mathbf{v} = \frac{\mathcal{P}}{\xi}$$
$$\nabla P^* = \nabla \cdot \eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T) - \phi \Delta \rho \mathbf{g}$$
Eq.
$$\frac{DT}{Dt} = \nabla^2 T \qquad \text{Thermal Convection}$$
$$\nabla \cdot \mathbf{v} = 0$$
$$\nabla P = \nabla \cdot \eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T) - \text{Ra}T\mathbf{g}$$

Non-linear wave equations for porosity (Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993, Simpson & Spiegelman, JSC 2010)

$$\begin{aligned} \frac{D\phi}{Dt} &= (1-\phi)\frac{\mathcal{P}}{\xi} + \Gamma/\rho_s & \text{Flow} \\ -\nabla \cdot \frac{K}{\mu}\nabla \mathcal{P} + \frac{\mathcal{P}}{\xi} &= \nabla \cdot \frac{K}{\mu}\left[\nabla P^* + \Delta\rho \mathbf{g}\right] + \Gamma \frac{\Delta\rho}{\rho_f \rho_s} \end{aligned}$$

with

•
$$\xi = (\zeta - 2\eta/3) = \eta \left(\frac{1}{\phi} - \frac{2}{3}\right) \approx \eta/\phi$$

•
$$\Delta \rho = \rho_s - \rho_f$$

Intrinsic length Scale: The compaction length

(McKenzie, JPet, 1984, Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993)

The Compaction Length

$$\delta = \sqrt{\frac{K(\phi)\zeta(\phi)}{\mu}}$$

PermeabilityKSolid Bulk Viscosity ζ melt Shear Viscosity μ

$${\cal K}(\phi)\propto \phi^n$$

 ${\cal L}(\phi)\propto \eta/\phi^m$
Intrinsic length Scale: The compaction length

(McKenzie, JPet, 1984, Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993)

The Compaction Length

$$\delta = \sqrt{\frac{K(\phi)\zeta(\phi)}{\mu}}$$

Permeability Solid Bulk Viscosity $\zeta(\phi) \propto \eta/\phi^m$ melt Shear Viscosity

 $\mathsf{K}(\phi) \propto \phi^{\mathsf{n}}$ μ

Length scale of pressure variations due to a change in flux.

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

•Variations in melt flux propagate as *non-linear* porosity waves

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

Variations in melt flux propagate as *non-linear* porosity waves
Speed and structure of porosity waves depends on *permeability* and *solid rheology*

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

•Collision of 2, 2D-porosity waves. P2-P2 FEM with Semi-Lagrangian 2nd-order time stepping. Hybrid FEniCS/PETSc codes.

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

 Instability of ID- 3-D waves. 3-D mixed finite elements. Hybrid FEniCS/PETSc codes. (CIG)

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Instability of ID- 3-D waves. Spiegelman and Wiggins, 1994, GRL.
 FV geometric multi-grid code.

•Wave behavior is the natural consequence of non-linearity of flux with porosity and viscous deformation of the solid.

- •Waves are generated by obstructions in the flux.
- Implies that magma dynamics is highly time dependent

Solitary waves provide an excellent nonlinear benchmark for space-time codes.
Simpson and Spiegelman, JSC, 2010 provides sinc-codes for calculating spectrally accurate wave profiles in 1, 2 and 3-D.

Full equations with porosity weakening shear viscosity η(φ, V)
Neglect gravity (at lab scale)
PETSc codes with segregated SNES
Spontaneously develops shear band instability

Other sources of melt channelization

Reactive infiltration instability

Reactive Infiltration Instability

Reactive Infilitration Instability

Reactive Infiltration Instability

Chem al Consequences of Melt Channeling

(Spiegelman & Kelemen, 2003, G3)

Chem al Consequences of Melt Channeling

(Spiegelman & Kelemen, 2003, G3)

 Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation

 Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation

 Coupling non-linear permeability with a deformable matrix introduce a wide range of behavior and leads to development of small-scale structures

- Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation
- Coupling non-linear permeability with a deformable matrix introduce a wide range of behavior and leads to development of small-scale structures
 - Non-linear Waves

- Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation
- Coupling non-linear permeability with a deformable matrix introduce a wide range of behavior and leads to development of small-scale structures
 - Non-linear Waves
 - Physical Shear Bands

- Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation
- Coupling non-linear permeability with a deformable matrix introduce a wide range of behavior and leads to development of small-scale structures
 - Non-linear Waves
 - Physical Shear Bands
 - Reactive channels

- Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation
- Coupling non-linear permeability with a deformable matrix introduce a wide range of behavior and leads to development of small-scale structures
 - Non-linear Waves
 - Physical Shear Bands
 - Reactive channels
 - Reactive Waves (M. Hesse, JFM submitted)

- Basic Magma Dynamics is Stokes coupled to a dispersive non-linear wave equation
- Coupling non-linear permeability with a deformable matrix introduce a wide range of behavior and leads to development of small-scale structures
 - Non-linear Waves
 - Physical Shear Bands
 - Reactive channels
 - Reactive Waves (M. Hesse, JFM submitted)
- length scale of features controlled by the compaction length (0-10km)

What are interactions between different localizations mechanisms

- What are interactions between different localizations mechanisms
- How do they work at larger scales, in presence of melting, and in a more geoloical setting (i.e. mid-ocean ridges)

- What are interactions between different localizations mechanisms
- How do they work at larger scales, in presence of melting, and in a more geoloical setting (i.e. mid-ocean ridges)
- What are the observable consequences of these mechanisms.

- What are interactions between different localizations mechanisms
- How do they work at larger scales, in presence of melting, and in a more geoloical setting (i.e. mid-ocean ridges)
- What are the observable consequences of these mechanisms.
- How/do small scale physics influence large scale mantle dynamics?

Petascale AMR FEM/Rhea

Global Convection code with parallel adaptive mesh refinement • minimum mesh spacing ~ I km resolves weak boundaries

Adaptive refinement in weak/ plastic regions •Full refinement at h=1km ~ 10¹² elements (exascale?) •Can accomplish, goal oriented adaptation to convergence with 150-300 million elements (10³-10⁴) savings
Geo problems: mid-ocean ridge models (Courtesy Richard Katz)

Melt and solid flow field for a heterogeneous melting mantle beneath a midocean ridge

Full solution of magma dynamics using the "enthalpy method" Katz, J. Pet, 2008

PETSc parallel, structured FV code on staggered mesh.

Location of Volcanoes in Subduction Zones

Geo problems: Subduction Zone models (Spiegelman, van Keken, Hacker, 2009)

Monday, January 10, 2011

Nicaragua Model

(Syracuse et al, 2009)

Slab H₂0 Model

(B Hacker, Perple_X)

Slab H₂0 Model

(B Hacker, Perple_X)

XH2O 0.04 0.03 0.02 0.01

Nicaragua: Slab Water model Hacker Perple_X Wt % water bound in slab minerals

Z_X

Permeable Flow model on subdomain Spiegelman (MADDs-FP -- CIG)

Monday, January 10, 2011

Fluid Flow Trajectories given dehydration rates

Monday, January 10, 2011

Comparison to TUCAN Data

 Magma Dynamics is a natural extension of Mantle Dynamics (Stokes + Darcy)

- Magma Dynamics is a natural extension of Mantle Dynamics (Stokes + Darcy)
- addition of a melt phase introduces new dynamics and new length & time scales

- Magma Dynamics is a natural extension of Mantle Dynamics (Stokes + Darcy)
- addition of a melt phase introduces new dynamics and new length & time scales
- Many different mechanisms suggest some form of mesoscale organization into melt channels in the mantle which may have significant observational consequences.

- Magma Dynamics is a natural extension of Mantle Dynamics (Stokes + Darcy)
- addition of a melt phase introduces new dynamics and new length & time scales
- Many different mechanisms suggest some form of mesoscale organization into melt channels in the mantle which may have significant observational consequences.
- Small changes in couplings can significantly change the physics and computational requirements of these problems

Open Questions

- What are the interactions/dominant mechanism for localization at the mesoscale?
- What are the interaction between mesoscale and plate-boundary scale flow?
 Plate boundary dynamics and global mantle convection?
- What are the observational consequences of these processes and can important inferences be made from existing data on the structure and processes of partially molten regions?

Computational & Software issues

- Magma Dynamics is fundamentally a coupled multiscale, multi-physics problem.
- How do we develop flexible, high-performance tools for more readily exploring the space of models and behavior?
- This is a completely different issue than finding/tuning a well understood problem (eg. Navier-Stokes, Seismic Wave tomography).
- Much of the essential software already exists (e.g. PETSc, FEniCS). Next time will detail how we can use it to develop some flexible and general approach to solving multi-physics models.

Philosophy of multi-physics PDE based models

- Overall Structure and Choices
- Software design for managing choices (PETSc, FEniCS)
- General abstractions of Non-linear multi-physics problem
- Examples in Hybrid FEniCS/PETSc codes.
- HPC issues...