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The Take Away...
• Magma Dynamics is important for both 

geodynamics and geochemistry

• Magma Dynamics is a natural extension of Mantle 
Convection (just add fluids)

• The addition of a low-viscosity fluid phase 
introduces new scales and dynamics.

• Goals of this lecture

• develop better physical intuition into basic physics of magma 
dynamics

• understand the motivation for developing better abstractions 
for multi-physics solvers
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88 88Why Magma Dynamics? 
Dynamics of Plate Boundaries

mid-ocean ridge
(divergent boundary)

subduction zone
(convergent boundary)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Mantle convection = Convection with Plates

Computational Seismology
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∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Plates are defined by their weak boundaries.
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Convergent and Divergent Boundaries are fundamentally 
magmatic

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How does magmatism affect the dynamics and structure of 
plate boundaries and global mantle convection?

images provided courtesy of the NEPTUNE Project 
(www.neptune.washington.edu) and CEV
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Why Magma Dynamics?
Global Geochemical Evolution

Brandenburg et al, EPSL 2008, 2-D Cylindrical High Ra convection calculation
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Solid State Convection primarily stirs

Computational Seismology
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Chemical Fractionation, mixing and sampling of the mantle 
requires a mobile liquid phase

Computational Seismology

Weak Form
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Ω
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s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 Can we use variation in composition of erupted lavas to 
infer rate and efficiency of convecting stirring in Earth?
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most of the mantle could be similar to the 
depleted upper mantle, with only small 
volumes of enriched, hidden material 
(J. C. Lassiter, Univ. Texas, Austin, USA). ! is 
ambiguity might be reduced if we knew more 
about three-dimensional mantle structures 
and the dynamical behaviour of the mantle.

! e 660 km discontinuity is key. ! ree-
dimensional models of mantle structure 
obtained using seismic data3,4 indicate 
that some subducted slabs penetrate the 
lower mantle, but many are de" ected above 
660 km (R. D. van der Hilst, Massachusetts 
Institute of Technology, USA). A dramatic 
change in the lateral spectrum of seismic 
heterogeneity can be seen at 660 km 
(a ‘red’ degree-2 dominated pattern 
above, and a ‘white’ spectrum below). 
! is was interpreted as evidence for a 
strong inhibition of mass " ux across this 
depth, suggesting that the observed slab 
penetration across the 660 km boundary 
must be episodic (A. M. Dziewonski, 
Harvard University, USA). Slab de" ection 
at 660 km could be caused by a change in 
the crystal structure (phase) that produces 
a sharp density increase (lateral variations 
in the depth of this phase change, due to 
di# erences in temperature or composition, 
produce density anomalies that resist slab 
penetration), and/or an increase in viscosity. 
Both possibilities have been the subject of 
many numerical studies5.

New calculations indicate a strong 
episodicity in mass " ux across the 
660 km depth when realistic mantle 
parameters are used (W. R. Peltier, Univ. 
Toronto, Canada), but in a time-averaged 

sense, this does not have much e# ect 
on the evolution of the mantle and 
core (S. L. Butler, Univ. Saskatchewan, 
Canada). Indeed, the mass transfer across 
660 km is larger than the " ux of slab 
material from above, despite the presence 
of a strong phase transition and a viscosity 
increase that are both expected to reduce 
this " ux (S. D. King, Virginia Tech, USA).

! e global average composition must 
change with depth in order to $ t seismic data 
(L. Cobden, Imperial College London, UK), 
with the region above 660 km enriched in 
subducted crust, and the region below 
660 km enriched in depleted harzburgite. 
Such strati$ cation is predicted by dynamical 
calculations that take into account 
composition-dependent phase transitions 
(P. J. Tackley, ETH Zurich, Switzerland), 
and is consistent with the radial pro$ le of 
seismic attenuation (F. Cammarano, Univ. 
California, Berkeley, USA).

Deeper in the mantle, compositional 
strati$ cation has been proposed, either just 
above the core–mantle boundary as a thick 
undulating layer, or in isolated piles6. Slabs 
are compositionally strati$ ed, producing 
seismic scattering that was used to track one 
slab sinking to the core–mantle boundary 
(B. Romanowicz, Univ. California, Berkeley, 
USA). If slabs reach the core–mantle 
boundary, do they stay there? One clue 
comes from seismic studies: there is growing 
evidence7,8 for large-scale compositional 
anomalies in the deep mantle in regions 
away from downwellings (R. D. van der Hilst, 
Massachusetts Institute of Technology, USA), 
which might be slab material or ‘primitive’ 

material. Another clue comes from the 
trace-element composition of volcanic rocks 
at hotspots: in particular, osmium-isotope 
studies9 show evidence for recycling of 
both parts of the slab — oceanic crust and 
melting-depleted harzburgite (J. Lassiter, 
Univ. Texas, Austin, USA). Hotspots are o% en 
thought to be caused by hot plumes rising 
from the core–mantle boundary. If true, 
this indicates that slab material accumulates 
above the core–mantle boundary.

! e emerging hypothesis is thus a 
mixture of layered and whole-mantle 
convection. At 660 km, slabs penetrate 
intermittently in space and time and 
a globally averaged compositional 
strati$ cation is maintained by the in" uence 
of phase transitions, while still allowing 
substantial mass exchange. ! e deepest 
mantle may contain piles of primitive 
material or subducted material that has 
gravitationally settled. ! e entire mantle is 
permeated by a mixture of compositionally 
distinct components, heterogeneous at all 
lengthscales. Two other recent proposals 
may also play a role: the e# ects of water 
may keep the transition zone enriched 
in trace elements10, and a concentration 
of trace elements may exist in a ‘magma 
ocean’ that has always existed above the 
core–mantle boundary11.

To resolve these issues, improved 
geochemical and geophysical data 
are essential, and so is quantitative 
testing of conceptual models. Direct 
numerical simulation of thermochemical 
mantle processes couples melting-
induced di# erentiation and trace-
element partitioning, convective 
mixing or segregation, and mineral 
physics information on rock physical 
properties and phase transitions. Such 
simulations, for example those presented 
at the meeting by P. E. van Keken, Univ. 
Michigan, USA, can generate synthetic 
geochemical and geophysical data for 
comparison with observations, and are a 
promising integrative approach to testing 
hypotheses and understanding the nature 
of the Earth’s mantle.
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Figure 1 Leaky layers. The emerging model of mantle convection suggests that some relatively cool subducting 
slabs of oceanic plate (blue) are defl ected at the 660 km discontinuity (dashed black line) whereas others penetrate 
all the way to the core–mantle boundary (solid black line), forming slab graveyards. Piles of material that are 
enriched in incompatible elements compared with the expected mantle average (orange) are pushed around at the 
core–mantle boundary by incoming slab material, and plumes form from their edges and tops (red). Some plumes 
penetrate below 660 km, whereas others are defl ected and may produce secondary upper-mantle plumes. An 
average compositional stratifi cation exists either side of 660 km.
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supply behind river dams upstream6, and 
hydrological alterations and reclamation, 
such as the construction of levees that 
block river input to the delta plain7. If 
we are to manage deltas for the better, it 
is imperative to understand clearly how 
they form, how we have modi! ed them, 
and what our realistic expectations for 
sustaining them should be.

Törnqvist and colleagues’ contribution 
is to analyse deposits from more than 100 
shallow boreholes in the Mississippi plain 
just over 100 kilometres to the west of 
New Orleans. " ese sediments show a clear 
transition, dated to around 1,500 years ago, 
from older wood-peat deposits to younger 
# uvial deposits. At that time, the area must 
have been a coastal swamp lying at, or just 
above, high-tide level.

By assessing the deformation of this 
transition line in relation to the thickness 
of the deposits above, the authors were 
able to assess the rate of compaction of 
the underlying peat in the time since the 
# uvial deposits began to be laid down. 
" ey could thus isolate the contribution of 
this compaction to the overall change of 
sea level relative to the land. " e rates they 
establish — some 5 mm per year — suggest 
that the compaction of underlying peat 
is indeed highly signi! cant, providing 

space to accommodate large quantities of 
# uvial sediment.

A central element of schemes to restore 
the Mississippi delta and others like it 
worldwide is the reintroduction, on various 
scales, of river water onto the delta plain. If 
Törnqvist and colleagues’ estimation of the 
rate of compaction in the Mississippi delta 
is right — and, as they point out1, there are 
reasons to believe that it is a conservative 
estimate — then any e$ ective diversions 
will need to involve large amounts of # uvial 
sediments, similar to the quantities moved 
in natural processes such as the breaching 
of river banks (creating ‘crevasses’) and 
large # oods. Because compaction is highly 
variable in space and time, depending on 
the underlying strata, the e$ ectiveness 
of such diversions depends on a detailed 
understanding of sedimentary architecture 
underneath. A similar variability applies to 
other processes crucial to the preservation 
of deltas, such as sediment and water 
delivery, wetland development and 
maintenance, and the redistribution of 
coastal sediments. Future research should 
therefore focus on how this heterogeneity 
a$ ects large-scale delta dynamics.

" e e$ ects of climate change —
accelerated and possibly erratic sea-level 
rise, probably stronger and more frequent 

hurricanes, and alterations in the 
hydrological cycle a$ ecting freshwater 
input into deltas — will also have to be 
taken into account when developing 
delta-management strategies. Against 
a backdrop of rising energy prices, 
restoration strategies should not depend 
on energy-intensive techniques such as the 
dredging and pumping of sediments over 
long distances for beach nourishment and 
marsh building. Rather, ecotechnological 
approaches that depend mainly on natural 
energies such as tides, waves and natural 
currents to disperse freshwater and 
sediments should be favoured8. " e kind of 
detailed knowledge supplied by work such 
as that of Törnqvist et al. can only help us in 
making informed decisions.
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Since the late 1960s, when plate tectonics 
and slow, creeping convection of 
the rocky mantle became accepted, 

geoscientists have been debating whether 
convection extends from the surface to 
the core–mantle boundary, or whether the 
mantle is compositionally and dynamically 
layered. Geochemical observations appeared 
to support layering, whereas geophysical 
observations tended to support whole-mantle 
convection. " e potential compositional 
boundary was typically put at 660 km 
depth, corresponding to the major seismic 

discontinuity that marks the boundary 
between the upper mantle and lower mantle. 
A range of possible reconciliations have been 
proposed, including leaky layering at 660 km, 
layering deeper in the mantle, or ubiquitous 
compositional heterogeneity like a ‘plum 
pudding’. " is debate continues, and was the 
focus of a special Union session “Whole or 
Layered Mantle Convection” at the AGU Fall 
Meeting held in December in San Francisco1.

" ere are two geochemical observations 
that suggest there are distinct reservoirs in 
the Earth’s mantle — a concept that is, at 
! rst sight, incompatible with whole-mantle 
mixing. First, the upper mantle is depleted 
in incompatible trace elements compared 
with what is expected from primitive 
planet-building material that the Earth 

should, on average, be composed of. " e 
! ndings from the upper mantle therefore 
require there to be complementary enriched 
material somewhere else. Second, several 
isotopically distinct components can be 
traced in volcanic rocks, so these must exist 
in the mantle2. By contrast, geophysical 
observations, in particular from seismology, 
indicate that some subducted oceanic plates, 
known as slabs, sink all the way into the 
lower mantle (Fig. 1). " is seems to rule out 
complete layering at 660 km.

In light of this controversy, geochemical 
observations have been interpreted to 
support di$ erent conceptual models: while 
some geochemists argue for ‘leaky’ layered 
convection (C. J. Allegre, Institut de Physique 
du Globe, Paris, France), others argue that 

Whether convection in the Earth’s mantle extends through its entire depth or if the mantle 
is layered has long been debated. Recent research suggests that spatially and temporally 
intermittent or partial layering is the most likely solution.
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Layer cake or plum pudding?

Paul Tackley, News and Views ~3000 km
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Large Scale Deformation of the Earth is in the solid-state
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Most melting occurs in small scale regions near plate 
boundaries, but  may affect global flow and plate tectonics
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How do we understand the basic physics and interactions 
across scales and constrain it with chemical data?
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most of the mantle could be similar to the 
depleted upper mantle, with only small 
volumes of enriched, hidden material 
(J. C. Lassiter, Univ. Texas, Austin, USA). ! is 
ambiguity might be reduced if we knew more 
about three-dimensional mantle structures 
and the dynamical behaviour of the mantle.

! e 660 km discontinuity is key. ! ree-
dimensional models of mantle structure 
obtained using seismic data3,4 indicate 
that some subducted slabs penetrate the 
lower mantle, but many are de" ected above 
660 km (R. D. van der Hilst, Massachusetts 
Institute of Technology, USA). A dramatic 
change in the lateral spectrum of seismic 
heterogeneity can be seen at 660 km 
(a ‘red’ degree-2 dominated pattern 
above, and a ‘white’ spectrum below). 
! is was interpreted as evidence for a 
strong inhibition of mass " ux across this 
depth, suggesting that the observed slab 
penetration across the 660 km boundary 
must be episodic (A. M. Dziewonski, 
Harvard University, USA). Slab de" ection 
at 660 km could be caused by a change in 
the crystal structure (phase) that produces 
a sharp density increase (lateral variations 
in the depth of this phase change, due to 
di# erences in temperature or composition, 
produce density anomalies that resist slab 
penetration), and/or an increase in viscosity. 
Both possibilities have been the subject of 
many numerical studies5.

New calculations indicate a strong 
episodicity in mass " ux across the 
660 km depth when realistic mantle 
parameters are used (W. R. Peltier, Univ. 
Toronto, Canada), but in a time-averaged 

sense, this does not have much e# ect 
on the evolution of the mantle and 
core (S. L. Butler, Univ. Saskatchewan, 
Canada). Indeed, the mass transfer across 
660 km is larger than the " ux of slab 
material from above, despite the presence 
of a strong phase transition and a viscosity 
increase that are both expected to reduce 
this " ux (S. D. King, Virginia Tech, USA).

! e global average composition must 
change with depth in order to $ t seismic data 
(L. Cobden, Imperial College London, UK), 
with the region above 660 km enriched in 
subducted crust, and the region below 
660 km enriched in depleted harzburgite. 
Such strati$ cation is predicted by dynamical 
calculations that take into account 
composition-dependent phase transitions 
(P. J. Tackley, ETH Zurich, Switzerland), 
and is consistent with the radial pro$ le of 
seismic attenuation (F. Cammarano, Univ. 
California, Berkeley, USA).

Deeper in the mantle, compositional 
strati$ cation has been proposed, either just 
above the core–mantle boundary as a thick 
undulating layer, or in isolated piles6. Slabs 
are compositionally strati$ ed, producing 
seismic scattering that was used to track one 
slab sinking to the core–mantle boundary 
(B. Romanowicz, Univ. California, Berkeley, 
USA). If slabs reach the core–mantle 
boundary, do they stay there? One clue 
comes from seismic studies: there is growing 
evidence7,8 for large-scale compositional 
anomalies in the deep mantle in regions 
away from downwellings (R. D. van der Hilst, 
Massachusetts Institute of Technology, USA), 
which might be slab material or ‘primitive’ 

material. Another clue comes from the 
trace-element composition of volcanic rocks 
at hotspots: in particular, osmium-isotope 
studies9 show evidence for recycling of 
both parts of the slab — oceanic crust and 
melting-depleted harzburgite (J. Lassiter, 
Univ. Texas, Austin, USA). Hotspots are o% en 
thought to be caused by hot plumes rising 
from the core–mantle boundary. If true, 
this indicates that slab material accumulates 
above the core–mantle boundary.

! e emerging hypothesis is thus a 
mixture of layered and whole-mantle 
convection. At 660 km, slabs penetrate 
intermittently in space and time and 
a globally averaged compositional 
strati$ cation is maintained by the in" uence 
of phase transitions, while still allowing 
substantial mass exchange. ! e deepest 
mantle may contain piles of primitive 
material or subducted material that has 
gravitationally settled. ! e entire mantle is 
permeated by a mixture of compositionally 
distinct components, heterogeneous at all 
lengthscales. Two other recent proposals 
may also play a role: the e# ects of water 
may keep the transition zone enriched 
in trace elements10, and a concentration 
of trace elements may exist in a ‘magma 
ocean’ that has always existed above the 
core–mantle boundary11.

To resolve these issues, improved 
geochemical and geophysical data 
are essential, and so is quantitative 
testing of conceptual models. Direct 
numerical simulation of thermochemical 
mantle processes couples melting-
induced di# erentiation and trace-
element partitioning, convective 
mixing or segregation, and mineral 
physics information on rock physical 
properties and phase transitions. Such 
simulations, for example those presented 
at the meeting by P. E. van Keken, Univ. 
Michigan, USA, can generate synthetic 
geochemical and geophysical data for 
comparison with observations, and are a 
promising integrative approach to testing 
hypotheses and understanding the nature 
of the Earth’s mantle.
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average compositional stratifi cation exists either side of 660 km.

 NEWS & VIEWS

nature geoscience | VOL 1 | MARCH 2008 | www.nature.com/naturegeoscience 157

supply behind river dams upstream6, and 
hydrological alterations and reclamation, 
such as the construction of levees that 
block river input to the delta plain7. If 
we are to manage deltas for the better, it 
is imperative to understand clearly how 
they form, how we have modi! ed them, 
and what our realistic expectations for 
sustaining them should be.

Törnqvist and colleagues’ contribution 
is to analyse deposits from more than 100 
shallow boreholes in the Mississippi plain 
just over 100 kilometres to the west of 
New Orleans. " ese sediments show a clear 
transition, dated to around 1,500 years ago, 
from older wood-peat deposits to younger 
# uvial deposits. At that time, the area must 
have been a coastal swamp lying at, or just 
above, high-tide level.

By assessing the deformation of this 
transition line in relation to the thickness 
of the deposits above, the authors were 
able to assess the rate of compaction of 
the underlying peat in the time since the 
# uvial deposits began to be laid down. 
" ey could thus isolate the contribution of 
this compaction to the overall change of 
sea level relative to the land. " e rates they 
establish — some 5 mm per year — suggest 
that the compaction of underlying peat 
is indeed highly signi! cant, providing 

space to accommodate large quantities of 
# uvial sediment.

A central element of schemes to restore 
the Mississippi delta and others like it 
worldwide is the reintroduction, on various 
scales, of river water onto the delta plain. If 
Törnqvist and colleagues’ estimation of the 
rate of compaction in the Mississippi delta 
is right — and, as they point out1, there are 
reasons to believe that it is a conservative 
estimate — then any e$ ective diversions 
will need to involve large amounts of # uvial 
sediments, similar to the quantities moved 
in natural processes such as the breaching 
of river banks (creating ‘crevasses’) and 
large # oods. Because compaction is highly 
variable in space and time, depending on 
the underlying strata, the e$ ectiveness 
of such diversions depends on a detailed 
understanding of sedimentary architecture 
underneath. A similar variability applies to 
other processes crucial to the preservation 
of deltas, such as sediment and water 
delivery, wetland development and 
maintenance, and the redistribution of 
coastal sediments. Future research should 
therefore focus on how this heterogeneity 
a$ ects large-scale delta dynamics.

" e e$ ects of climate change —
accelerated and possibly erratic sea-level 
rise, probably stronger and more frequent 

hurricanes, and alterations in the 
hydrological cycle a$ ecting freshwater 
input into deltas — will also have to be 
taken into account when developing 
delta-management strategies. Against 
a backdrop of rising energy prices, 
restoration strategies should not depend 
on energy-intensive techniques such as the 
dredging and pumping of sediments over 
long distances for beach nourishment and 
marsh building. Rather, ecotechnological 
approaches that depend mainly on natural 
energies such as tides, waves and natural 
currents to disperse freshwater and 
sediments should be favoured8. " e kind of 
detailed knowledge supplied by work such 
as that of Törnqvist et al. can only help us in 
making informed decisions.
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Since the late 1960s, when plate tectonics 
and slow, creeping convection of 
the rocky mantle became accepted, 

geoscientists have been debating whether 
convection extends from the surface to 
the core–mantle boundary, or whether the 
mantle is compositionally and dynamically 
layered. Geochemical observations appeared 
to support layering, whereas geophysical 
observations tended to support whole-mantle 
convection. " e potential compositional 
boundary was typically put at 660 km 
depth, corresponding to the major seismic 

discontinuity that marks the boundary 
between the upper mantle and lower mantle. 
A range of possible reconciliations have been 
proposed, including leaky layering at 660 km, 
layering deeper in the mantle, or ubiquitous 
compositional heterogeneity like a ‘plum 
pudding’. " is debate continues, and was the 
focus of a special Union session “Whole or 
Layered Mantle Convection” at the AGU Fall 
Meeting held in December in San Francisco1.

" ere are two geochemical observations 
that suggest there are distinct reservoirs in 
the Earth’s mantle — a concept that is, at 
! rst sight, incompatible with whole-mantle 
mixing. First, the upper mantle is depleted 
in incompatible trace elements compared 
with what is expected from primitive 
planet-building material that the Earth 

should, on average, be composed of. " e 
! ndings from the upper mantle therefore 
require there to be complementary enriched 
material somewhere else. Second, several 
isotopically distinct components can be 
traced in volcanic rocks, so these must exist 
in the mantle2. By contrast, geophysical 
observations, in particular from seismology, 
indicate that some subducted oceanic plates, 
known as slabs, sink all the way into the 
lower mantle (Fig. 1). " is seems to rule out 
complete layering at 660 km.

In light of this controversy, geochemical 
observations have been interpreted to 
support di$ erent conceptual models: while 
some geochemists argue for ‘leaky’ layered 
convection (C. J. Allegre, Institut de Physique 
du Globe, Paris, France), others argue that 

Whether convection in the Earth’s mantle extends through its entire depth or if the mantle 
is layered has long been debated. Recent research suggests that spatially and temporally 
intermittent or partial layering is the most likely solution.
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(McKenzie, 1984, JPet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al., 

2001,2003; Simpson et al, 2010 JGR)
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Melting/Xstallization Γ(T, P,X, . . .)
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A Better (?) Formulation
(McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)
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Conservation of Momentum for Solid (viscous rheology)
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�
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Decompose the pressure into 3 terms

P = Pl + P + P ∗

with

• Lithostatic Pressure, Pl = ρ0
sgz

• “Compaction Pressure”, P = (ζ − 2η/3)∇· V

• Dynamic Pressure, P ∗
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A Better (?) Formulation
(McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)
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A Better (?) Formulation
(McKenzie Tutorial Notes (CIG), Katz et al, 2007 Pepi)

Compressible
Flow

“Incompressible”
Flow

Spiegelman: MMM, July 5, 2010 LavaLamps 5
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Comparison to Thermal Convection
(McKenzie Tutorial Notes (CIG/bSpace), Katz et al, 2007 Pepi)
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Non-linear wave equations for porosity
(Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993, Simpson & Spiegelman, JSC 

2010)
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Computational Seismology

The Compaction Length

δ =

�
K (φ)ζ(φ)

µ

Permeability K (φ) ∝ φn

Solid Bulk Viscosity ζ(φ) ∝ η/φm

melt Shear Viscosity µ

Intrinsic length Scale: 
The compaction length

(McKenzie, JPet, 1984, Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993)

Monday, January 10, 2011



Computational Seismology

The Compaction Length

δ =

�
K (φ)ζ(φ)

µ

Permeability K (φ) ∝ φn

Solid Bulk Viscosity ζ(φ) ∝ η/φm

melt Shear Viscosity µ

Intrinsic length Scale: 
The compaction length

(McKenzie, JPet, 1984, Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993)

-5 -4 -3 -2 -1 0 1 2 3
compaction lengths

0.0
0.2
0.4
0.6
0.8
1.0

0
0
0
0
0
1

-0.7
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.7
0.9

-3 -2 -1 0 1 2 3 4 5
compaction lengths

a

b

porosity
flux

compaction rate

porosity
flux

compaction ratear
bi

tra
ry

 u
ni

ts
ar

bi
tra

ry
 u

ni
ts

-5 -4 -3 -2 -1 0 1 2 3
compaction lengths

0.0
0.2
0.4
0.6
0.8
1.0

0
0
0
0
0
1

-0.7
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.7
0.9

-3 -2 -1 0 1 2 3 4 5
compaction lengths

a

b

porosity
flux

compaction rate

porosity
flux

compaction ratear
bi

tra
ry

 u
ni

ts
ar

bi
tra

ry
 u

ni
ts

Length scale of pressure 
variations due to a change in 
flux.  

pressure

Monday, January 10, 2011



Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

•Variations in melt flux propagate as non-linear porosity waves
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

•Variations in melt flux propagate as non-linear porosity waves
•Speed and structure of porosity waves depends on permeability 
and solid rheology
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Collision of 2, 2D-porosity waves. P2-P2 FEM with Semi-
Lagrangian 2nd-order time stepping.  Hybrid FEniCS/PETSc codes.
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Instability of 1D- 3-D waves.  3-D mixed finite elements. Hybrid 
FEniCS/PETSc codes. (CIG)
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Instability of 1D- 3-D waves.  Spiegelman and Wiggins, 1994, GRL.  
FV geometric multi-grid code.
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Non-linear  porosity waves

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Wave behavior is the natural consequence of 
non-linearity of flux with porosity and viscous 
deformation of the solid.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Waves are generated by obstructions in the 
flux.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Implies that magma dynamics is highly time 
dependent

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Solitary waves provide an excellent non-
linear benchmark for space-time codes.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Simpson and Spiegelman, JSC, 2010 provides 
sinc-codes for calculating spectrally accurate 
wave profiles in 1, 2 and 3-D.
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Other Localization instabilities
Mechanical shear band formation, experiments

(a)

Figure 6

(b)

(c)

increasing shear stress
500 m

Kohlstedt and Holtzmann, 
Ann Rev Geophys., 2009
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Mechanical shear band instability
(Katz et al, 2006 Nature)

Katz, Spiegelman & Holtzman, 2006 Nature

©!2006!Nature Publishing Group!

!

The dynamics of melt and shear localization in
partially molten aggregates
Richard F. Katz1, Marc Spiegelman1,2 & Benjamin Holtzman1

The volcanoes that lie along the Earth’s tectonic boundaries are fed
by melt generated in the mantle. How this melt is extracted and
focused to the volcanoes, however, remains an unresolved ques-
tion. Here we present new theoretical results with implications for
melt focusing beneath mid-ocean ridges. By modelling laboratory
experiments1,2, we test a formulation for magma dynamics and
provide an explanation for localized bands of high-porosity and
concentrated shear deformation observed in experiments. These
bands emerge and persist at 158–258 to the plane of shear. Past
theoretical work on this system predicted the emergence of melt
bands3,4 but at an angle inconsistent with experiments. Our results
suggest that the observed band angle results from a balance of
porosity-weakening and strain-rate-weakening deformation
mechanisms. Lower band angles are predicted for greater strain-
rate weakening. From these lower band angles, we estimate the
orientation ofmelt bands beneathmid-ocean ridges and show that
they may enhance magma focusing toward the ridge axis.
Recent experiments1,2 demonstrate that partially molten aggre-

gates deformed in simple shear develop localized melt bands of high
porosity and enhanced strain (Fig. 1a). These bands emerge at low
angles (,208) to the plane of shear for a range of strain rates and
stresses, and persist at low angles even after large shear strains. This
pattern-forming instability presents a rare opportunity to test
theories of magma transport in the Earth’s mantle5–8. Magma
dynamics theories use continuum equations for conservation of
mass, momentum and energy to describe a two-phase system of
low-viscosity magma in a deformable, permeable solid matrix and
should be applicable to the experiments. Past theoretical work3

showed that a porosity-weakening viscous material9 undergoing
extension is unstable: tension across a weak, high-porosity region
leads to low pressure that, in turn, causes convergence of melt flow
into that region, raising its porosity and further weakening it. This
instability has been predicted to occur at scales smaller than the
compaction length3,4,10,11, which is the intrinsic length-scale in
magma dynamics theory5.
Past theoretical work predicts that melt bands emerge perpen-

dicular to the direction of the maximum rate of extensional strain.
This prediction results from assuming that the matrix viscosity
depends only on porosity and weakens with increasing melt frac-
tion. For simple shear geometry, Spiegelman4 showed that bands
oriented at 458 to the shear plane will grow fastest, whereas melt
bands with angles greater than 908 will decay (Supplementary Fig.
S1). Here we demonstrate that a viscosity that includes both porosity
and strain-rate-weakening mechanisms can reproduce the emer-
gence and persistence of melt bands at about 208 to the direction
of maximum shear (a difference of 258 from past predictions), as
observed in experiments.
A power-law form for strain-rate weakening is a commonly

LETTERS

Figure 1 | A comparison of experimental and numerical results. a, An
example cross-section of an experiment (PI-1096) on a partially molten
olivine–basalt–chromite aggregate deformed in simple shear to a strain
of 3.4. (Adapted from Fig. 1a of ref. 18; experimental details in ref. 2.)
The melt-rich bands are sloping, darker-grey regions at an angle v to the
shear plane. Sub-vertical black features are decompression cracks, an
experimental artefact. b, c, The porosity (b) and perturbation vorticity (c)
from a numerical simulation with n ¼ 6 and a ¼ 227 at a shear strain g of
2.79. The domain is five by one compaction lengths, approximately equal to
the estimated size of an experimental charge. The perturbation vorticity,
7£ ½V2 _gyi#= _g; is the total vorticity minus the constant vorticity _g due to
simple shear (here normalized by _g). Black lines in b and c show the position
of passive tracer particles that were arrayed in vertical lines at g ¼ 0; white
dotted lines show the expected position of the tracers due only to simple
shear. The linear, low-angle red bands in c are weak regions associated with
high porosity and enhanced shear, while the linear, sub-vertical blue regions
are regions of reversed shear. d, Histograms comparing band-angle
distributions in experiments and the numerical solution from b.

1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA. 2Department of Applied Physics and Applied Mathematics, Columbia University,
New York, New York 10027, USA.

Vol 442|10 August 2006|doi:10.1038/nature05039
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Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Full equations with porosity 
weakening shear viscosity 

Computational Seismology
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s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Neglect gravity (at lab scale) 

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

PETSc codes with segregated 
SNES

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Spontaneously develops 
shear band instability

Computational Seismology
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v(T )
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η
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Mechanical shear band instability
(Katz et al, 2006 Nature)

Katz, Spiegelman & Holtzman, 2006 Nature
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The dynamics of melt and shear localization in
partially molten aggregates
Richard F. Katz1, Marc Spiegelman1,2 & Benjamin Holtzman1

The volcanoes that lie along the Earth’s tectonic boundaries are fed
by melt generated in the mantle. How this melt is extracted and
focused to the volcanoes, however, remains an unresolved ques-
tion. Here we present new theoretical results with implications for
melt focusing beneath mid-ocean ridges. By modelling laboratory
experiments1,2, we test a formulation for magma dynamics and
provide an explanation for localized bands of high-porosity and
concentrated shear deformation observed in experiments. These
bands emerge and persist at 158–258 to the plane of shear. Past
theoretical work on this system predicted the emergence of melt
bands3,4 but at an angle inconsistent with experiments. Our results
suggest that the observed band angle results from a balance of
porosity-weakening and strain-rate-weakening deformation
mechanisms. Lower band angles are predicted for greater strain-
rate weakening. From these lower band angles, we estimate the
orientation ofmelt bands beneathmid-ocean ridges and show that
they may enhance magma focusing toward the ridge axis.
Recent experiments1,2 demonstrate that partially molten aggre-

gates deformed in simple shear develop localized melt bands of high
porosity and enhanced strain (Fig. 1a). These bands emerge at low
angles (,208) to the plane of shear for a range of strain rates and
stresses, and persist at low angles even after large shear strains. This
pattern-forming instability presents a rare opportunity to test
theories of magma transport in the Earth’s mantle5–8. Magma
dynamics theories use continuum equations for conservation of
mass, momentum and energy to describe a two-phase system of
low-viscosity magma in a deformable, permeable solid matrix and
should be applicable to the experiments. Past theoretical work3

showed that a porosity-weakening viscous material9 undergoing
extension is unstable: tension across a weak, high-porosity region
leads to low pressure that, in turn, causes convergence of melt flow
into that region, raising its porosity and further weakening it. This
instability has been predicted to occur at scales smaller than the
compaction length3,4,10,11, which is the intrinsic length-scale in
magma dynamics theory5.
Past theoretical work predicts that melt bands emerge perpen-

dicular to the direction of the maximum rate of extensional strain.
This prediction results from assuming that the matrix viscosity
depends only on porosity and weakens with increasing melt frac-
tion. For simple shear geometry, Spiegelman4 showed that bands
oriented at 458 to the shear plane will grow fastest, whereas melt
bands with angles greater than 908 will decay (Supplementary Fig.
S1). Here we demonstrate that a viscosity that includes both porosity
and strain-rate-weakening mechanisms can reproduce the emer-
gence and persistence of melt bands at about 208 to the direction
of maximum shear (a difference of 258 from past predictions), as
observed in experiments.
A power-law form for strain-rate weakening is a commonly

LETTERS

Figure 1 | A comparison of experimental and numerical results. a, An
example cross-section of an experiment (PI-1096) on a partially molten
olivine–basalt–chromite aggregate deformed in simple shear to a strain
of 3.4. (Adapted from Fig. 1a of ref. 18; experimental details in ref. 2.)
The melt-rich bands are sloping, darker-grey regions at an angle v to the
shear plane. Sub-vertical black features are decompression cracks, an
experimental artefact. b, c, The porosity (b) and perturbation vorticity (c)
from a numerical simulation with n ¼ 6 and a ¼ 227 at a shear strain g of
2.79. The domain is five by one compaction lengths, approximately equal to
the estimated size of an experimental charge. The perturbation vorticity,
7£ ½V2 _gyi#= _g; is the total vorticity minus the constant vorticity _g due to
simple shear (here normalized by _g). Black lines in b and c show the position
of passive tracer particles that were arrayed in vertical lines at g ¼ 0; white
dotted lines show the expected position of the tracers due only to simple
shear. The linear, low-angle red bands in c are weak regions associated with
high porosity and enhanced shear, while the linear, sub-vertical blue regions
are regions of reversed shear. d, Histograms comparing band-angle
distributions in experiments and the numerical solution from b.

1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA. 2Department of Applied Physics and Applied Mathematics, Columbia University,
New York, New York 10027, USA.
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The dynamics of melt and shear localization in
partially molten aggregates
Richard F. Katz1, Marc Spiegelman1,2 & Benjamin Holtzman1

The volcanoes that lie along the Earth’s tectonic boundaries are fed
by melt generated in the mantle. How this melt is extracted and
focused to the volcanoes, however, remains an unresolved ques-
tion. Here we present new theoretical results with implications for
melt focusing beneath mid-ocean ridges. By modelling laboratory
experiments1,2, we test a formulation for magma dynamics and
provide an explanation for localized bands of high-porosity and
concentrated shear deformation observed in experiments. These
bands emerge and persist at 158–258 to the plane of shear. Past
theoretical work on this system predicted the emergence of melt
bands3,4 but at an angle inconsistent with experiments. Our results
suggest that the observed band angle results from a balance of
porosity-weakening and strain-rate-weakening deformation
mechanisms. Lower band angles are predicted for greater strain-
rate weakening. From these lower band angles, we estimate the
orientation ofmelt bands beneathmid-ocean ridges and show that
they may enhance magma focusing toward the ridge axis.
Recent experiments1,2 demonstrate that partially molten aggre-

gates deformed in simple shear develop localized melt bands of high
porosity and enhanced strain (Fig. 1a). These bands emerge at low
angles (,208) to the plane of shear for a range of strain rates and
stresses, and persist at low angles even after large shear strains. This
pattern-forming instability presents a rare opportunity to test
theories of magma transport in the Earth’s mantle5–8. Magma
dynamics theories use continuum equations for conservation of
mass, momentum and energy to describe a two-phase system of
low-viscosity magma in a deformable, permeable solid matrix and
should be applicable to the experiments. Past theoretical work3

showed that a porosity-weakening viscous material9 undergoing
extension is unstable: tension across a weak, high-porosity region
leads to low pressure that, in turn, causes convergence of melt flow
into that region, raising its porosity and further weakening it. This
instability has been predicted to occur at scales smaller than the
compaction length3,4,10,11, which is the intrinsic length-scale in
magma dynamics theory5.
Past theoretical work predicts that melt bands emerge perpen-

dicular to the direction of the maximum rate of extensional strain.
This prediction results from assuming that the matrix viscosity
depends only on porosity and weakens with increasing melt frac-
tion. For simple shear geometry, Spiegelman4 showed that bands
oriented at 458 to the shear plane will grow fastest, whereas melt
bands with angles greater than 908 will decay (Supplementary Fig.
S1). Here we demonstrate that a viscosity that includes both porosity
and strain-rate-weakening mechanisms can reproduce the emer-
gence and persistence of melt bands at about 208 to the direction
of maximum shear (a difference of 258 from past predictions), as
observed in experiments.
A power-law form for strain-rate weakening is a commonly

LETTERS

Figure 1 | A comparison of experimental and numerical results. a, An
example cross-section of an experiment (PI-1096) on a partially molten
olivine–basalt–chromite aggregate deformed in simple shear to a strain
of 3.4. (Adapted from Fig. 1a of ref. 18; experimental details in ref. 2.)
The melt-rich bands are sloping, darker-grey regions at an angle v to the
shear plane. Sub-vertical black features are decompression cracks, an
experimental artefact. b, c, The porosity (b) and perturbation vorticity (c)
from a numerical simulation with n ¼ 6 and a ¼ 227 at a shear strain g of
2.79. The domain is five by one compaction lengths, approximately equal to
the estimated size of an experimental charge. The perturbation vorticity,
7£ ½V2 _gyi#= _g; is the total vorticity minus the constant vorticity _g due to
simple shear (here normalized by _g). Black lines in b and c show the position
of passive tracer particles that were arrayed in vertical lines at g ¼ 0; white
dotted lines show the expected position of the tracers due only to simple
shear. The linear, low-angle red bands in c are weak regions associated with
high porosity and enhanced shear, while the linear, sub-vertical blue regions
are regions of reversed shear. d, Histograms comparing band-angle
distributions in experiments and the numerical solution from b.

1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA. 2Department of Applied Physics and Applied Mathematics, Columbia University,
New York, New York 10027, USA.
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Mechanical shear band instability
(Katz et al, 2006 Nature)

Katz, Spiegelman & Holtzman, 2006 Nature
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The dynamics of melt and shear localization in
partially molten aggregates
Richard F. Katz1, Marc Spiegelman1,2 & Benjamin Holtzman1

The volcanoes that lie along the Earth’s tectonic boundaries are fed
by melt generated in the mantle. How this melt is extracted and
focused to the volcanoes, however, remains an unresolved ques-
tion. Here we present new theoretical results with implications for
melt focusing beneath mid-ocean ridges. By modelling laboratory
experiments1,2, we test a formulation for magma dynamics and
provide an explanation for localized bands of high-porosity and
concentrated shear deformation observed in experiments. These
bands emerge and persist at 158–258 to the plane of shear. Past
theoretical work on this system predicted the emergence of melt
bands3,4 but at an angle inconsistent with experiments. Our results
suggest that the observed band angle results from a balance of
porosity-weakening and strain-rate-weakening deformation
mechanisms. Lower band angles are predicted for greater strain-
rate weakening. From these lower band angles, we estimate the
orientation ofmelt bands beneathmid-ocean ridges and show that
they may enhance magma focusing toward the ridge axis.
Recent experiments1,2 demonstrate that partially molten aggre-

gates deformed in simple shear develop localized melt bands of high
porosity and enhanced strain (Fig. 1a). These bands emerge at low
angles (,208) to the plane of shear for a range of strain rates and
stresses, and persist at low angles even after large shear strains. This
pattern-forming instability presents a rare opportunity to test
theories of magma transport in the Earth’s mantle5–8. Magma
dynamics theories use continuum equations for conservation of
mass, momentum and energy to describe a two-phase system of
low-viscosity magma in a deformable, permeable solid matrix and
should be applicable to the experiments. Past theoretical work3

showed that a porosity-weakening viscous material9 undergoing
extension is unstable: tension across a weak, high-porosity region
leads to low pressure that, in turn, causes convergence of melt flow
into that region, raising its porosity and further weakening it. This
instability has been predicted to occur at scales smaller than the
compaction length3,4,10,11, which is the intrinsic length-scale in
magma dynamics theory5.
Past theoretical work predicts that melt bands emerge perpen-

dicular to the direction of the maximum rate of extensional strain.
This prediction results from assuming that the matrix viscosity
depends only on porosity and weakens with increasing melt frac-
tion. For simple shear geometry, Spiegelman4 showed that bands
oriented at 458 to the shear plane will grow fastest, whereas melt
bands with angles greater than 908 will decay (Supplementary Fig.
S1). Here we demonstrate that a viscosity that includes both porosity
and strain-rate-weakening mechanisms can reproduce the emer-
gence and persistence of melt bands at about 208 to the direction
of maximum shear (a difference of 258 from past predictions), as
observed in experiments.
A power-law form for strain-rate weakening is a commonly

LETTERS

Figure 1 | A comparison of experimental and numerical results. a, An
example cross-section of an experiment (PI-1096) on a partially molten
olivine–basalt–chromite aggregate deformed in simple shear to a strain
of 3.4. (Adapted from Fig. 1a of ref. 18; experimental details in ref. 2.)
The melt-rich bands are sloping, darker-grey regions at an angle v to the
shear plane. Sub-vertical black features are decompression cracks, an
experimental artefact. b, c, The porosity (b) and perturbation vorticity (c)
from a numerical simulation with n ¼ 6 and a ¼ 227 at a shear strain g of
2.79. The domain is five by one compaction lengths, approximately equal to
the estimated size of an experimental charge. The perturbation vorticity,
7£ ½V2 _gyi#= _g; is the total vorticity minus the constant vorticity _g due to
simple shear (here normalized by _g). Black lines in b and c show the position
of passive tracer particles that were arrayed in vertical lines at g ¼ 0; white
dotted lines show the expected position of the tracers due only to simple
shear. The linear, low-angle red bands in c are weak regions associated with
high porosity and enhanced shear, while the linear, sub-vertical blue regions
are regions of reversed shear. d, Histograms comparing band-angle
distributions in experiments and the numerical solution from b.
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accepted constitutive relation for high-temperature creep of mantle
materials9,12. Here we assume9,12–14:

hðf; _eÞ ¼ h0e
aðf2f0Þ _e

12n
n
II ð1Þ

where h0 is the shear viscosity at the reference porosity f0 and
reference strain rate. a ¼ 228 ^ 3 is an experimentally derived
porosity-weakening coefficient14,15, _eII is the second invariant of the
incompressible component of the strain-rate tensor, and n defines
the power-law dependence of viscosity on stress. This viscosity is
newtonian when n ¼ 1 and is a standard non-newtonian power-law
viscosity when n . 1 and f ¼ 0.
To understand the effect of the strain-rate dependence of viscosity

we extend a previous linear analysis4. Formally, we introduce an
infinitesimal plane-wave perturbation (analogous to a melt-rich
band) to a constant-porosity system undergoing simple shear and
solve for its growth as a function of orientation (Supplementary
Information). The growth rate, _s; of porosity bands predicted by this
analysis is:

_sðv;nÞ ¼2
ayð12f0Þsinð2vÞ
1þ 12n

n cos2ð2vÞ ð2Þ

where v(t) is the angle between the melt bands and the shear plane
(Fig. 1a), which increases with time, t, due to advection by the shear
flow. The parameter y ¼ (z0/h0 þ 4/3)21 depends on the ratio of
bulk viscosity to shear viscosity and controls the growth rate of band

porosity through the product ay. The amplitude of porosity in the
bands at strain g(t) is given by es(t).
Figure 2a shows the growth rate of melt bands as a function of

their angle to the shear plane, v, and the stress exponent, n. For a
viscosity that weakens with porosity only, melt bands oriented at 458
grow fastest because they are perpendicular to the direction of
maximum extension in simple shear (equation (2) with n ¼ 1).
For a strain-rate-dependent viscosity (n . 1), however, concen-

trated shear deformation further weakens the bands, allowing them
to more easily de-compact under extension. Enhanced shear strain is
largest for porosity bands oriented at zero and 908 and goes to zero
for 458 bands (Supplementary Fig. S1 and cos2(2v) term in equation
(2)). Thus two competing processes affect the preferred angle of melt
bands. The balance between favourable orientation for extension
(458) and favourable orientation for concentrating shear (0 and 908)
is controlled by the factor (1 2 n)/n. Figure 2a shows the effect of
changing n on the growth rate of porosity. As n increases from 1 to 6,
the single peak in _s at 458 broadens and divides into symmetric peaks
at low (,158) and high (,758) angle.
Although the instantaneous growth rate of melt bands in Fig. 2a is

symmetric about 458, advection by simple shear affects low- and
high-angle bands differently. Low-angle bands are rotated slowly and
persist in favourable orientations for growth of porosity. High-angle
bands, however, are rapidly rotated away from angles with positive
growth rates. Figure 2b shows that after a strain of g ¼ 1, bands at low

Figure 2 | Results from linear analysis and numerical simulations, showing
the effect of stress exponent n on the angular dependence of porosity of
melt bands. a, The growth rate _s of porosity as a function of angle; equation
(2).b, Thenormalizedamplitudeofmelt-bandporosity as a functionofv andn
for g ¼ 1. Advection by simple shear preferentially rotates higher-angle bands
out of favourable orientation for growth. The angle with peak amplitude at a
given strain is determinedby the growth rate and the rate of passive rotationby
simple shear. c, Normalized, binned amplitude of FFTs of the porosity field
from an ensemble of numerical simulations with n ¼ 6 (n ¼ 1,4 shown in
Supplementary Fig. S4). Linear analysis is used to extend simulation results to

g ¼ 3.6 (Supplementary Fig. S2 shows angle evolution from linear analysis
only). The colour scale goes from zero to one. d, Summary of simulation
ensemble results for n ¼ 1, 2, 4 and 6. Coloured symbols represent the peak of
the band-angle histogram and each is consistent with the angle estimated by
visual inspection of the porosity field. Black symbols with 1-sigma error bars
representmean band angles in experiments, quantified by hand-measurement
of sectioned experimental-run products. Black lines demonstrate the
rotational effect of unperturbed simple shear on selected initial band angles
(Supplementary equation S17). The behaviour of full nonlinear calculations
for high strain at n . 3 is still unclear.
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Other sources of melt channelization
Reactive infiltration instability

S
p
ie
g
e
lm
a
n
a
n
d
K
e
le
m
e
n

C
M
G
2
0
0
2
,
T
o
ri
n
o
:
7

R
e
s
id
u
a
l
D
u
n
it
e
s
:
O
m
a
n
O
p
h
io
li
te

F
ig

ur
e 

5.
  P

ho
to

m
os

ai
c 

of
 a

 m
ou

nt
ai

ns
id

e 
in

 th
e 

M
us

ca
t M

as
si

f. 
 A

s 
at

 a
ll 

sc
al

es
, d

ui
te

 o
ri

en
ta

tio
ns

 m
ea

us
re

d 
ac

ro
ss

 th
e 

im
ag

e 
ar

ea
 a

re
 

us
ed

 to
 c

or
re

ct
 d

un
ite

 w
id

th
s 

as
 m

ea
su

re
d 

fr
om

 th
e 

im
ag

e 
m

os
ai

c.
  

T
he

 li
gh

te
r r

oc
ks

 a
re

 d
un

ite
, t

he
 d

ar
ke

r a
re

 h
ar

zb
ur

gi
te

s.
  T

he
 tw

o 
ge

ol
og

is
ts

 in
 th

e 
ce

nt
er

 o
f t

he
 im

ag
e 

ar
e 

st
an

di
ng

 ~
 5

0 
m

 a
pa

rt
.

Dunite

Hartzburgite

C
on

ce
nt

ra
tio

n/
C

1 

La Ce    Nd   Sm             Dy     Er    

Chemistry 
(Kelemen et al, 1995, Nature)

Monday, January 10, 2011



Reactive Infiltration Instability
Spiegelman and Kelemen CMG 2002, Torino: 19

Geometry of Reactive Melting Column

(Spiegelman et al. 2001)
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Reactive Infilitration Instability
Spiegelman and Kelemen CMG 2002, Torino: 20

Flow Localization by Reactive Melt Transport

(Spiegelman, Kelemen and Aharonov, JGR 2001)
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Reactive Infiltration InstabilityReactive Flow Localization

(Spiegelman, Kelemen & Aharanov., 1999, JGR)
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Chemical Consequences of Melt Channeling
(Spiegelman & Kelemen, 2003, G3)

porosity in all of these models is still less than 1%,
and the interchannel regions have porosities as low
as 0.04% (Figure 7a) to 0.08% (Figure 7c), yet the
model results show variability similar to dynamic
melting models that retain more than 1% melt
everywhere in the melting column. Even very small
interchannel porosities produce melt compositions
that are sub-parallel to the aggregate melt and do
not resemble pure fractional melts (Figure 3b).
Furthermore, unlike the large retained melt frac-
tions required to produce such melt compositions in
dynamic melting models, these small interchannel

porosities are consistent with a reactive flow origin
for the U-series disequilibrium observed in MORB
[Jull et al., 2002].

[34] In general, these calculations suggest that the
observed distributions of chemical variability as a
function of compatibility could be a sensitive probe
of the structure of partially molten regions. Future
work will map out, and attempt to parameterize,
the relationship between variability and channel
structure.

3.1.2. Diffusion/Dispersion

[35] Another possibility for reducing model vari-
ance is molecular diffusion and/or hydrodynamic
dispersion. While the models presented in this
paper include diffusion in the reactive ‘‘major
elements’’, they do not, at present, incorporate
diffusion of trace elements. However, the conse-
quences of diffusion/dispersion can be estimated.

[36] Using an argument similar to that of Spiegel-
man and Kenyon [1992], we can estimate a diffu-
sive Damköhler number which considers the
importance of diffusion across the channels relative
to advective transport along the channels. The
Damköhler number

DaD ¼ Deff l

w0d2
ð1Þ

is the time it takes for a tracer to be transported a
distance l along the channel at speed w0 divided by

a

b

c

Figure 7. (opposite) Chemical variability in three high-
resolution (257 $ 641 grid points), single channel
calculations, in which channels extend to different depths
within the melting column. These calculations have the
same parameters as Figure 4b except for the compaction
porosity fc which controls the bulk viscosity of the
matrix at low porosities [see Spiegelman et al., 2001].
Results can be understood in terms of the parameter fc/
f0, which is the compaction porosity relative to the
reference porosity at the top of the domain in the absence
of channels. Figure 4b has fc/f0 = 0.1. (a) fc/f0 = .2. The
channels begin about halfway up the box and the
minimum interchannel porosity is .22f0 producing %4
orders of magnitude variation in highly incompatible
element concentration. (b) fc/f0 = 0.3, producing 2
orders of magnitude variation in highly incompatible
element concentration. (c) fc/f0 = 0.4. Brackets above
each porosity image give [fmin/f0 fmax/f0] at the top of
the column.
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two bulk partition coefficients for each element.
The first corresponds to melting in the garnet
lherzolite stability field and the second in the
spinel lherzolite stability field (see Table 1). This
introduces another input variable, the depth of the
garnet-spinel transition relative to the depth of
channel initiation. (In fact, there is also continuous
variation of distribution coefficients throughout a
realistic melting column, due to changing propor-
tions of olivine, orthopyroxene, and clinopyrox-
ene, as well as spinel and garnet, in the residue.
However, we have not yet attempted to incorporate
this effect in the modeling described in this paper.)

[42] Figure 8 shows trace element patterns calcu-
lated from the channel structure in Figure 7b with
the partition coefficients in Table 1. As before,
each of these distributions is calculated by sam-
pling the melt compositions at the top of the
column weighted by the melt flux. These distribu-
tions are similar to those observed in melt inclu-
sions and lavas (Figures 1 and 2). Highly
incompatible elements show about two orders of
magnitude variation, while there is about a factor
of two variation for moderately incompatible ele-
ments such as Yb. Moreover the most enriched
melts are only about a factor of two more enriched
than the mean and there is a pronounced ‘‘tail’’ of
ultra-depleted melts.

[43] The principal difference between Figures 8a
and 8b is how the channels sample the garnet-
spinel transition. In Figure 8a, channels are initiated
below the garnet-spinel transition, so that the
centers of the channels transport mixtures of deep

melts with clear garnet signatures. In Figure 8b,
channels are initiated at a depth shallower than the
garnet/spinel transition, so the garnet signature is
subdued. In both cases, however, the edges of the

Table 1. Bulk Partition Coefficients Used for Figures 8
and 9

Field Ba Th U La Ce

Garnet 0.0001 0.0027 0.0054 0.0057 0.0105
Spinel 0.0001 0.0008 0.0010 0.0039 0.0064

Nd Sm Eu Gd Tb

Garnet 0.0285 0.0515 0.0705 0.0962 0.1340
Spinel 0.0134 0.0170 0.0206 0.0210 0.0224

Dy Ho Er Tm Yb

Garnet 0.1811 0.2487 0.3170 0.4634 0.6140
Spinel 0.0244 0.0246 0.0253 0.0279 0.0302

a

b

Figure 8. Melt composition distributions from initial
models with a two-level partition coefficient structure to
model U-Series and REE’s. The background melt and
solid flow field is the same as in Figure 7b with the
channels beginning about halfway up the box. Compo-
sitions are calculated for highly incompatible elements
(Ba, Th, U) and REE’s using a two-level partition
coefficient field with D1 up to a height zd and D2 from zd
to the top. Specific bulk partition coefficients are given
in Table 1 corresponding to garnet and spinel
peridotite. Each figure shows synthetic data sets
sampled out of the distribution given by the melt flux.
The black line shows the mean of the distribution, the red
line is the analytic solution for a batch melt with the
mean degree of melting. While both models have the
same mean, the distributions are different. (a) Garnet-
spinel transition at zd = 0.6. Channels tap into the garnet
region giving enriched center melts with a clear garnet
signature. (b) zd = 0.4 channels occur above the gt-sp
transition leaving a muted garnet signature. In both
cases, the large fractionations in Yb come from including
shallow, near-fractional melts from the channel edges.
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channels are strongly fractionated in the heavy rare
earths leading to a factor of 2 variability in Yb. The
large and obvious garnet signatures in Figure 8a
are not seen in mid-ocean ridge basalt. All else
being equal, this suggests that channels of focused
melt flow do not extend to the garnet-spinel
transition. More generally, these calculations dem-
onstrate, again, that the distribution of chemical
variability, rather than the mean compositions, are
a sensitive indicator of the geometry of melt
transport networks.

[44] In addition to calculating the distribution of
melt compositions, we can also calculate the
expected distribution of ‘‘abyssal peridotite’’ com-
positions (i.e. solid residues) produced by these
models. Unlike the melts, which are sampled from
the distribution of compositions weighted by melt
flux, the residues should be sampled from compo-
sitions weighted by area at the top of the model
domain. Since most of the area is composed of
interchannel regions, the majority of residues are
highly depleted. Figure 9 illustrates clinopyroxene
compositions that are in equilibrium with melts at
the top of the column, weighted by area, and
compares them to the range of clinopyroxene
compositions in abyssal peridotites [e.g., Johnson
et al., 1990; Johnson and Dick, 1992] and Oman
harzburgites [Kelemen et al., 1997]. Again, the
correspondence between model and observation
is surprisingly good.

3.3. Further Tests/Further Work

[45] Figures 8 and 9 are encouraging and suggest
that, possibly for the first time, there are physically
consistent geochemical transport models that pro-
duce distributions of melt and solid residues similar
to what is actually observed. The physical basis for
these distributions is easily understood and quan-
tifies many of the qualitative ideas inherent in
‘‘dynamic melting models’’. However, to produce
these distributions requires including the fluid-
mechanics of melt transport that control the amount
of mixing between melts formed at different
depths. Nevertheless, even these transport models
are highly simplified with respect to possible
melting regimes and it is worth reviewing, briefly,
some additional tests of these models.

[46] In addition to calculating distributions of sta-
ble trace elements in melts and residues, these
models can also be used to calculate the effects
of melt transport on uranium series (U-series)
disequilibrium. Some important observations that
have not been explained by traditional melting
models include the correlation between Thorium
excesses and elemental U/Th ratios, in which
samples with high U/Th have smaller excesses
[e.g., Lundstrom et al., 1999]. This is particularly
clear for Alvin collected samples from 9!N EPR
that show correlations between (230Th/232Th) and

a

b

Figure 9. Comparison of observed distribution of
clinopyroxene compositions in abyssal peridotites to
model calculations. (a) Clinopyroxene compositions in
harzburgites from the mantle section of the Oman
ophiolite [Kelemen et al., 1995a] superimposed on the
range of compositions from abyssal peridotites [Johnson
et al., 1990; Johnson and Dick, 1992], showing the
predominance of highly depleted samples. (b) Distribu-
tions of clinopyroxenes in equilibrium with melts at the
top of the melting column corresponding to Figures 7b
and 8b. This distribution is sampled uniformly by area
(as if we were sampling residues from the top of the
column) and is dominated by depleted interchannel
samples.
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Chemical Consequences of Melt Channeling
(Spiegelman & Kelemen, 2003, G3)

porosity in all of these models is still less than 1%,
and the interchannel regions have porosities as low
as 0.04% (Figure 7a) to 0.08% (Figure 7c), yet the
model results show variability similar to dynamic
melting models that retain more than 1% melt
everywhere in the melting column. Even very small
interchannel porosities produce melt compositions
that are sub-parallel to the aggregate melt and do
not resemble pure fractional melts (Figure 3b).
Furthermore, unlike the large retained melt frac-
tions required to produce such melt compositions in
dynamic melting models, these small interchannel

porosities are consistent with a reactive flow origin
for the U-series disequilibrium observed in MORB
[Jull et al., 2002].

[34] In general, these calculations suggest that the
observed distributions of chemical variability as a
function of compatibility could be a sensitive probe
of the structure of partially molten regions. Future
work will map out, and attempt to parameterize,
the relationship between variability and channel
structure.

3.1.2. Diffusion/Dispersion

[35] Another possibility for reducing model vari-
ance is molecular diffusion and/or hydrodynamic
dispersion. While the models presented in this
paper include diffusion in the reactive ‘‘major
elements’’, they do not, at present, incorporate
diffusion of trace elements. However, the conse-
quences of diffusion/dispersion can be estimated.

[36] Using an argument similar to that of Spiegel-
man and Kenyon [1992], we can estimate a diffu-
sive Damköhler number which considers the
importance of diffusion across the channels relative
to advective transport along the channels. The
Damköhler number

DaD ¼ Deff l

w0d2
ð1Þ

is the time it takes for a tracer to be transported a
distance l along the channel at speed w0 divided by

a

b

c

Figure 7. (opposite) Chemical variability in three high-
resolution (257 $ 641 grid points), single channel
calculations, in which channels extend to different depths
within the melting column. These calculations have the
same parameters as Figure 4b except for the compaction
porosity fc which controls the bulk viscosity of the
matrix at low porosities [see Spiegelman et al., 2001].
Results can be understood in terms of the parameter fc/
f0, which is the compaction porosity relative to the
reference porosity at the top of the domain in the absence
of channels. Figure 4b has fc/f0 = 0.1. (a) fc/f0 = .2. The
channels begin about halfway up the box and the
minimum interchannel porosity is .22f0 producing %4
orders of magnitude variation in highly incompatible
element concentration. (b) fc/f0 = 0.3, producing 2
orders of magnitude variation in highly incompatible
element concentration. (c) fc/f0 = 0.4. Brackets above
each porosity image give [fmin/f0 fmax/f0] at the top of
the column.
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two bulk partition coefficients for each element.
The first corresponds to melting in the garnet
lherzolite stability field and the second in the
spinel lherzolite stability field (see Table 1). This
introduces another input variable, the depth of the
garnet-spinel transition relative to the depth of
channel initiation. (In fact, there is also continuous
variation of distribution coefficients throughout a
realistic melting column, due to changing propor-
tions of olivine, orthopyroxene, and clinopyrox-
ene, as well as spinel and garnet, in the residue.
However, we have not yet attempted to incorporate
this effect in the modeling described in this paper.)

[42] Figure 8 shows trace element patterns calcu-
lated from the channel structure in Figure 7b with
the partition coefficients in Table 1. As before,
each of these distributions is calculated by sam-
pling the melt compositions at the top of the
column weighted by the melt flux. These distribu-
tions are similar to those observed in melt inclu-
sions and lavas (Figures 1 and 2). Highly
incompatible elements show about two orders of
magnitude variation, while there is about a factor
of two variation for moderately incompatible ele-
ments such as Yb. Moreover the most enriched
melts are only about a factor of two more enriched
than the mean and there is a pronounced ‘‘tail’’ of
ultra-depleted melts.

[43] The principal difference between Figures 8a
and 8b is how the channels sample the garnet-
spinel transition. In Figure 8a, channels are initiated
below the garnet-spinel transition, so that the
centers of the channels transport mixtures of deep

melts with clear garnet signatures. In Figure 8b,
channels are initiated at a depth shallower than the
garnet/spinel transition, so the garnet signature is
subdued. In both cases, however, the edges of the

Table 1. Bulk Partition Coefficients Used for Figures 8
and 9

Field Ba Th U La Ce

Garnet 0.0001 0.0027 0.0054 0.0057 0.0105
Spinel 0.0001 0.0008 0.0010 0.0039 0.0064

Nd Sm Eu Gd Tb

Garnet 0.0285 0.0515 0.0705 0.0962 0.1340
Spinel 0.0134 0.0170 0.0206 0.0210 0.0224

Dy Ho Er Tm Yb

Garnet 0.1811 0.2487 0.3170 0.4634 0.6140
Spinel 0.0244 0.0246 0.0253 0.0279 0.0302

a

b

Figure 8. Melt composition distributions from initial
models with a two-level partition coefficient structure to
model U-Series and REE’s. The background melt and
solid flow field is the same as in Figure 7b with the
channels beginning about halfway up the box. Compo-
sitions are calculated for highly incompatible elements
(Ba, Th, U) and REE’s using a two-level partition
coefficient field with D1 up to a height zd and D2 from zd
to the top. Specific bulk partition coefficients are given
in Table 1 corresponding to garnet and spinel
peridotite. Each figure shows synthetic data sets
sampled out of the distribution given by the melt flux.
The black line shows the mean of the distribution, the red
line is the analytic solution for a batch melt with the
mean degree of melting. While both models have the
same mean, the distributions are different. (a) Garnet-
spinel transition at zd = 0.6. Channels tap into the garnet
region giving enriched center melts with a clear garnet
signature. (b) zd = 0.4 channels occur above the gt-sp
transition leaving a muted garnet signature. In both
cases, the large fractionations in Yb come from including
shallow, near-fractional melts from the channel edges.
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channels are strongly fractionated in the heavy rare
earths leading to a factor of 2 variability in Yb. The
large and obvious garnet signatures in Figure 8a
are not seen in mid-ocean ridge basalt. All else
being equal, this suggests that channels of focused
melt flow do not extend to the garnet-spinel
transition. More generally, these calculations dem-
onstrate, again, that the distribution of chemical
variability, rather than the mean compositions, are
a sensitive indicator of the geometry of melt
transport networks.

[44] In addition to calculating the distribution of
melt compositions, we can also calculate the
expected distribution of ‘‘abyssal peridotite’’ com-
positions (i.e. solid residues) produced by these
models. Unlike the melts, which are sampled from
the distribution of compositions weighted by melt
flux, the residues should be sampled from compo-
sitions weighted by area at the top of the model
domain. Since most of the area is composed of
interchannel regions, the majority of residues are
highly depleted. Figure 9 illustrates clinopyroxene
compositions that are in equilibrium with melts at
the top of the column, weighted by area, and
compares them to the range of clinopyroxene
compositions in abyssal peridotites [e.g., Johnson
et al., 1990; Johnson and Dick, 1992] and Oman
harzburgites [Kelemen et al., 1997]. Again, the
correspondence between model and observation
is surprisingly good.

3.3. Further Tests/Further Work

[45] Figures 8 and 9 are encouraging and suggest
that, possibly for the first time, there are physically
consistent geochemical transport models that pro-
duce distributions of melt and solid residues similar
to what is actually observed. The physical basis for
these distributions is easily understood and quan-
tifies many of the qualitative ideas inherent in
‘‘dynamic melting models’’. However, to produce
these distributions requires including the fluid-
mechanics of melt transport that control the amount
of mixing between melts formed at different
depths. Nevertheless, even these transport models
are highly simplified with respect to possible
melting regimes and it is worth reviewing, briefly,
some additional tests of these models.

[46] In addition to calculating distributions of sta-
ble trace elements in melts and residues, these
models can also be used to calculate the effects
of melt transport on uranium series (U-series)
disequilibrium. Some important observations that
have not been explained by traditional melting
models include the correlation between Thorium
excesses and elemental U/Th ratios, in which
samples with high U/Th have smaller excesses
[e.g., Lundstrom et al., 1999]. This is particularly
clear for Alvin collected samples from 9!N EPR
that show correlations between (230Th/232Th) and

a

b

Figure 9. Comparison of observed distribution of
clinopyroxene compositions in abyssal peridotites to
model calculations. (a) Clinopyroxene compositions in
harzburgites from the mantle section of the Oman
ophiolite [Kelemen et al., 1995a] superimposed on the
range of compositions from abyssal peridotites [Johnson
et al., 1990; Johnson and Dick, 1992], showing the
predominance of highly depleted samples. (b) Distribu-
tions of clinopyroxenes in equilibrium with melts at the
top of the melting column corresponding to Figures 7b
and 8b. This distribution is sampled uniformly by area
(as if we were sampling residues from the top of the
column) and is dominated by depleted interchannel
samples.
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 Petascale AMR FEM/Rhea

Fig. 6. Adaptive, ultra-high resolution mantle flow simulation. Top, left: Decomposition of earth’s mantle into 24 octrees using the p4est
library. The viscosity field is shown; very narrow low-viscosity zones (red lines on the surface) indicate plate boundaries. Box 1 between the

Pacific (PAC) and the Australian (AU) plates indicates the region of the cross-section shown below. Bottom: Enlarged cross-section showing

the refinement that occurs both around plate boundaries and dynamically in response to the nonlinear viscosity and plastic failure in the region

around Fiji and Tonga (TO) in the SW Pacific. AMR, which is essential to resolve the plate boundaries, dynamically creates a mesh that

contains elements at 8 refinement levels, with finest resolution of about 1 km. A zoom into Box 2, where the Pacific plate subducts underneath

the Australian plate, is shown in the top right figure. Top, right: Viscosity and flow vectors for a zoom into the hinge zone of the Pacific

slab (indicated by Box 2). The narrow low viscosity zone (red) allows shearing of the flow and, thus, plate subduction to occur. The opposite

directions of the plates (the blue regions separated by the weak zone; arrows point in opposite directions) shows that our simulation predicts

trench rollback, as is known to occur in this region. Resolving these local phenomena is critical for global mantle flow models to fit observations;

this is the first time that a dynamic mantle flow model predicts these phenomena [9].

150–300 million finite elements. These meshes typically

contain 8 different refinement levels and about a billion

(velocity and pressure) unknowns. As the mesh adapts

and is repartitioned, all solution fields are interpolated

between meshes and redistributed according to the mesh

partition.

Figure 7 presents runtime percentages for the solution

of a typical global mantle convection problem using

Rhea as outlined above. The percentages are broken

down into AMR operations, solver time (which includes

nonlinear residual formation, Picard operator construc-

tion, and Krylov iteration matrix-vector products and

inner products), and AMG V-cycle time. As can be seen

from the table, the time spent in AMR components is

completely overwhelmed by the solver (solve + V-cycle)

time; in this case, the AMR components together require

no more than 0.12% of runtime. Thus, parallel AMR

has transformed a problem that would have required an

exascale computer to obtain 1 km uniform resolution,

to one that can fit on a petascale cluster by employing

Global Convection 
code with parallel 
adaptive mesh 
refinement

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 minimum mesh 
spacing ~1km 
resolves weak 
boundaries

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�
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ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 Adaptive 
refinement in weak/
plastic regions

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Full refinement at 
h=1km ~ 1012 

elements (exa-
scale?)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Can accomplish, 
goal oriented 
adaptation to 
convergence with 
150-300 million 
elements (103-104 ) 

savings
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Geo problems: mid-ocean ridge models
(Courtesy Richard Katz)

Melt and solid flow 
field for a 
heterogeneous melting 
mantle beneath a mid-
ocean ridge

Full solution of magma 
dynamics using the 
“enthalpy method”
Katz, J. Pet, 2008

PETSc parallel, 
structured FV code on 
staggered mesh.

Temperature, Composition

Porosity, velocities
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Location of Volcanoes in Subduction Zones
changes in-depth occur at !86.3! and !85.5!
longitude, at steps in the volcanic front that corre-
late with geochemical variations [Carr et al.,
2003]. The largest of these jumps is at !85.5!
where H changes from 130–140 km in Nicaragua
to 80–100 km in Costa Rica within 50 km along
strike, as the arc steps roughly 40 km toward the
trench (Figures 2d and 2e and auxiliary material
Figure S2). This discontinuity has been previously
observed [e.g., Carr and Stoiber, 1977; Protti et
al., 1994], with no evidence for a slab contortion. It
may correspond to changes in the structure and
perhaps composition of the upper plate [Carr et
al., 2003], corresponding to a terrane boundary
between continental crust in Nicaragua and an
oceanic plateau in Costa Rica. The Nicaragua
segment shows 50 km trenchward migration in
the last 10 Ma [Plank et al., 2002], so the slab
and arc geometry may be out of equilibrium. Of
course, transient geometries may be present else-
where, but this is one of the few places where rapid
recent arc migration is well documented.

4.3.3. Central Andes

[35] In the central Andes, between !21! and !24!
latitude, H increases from 100 km to 130 km, near
23!S, across a total distance of 300 km (Figure 12).
Schurr and Rietbrock [2004] have interpreted at-
tenuation measurements to indicate the existence of
a cool, strong fore-arc mass extending to "110 km
depth. This may impede magma generation, caus-
ing a shift in the volcanic front and increasing H.
Thus heterogeneity of the mantle wedge might
affect arc location.

4.4. Apparent WBZ Thickness and
Double Seismic Zones

[36] The measurement of slab width used to esti-
mate scatter in hypocenters also provides some
insight into internal structure of the WBZ. In
Northern Honshu, cross sections (Figure 2a) sug-
gest a double seismic zone in agreement with other
studies [Yoshii, 1979; Igarashi et al., 2001]. This
area has the smallest formal earthquake location
errors ef of any arc segment, and it also has a broad
apparent WBZ thickness, showing two peaks in the
distribution of earthquakes relative to the WBZ
surface (Figure 5a). For the Kuriles and Tonga,
where double seismic zones have been suggested
previously [Kao and Chen, 1994; Kawakatsu,
1985], we only find weak evidence for bimodal
distributions of earthquakes perpendicular to WBZ
surfaces, probably because the hypocentral errors

are relatively large and comparable to the seismic
zone widths (Figures 5b and 5c).

[37] As discussed in section 3.3, the apparent
thickness of the seismic zone exceeds that
predicted from formal errors by up to 45 km. A
significant positive correlation exists (R = 0.54, P =

Figure 12. Cross sections of EHB seismicity beneath
the northern Andes, exhibiting the increase in H behind
the Atacama block, with little change in the slab surface.
Earthquakes and volcanoes in map view follow the color
scheme of Figure 1 and are projected with a 50-km half
width.
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centers at depths 55–250 km. For seismicity gaps
of less than 100 km depth, the contours are linearly
interpolated. By comparison, England et al. [2004]
project both seismicity and volcanoes for several
hundred km along small circles, a procedure that
assumes both an uncontorted slab and the same
axis of curvature for slab and arc, within each
segment. At the trench and seaward, we equate the
top of the downgoing plate with the seafloor, here
approximated as a 6 km isobath at the trench, a
global average. A surface is fitted to these seafloor
and WBZ contours and then interpolated with the
method of Wessel and Smith [1991]; this surface is
referred to as the ‘‘slab surface.’’ By concentrating
on the details of the upper 250 km of seismic
zones, this procedure provides a slab surface that
much more closely resembles subarc seismicity
than a previous global compilation devised for
parameterizing global tomography [Gudmundsson
and Sambridge, 1998]; see comparison in Figure 2.

[9] The Cascadia, Mexican and Mediterranean
subduction zones are excluded for insufficient
seismicity. The Molucca Sea – Sulawesi region
is excluded for its complexity. In the northern
Andes, WBZ seismicity ceases trenchward of the
volcanic front so H cannot be determined, but other
parameters are tabulated. For points east of 86!W
in Central America, hypocenters from Protti et al.
[1994] are used to model sharp contortions.

[10] Most volcano locations come from the Smith-
sonian catalog [Siebert and Simkin, 2002], includ-

ing only those thought to have erupted during the
Holocene. In Central America, we use the volcano
catalog of Carr et al. [2003]. Additional submarine
volcanoes in Tonga and Kermadec are also
included from Arculus [2003, 2004]. The depth
of the slab surface beneath each volcano, H, is
interpolated from the digitized surface, wherever it
could be estimated beneath volcanoes.

[11] The parameter H is also averaged, from arc-
front volcanoes, in 500 km long arc segments
worldwide, to provide uniform sampling. A volca-
no is defined to be at the arc front if it is closer than
its immediate neighbor volcanoes, within a few
tens of km along strike. Figure 3 shows H and
other parameters for one arc system, as an example.

2.2. Determining Dip, Convergence
Velocity, and Slab Age

[12] From the digitized surfaces, slab dip (d) is
averaged in the direction of maximum dip, between
50 km and 250 km depth. This procedure removes
a natural correlation between d and H on a steep-
ening slab. The dip direction is not necessarily
perpendicular to the trench, nor always parallel to
the direction of convergence. The minimum depth
limit of 50 km coincides with the downdip limit of
typical thrust zones [Tichelaar and Ruff, 1993]. In
areas where the WBZ does not extend to 250 km
depth, d is averaged from the 50 km depth to the
deepest earthquakes. For each volcano, the strike
of the slab is defined as that perpendicular to the

Figure 1. Map of the arc sections discussed in this paper, with slab contours (curves) and volcanoes (triangles).
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Global Slab Contours and Volcanoes 
(Syracuse and Abers, 2006)
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Geo problems: Subduction Zone models
(Spiegelman, van Keken, Hacker, 2009)
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Nicaragua Model 
(Syracuse et al, 2009)

Nicaragua: 
Thermal/Flow Model
van Keken
Unstructured FEM
Kinematic Slab
Olivine, Dislocation creep
rheology for wedge
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Slab H20 Model
(B Hacker, Perple_X)

Nicaragua: 
Slab Water model
Hacker
Perple_X
Wt % water bound in 
slab minerals
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Slab H20 Model
(B Hacker, Perple_X)

Nicaragua: 
Slab Water model
Hacker
Perple_X
Wt % water bound in 
slab minerals
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Permeable Flow model on subdomain
Spiegelman (MADDs-FP -- CIG)

Nicaragua: 
Fluid Flow on SubDomain
Unstructured FEM/P2P2
Hybrid FEniCS/PETsc Codes
Full Magma Dynamics
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Fluid Flow Trajectories given dehydration rates
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Comparison to TUCAN Data
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Summary

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Magma Dynamics is a natural extension 
of Mantle Dynamics (Stokes + Darcy)
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functions w and u.

addition of a melt phase introduces new 
dynamics and new length & time scales
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s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Many different mechanisms suggest some 
form of mesoscale organization into melt 
channels in the mantle which may have 
significant observational consequences.
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Summary

Computational Seismology
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Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Small changes in couplings can 
significantly change the physics and 
computational requirements of these 
problems
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Open Questions

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

What are the interactions/dominant 
mechanism for localization at the meso-
scale?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

What are the interaction between meso-
scale and plate-boundary scale flow?  
Plate boundary dynamics and global 
mantle convection?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

What are the observational 
consequences of these processes and 
can important inferences be made from 
existing data on the structure and 
processes of partially molten regions?
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Computational & Software issues

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Magma Dynamics is fundamentally a coupled multi-
scale, multi-physics problem.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

How do we develop flexible, high-performance tools 
for more readily exploring the space of models and 
behavior?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

This is a completely different issue than finding/tuning 
a well understood problem (eg. Navier-Stokes, Seismic 
Wave tomography).

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Much of the essential software already exists (e.g. 
PETSc, FEniCS).  Next time will detail how we can use 
it to develop some flexible and general approach to 
solving multi-physics models.
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Philosophy of multi-physics PDE 
based models

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Overall Structure and Choices

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Software design for managing choices 
(PETSc, FEniCS)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

General abstractions of Non-linear 
multi-physics problem

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Examples in Hybrid FEniCS/PETSc codes.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

HPC issues...
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