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QOutline for Lectures

‘/ Biology is awesome. If you can solve Poisson,
you can join in the fun!

‘/There’s more than one way to skin a cat.
Sometimes PDEs can be advantageously
reframed as integral equations.

‘/There’s no such thing as a free lunch (or, what
it takes to solve really big problems)

e A diversity of unusual computational challenges
will continue to drive biological simulation.



Today:

e Interfaces between models and numerics

e Examples:

» Electrostatic optimization
» Approximate local electrostatics



The Crucial Role of Interfaces

e Prof. Spiegelman talked yesterday about the idea of
exploring model space, meaning PDE models as
hypotheses about geophysics and geodynamics

It is rarely worth betting on the universal applicability of
implementation details

e Today: a PDE model employed as a means to explore the
origins of molecular binding affinity and specificity

The PDE model is not the hypothesis.

Here, it is sensible to re-engineer the interface between the PDE
model and the formalism built on top of it

Exposing more details about the PDE led to a new form of
approximate model more rigorous than competing approximations



Biomolecule Electrostatic Optimization

« A molecular design problem: optimize a molecule (ligand) for
tight binding to a target (receptor)
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« Estimating binding free energies:

AG = AGY
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e The electrostatic problem:
= Take ligand shape as given
= What charge distribution gives
the best binding free energy?




Electrostatic Optimization of Biomolecules:
Applications in Analysis and Design

Mandal and
H  Hilvert, 2003

e E. coli chorismate mutase
inhibitors:
» Analyzed by Kangas and Tidor

= Suggested substitution
experimentally verified: result is
the tightest-binding inhibitor yet
known

e Barnase/barstar protein
complex:
= Tight-binding complex
= Optimal charge distribution closely

matches “wild-type” charge
distribution



Reminder: Binding Is A Trade-off

e Molecular binding involves sacrificing solute--solvent
interactions for solute--solute interactions:
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This is only a VERY SIMPLE MODEL for molecular binding!



The Reaction-Potential Matrix

A weighted combination of charge distributions in the
solute molecule produces a weighted combination of the
individual responses:
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The “canonical” basis is the natural, atom-based point of
view

We can also use the eigenvector basis for analysis!

In comparing models we don’t just have to use the total
electrostatic solvation free energy

= This, too, is a sort of “interface”

= We will revisit this point shortly



The Electrostatic Optimization Problem:

Assume ligand rigidity, and no charge transfer:

TPWEEPNCE & (9’) - E (&)

‘ e Under our assumptions, this energy function
is convex

receptor )
« The idea: It always costs energy to remove

the water from the receptor volume

e May also want to enforce constraints
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e The optimal charge distribution...
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Simple Case of Optimization: A Single lon
®
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Optimization in Multiple Dimensions
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Regularizing Electrostatic Optimization Problems

O The Hessian matrix can have many (or even most)
of its eigenvalues close to zero
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O Adding a penalty function is easy enough when one
has an explicit Hessian--use eigendecomposition:
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One Approach to Accelerated Optimization

e The unconstrained problem can be solved by nesting Krylov methods:
(ji S Span{_c? _(Lb — Lu)cv sy _(Lb — LU)i_lc}

= Two Krylov solves are required for each application of Ly — Ly,

= Effectively, treat the PDE solver and the optimization method as “black
boxes”

= This approach is known in some communities as a nested analysis and
design method

e Pros:
= Easy to implement

e Cons:

= Performance will depend on finding a good preconditioner
= Unclear how to regularize

= Seems wasteful! Two full electrostatic solves at each outer Krylov step?



Another Natural Approach:
Simultaneous Analysis and Design

Include the state variables (associated with the simulation) as
decision variables
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Pros:
= These methods are well-known (see, e.g., Biros et al.)

Cons:
= Requires an adjoint solve in addition to standard solve

= Seems like “overkill” for the simple relation between the objective
and the decision variables (charges)

= Regularization still problematic



A Novel Method: The Reverse-Schur Approach

e For these PDE constraints, we really only need to
solve multiple systems simultaneously:
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e The unconstrained problem is therefore
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e Pros:
= Easily solved using preconditioned Krylov methods
= No adjoint solve needed

e Cons:
= Regularization is still an issue



Proof-Of-Concept Implementation

o A full-scale solver was implemented using PETSc and
precorrected-FFT
Method scales comparably with

Computed charges agree closely normal PDE-constrained
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Bardhan, Altman, Lee, Tidor, White, 2004



A Quick Reminder About Preconditioners

« Krylov convergence rate depends on the matrix eigenvalues
having some “nice” properties such as eigenvalue clustering:

Bad: eigenvalues not

Good: eigenvalues
clustered. Many g

) : ) tightly clustered.
|tera’F|ons will be Few iterations will be
required! required!

 The goal is to find a “preconditioner” matrix P that clusters the
eigenvalues of A so it will take fewer applications of A to solve

PAx = Pb

e The ideal preconditioner is A": all eigenvalues are mapped to
unity. For a diagonally dominant (or nearly so) matrix A, the
diagonal entries often work well enough.



Regularization in Implicit-Hessian Approaches

O As we have seen, breaking the interface
between optimization and simulation
complicates regularization

O One needs an approximation that gets
the eigenvectors of the desolvation
matrix right, and the eigenvectors at
least ranked correctly

O Use the Krylov preconditioner on the
Green’s theorem formulation to comr
an approximate Hessian:
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Implementation Issue:

Impact of the Integral Formulation

e Surface-charge formulation generates
superior Hessian approximations

Eigenvalues

I e e Green’s thm
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e Regularization can be performed using
“approximate” penalty functions

« Varying the penalty function can be
done approximately:
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Application: Cyclin-Dependent Kinase 2 and Inhibitor

PDE-constrained optimization is almost 200 times faster for this small molecule

Lys33, carboxylated

Phe82
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Anderson, et al. 2003 (not exactly the optimized ligand)

Bardhan et al., (submitted)



Boundary-Element Preconditioners Give a New
Electrostatic Model

« We have used a boundary-element preconditioner P that takes the
diagonal matrix elements:

PAx = PBg
t € PBq, PAPBagq,...

o This is tantamount to assuming that there is no contribution from the

remamder the o rator
A 10* , x : : :
— \ ——BEM
U - ef \ —e—0-step BIBEE
10° - —a— 0—step BIBEE/CFA.

The BIBEE/P approximation estimates the
smallest eigenvalues accurately and
overestimates the large eigenvalues.
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Accuracy Dependence on Charge Distribution

V1 - V2 VO

e The largest eigenvalues are most
accurately predicted by BIBEE/CFA

e Look at V,: the induced
displacement fields are “like” low-
order multipoles

e Small eigenvalues --> rapidly
varying displacement fields, and
these are approximated poorly

0 10 20 30 40 50 60
Atom Number



Comparison to Previous Approaches

e Met-enkephalin has 5 residues and 81 \ Eigenvalue Magnitude
atoms 10
« Widely used in computational studies ;
of peptide dynamics 10
100
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Coulomb-Field Approximation: GB and BIBEE
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BIBEE approx. charge includes
all contributions

5=¢> f
Coulomb-field approximation:

corresponds exactly to
ignoring the integral operator.

BIBEE/CFA is the extension of GB/CFA to multiple charges!
No ad hoc parameters, no heuristic interpolation



BIBEE Is An Accurate, Parameter-Free Model

e Peptide example
Met-enkephalin

Snapshots from MD
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BIBEE/CFA Energy Is a Provable Upper Bound

Feig et al. test set, > 600 proteins

e e BIBEE/CFA
e e BIBEE/P
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e BIBEE/P is an effective lower bound, provable in some but not all

geometries
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Bardhan, Knepley, Anitescu (2009)
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Synthesis: GPU, PetFMM, and BIBEE

Lysozyme: ~2K atom charges, ~15K surface charges
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e 10X-20X faster than full BEM simulation
e Real continuum theory at competitive speed



Vision Statement

e Some day, we will design and build molecular systems this
sophisticated.

FG nucleoporins

™

Outer rings

Alberts et al. Mol. Biol. of the Cell; Alber et al., 2007



Enabling Nanotechnology CAD through
Computational Biophysics

Biologically-focused CAD has immediate applications
1. Helping refine our understanding of biological systems
2. Protein design and engineering in biotechnology

3. Computational drug design efforts
Jiang, Baker et al. (‘08)
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Complex Global Challengs

Environment

Health Energy

Health effacte of nolliition
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Closing:

e Biology and biophysics are really cool, and the
modeling problems are extremely demanding

e Boundary-integral equation approaches are
sometimes very useful alternatives to PDEs

e One of the most important responsibilities that
you have as future leaders in scientific
computing: thinking at a high level about why you
apply your talents to a given problem.



