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Outline for Lectures 

 Biology is awesome.  If you can solve Poisson, 
you can join in the fun! 

•  There’s more than one way to skin a cat.  
Sometimes PDEs can be advantageously 
reframed as integral equations. 

•  Numerical solution of integral equations 
presents different challenges than do PDEs. 

•  A diversity of unusual computational challenges 
will continue to drive biological simulation.  



Deriving a Boundary Integral Equation 
•  Key Concept: Unknowns are on 

boundaries between regions 

Original boundary conditions 

In homogeneous dielectric: 

This can be derived from any of several paths: variational principles,
 Gauss’s law, or Green’s theorem 



Why Bother With Integral Equations? 
Easy problem: 

Exterior problems? 

To infinity 

Problems with mostly
 empty, uninteresting space 

Medium problem: 



The Advantages of PDE Solvers 

1.  More general 
-  nonlinear problems 
-  continuously varying material properties 

2.  Easier to parallelize 
3.  Sometimes easier to write down 



The Capacitance Problem 
•  Charge accumulates on surface of 

conductor when it is raised to a 
potential relative to ground: 

The singularity is integrable! 
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Eval. point 

What about the singularity? 



Similarity Between FEM and BEM 
•  Both weighted residual methods: 

FEM BEM 

1 on panel i 
0 elsewhere 

Enforce  Enforce  

(Galerkin method) Galerkin:  



Differences Between BEM and FEM 
1.  Extra freedom in choosing test functions 

2.  Matrix elements are harder to compute 

Collocation: test = delta functions 

Centroids of
 elements 

Galerkin BEM: Galerkin FEM: 

Smooth integrand:
 Easily computed
 with quadrature! Double integral of a

 singular function!! 



Using Quadrature to Compute Panel Integrals 
•  In 1D, N-point Gauss 

quadrature is exact for 
polynomials up to order 
2N-1 

•  What happens as the 
field point approaches 
the panel?  (Here, the 
middle of the 
hypotenuse) 

•  Using Stroud’s rules 

1 

1 

• http://people.scs.fsu.edu/~burkardt/m_src/stroud/stroud.html z 



Good News: Analytical Laplace Integrals 
•  For a planar element with polynomial charge 

distribution, we can analytically compute 

•  Many people fear BIE/BEM due to panel integrals 
when they don’t have to! 

Hess+Smith, 1964; Newman, 1986 

Potential due to monopole distribution 

Normal field due to monopole 

Potential due to dipole distribution 

+ + 
+ + + + 

- - - - - + 



Green’s Representation Formula 
•  Well-known fact: a function harmonic in a 

region D is completely specified by its 
boundary values 

•  Not so well known: if you know both, the 
potential anywhere in D is given by 

D 

Dirichlet: given  

Neumann: given 

Thus you can solve Laplace by finding
 the other boundary condition! 



Another Formulation 

•  Derivable using Green’s theorem in the interior and 
exterior regions 

•  Unknowns are potential and its normal derivative! 

Region II:	


Region I:	




Fast Solvers For Integral Equations 

•  Consider the physical meaning of  

•  Adopt fast-summation methods like fast 
multipole, etc, with preconditioned Krylov 
methods such as GMRES 

Computing the field at a
 number of surface points
 due to a distribution of
 sources! 



Image: F. A. Cruz 

The Fast-Multipole Method 
•  Optimal (linear-scaling) algorithm for the N-body problem 

•  Multipole expansions approximate source distributions 
•  Local expansions approximate resulting potential fields 

Greengard+Rokhlin (1987) 

Hierarchical spatial
 decomposition
 gives well
-separated clusters
 of charges 

Honig+Nicholls (1995) 

Direct 

Prohibitive! 

FMM 



The FMM in One Dimension 

Greengard+Rokhlin (1987) 

•  “Natural” to combine computation with traversal 



Modifications for BEM 
•  Fast multipole method, etc., are generally built 

around interacting “point” sources: 

•  Different ways to address this: 
  Easy: add a sparse “local correction” matrix 
  Pretty, but difficult: compute multipole coefficients 

directly from basis functions 

Potentials at all points are
 accurately computed… 

BUT as we have seen, the
 representation of source
 distributions as point
 charges is NOT accurate! 



PetFMM: Open-source GPU FMM 
•  Separate tree traversal and computation 

•  Use a data-aware queuing system 
  Can handle dependencies if necessary 
  Non-FMM tasks can also be queued 

http://barbagroup.bu.edu/Barba_group/PetFMM.html 
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PetFMM: Open-source GPU FMM 
•  Queuing improves memory access efficiency 

http://barbagroup.bu.edu/Barba_group/PetFMM.html 

Main memory 

Buffer (temp.) 

A D C B … 

A D 

GPU: Can give 10X speedup on downward pass! 
CPU: Less important but still advantageous 

Bottleneck: small, separated data transfers for M2Ls Queue 
P2M (A) 

M2M (A,C) 
M2M (B,D) 
M2L (E,G) 
M2L (F,G) 

L2L (G,H) 
L2P (K) 

P2P(J,K) 

M2L (…) 
M2L (…) 

M2L (…) 
M2L (…) 

M2L (…) 
M2L (…) 

Solution: Batch all M2Ls associated with a given “target”  

GPU Global
 Memory 

Thread Block 1 

Thread Block 2 

> 20X as many
 M2Ls as other
 operations 

Queue splits tasks to fit
 on thread blocks 



PetFMM Performance: CPU and GPU 

Cross-over for GPU ~ 10X cross-over for CPU  

Direct: TCPU > 200 TGPU 

O(N2) 

O(N) 

FMM: TCPU ~ 20-30 TGPU 



Parallelization: Graph Partitioning 

•  Provably good partitioning by ParMETIS 
•  Partitioning is fast: < 1% of total cost on CPU 
•  Complete re-use of serial code! 

Cij: communication cost 
wi: computation cost 

Cruz, Knepley, Barba arXiv:0905.2637 

Level k chosen
 by user 



PetFMM Scales to Hundreds of GPUs 
•  760-node GPU cluster (T. Hamada, Nagasaki) 

Cost of cluster: ~ US $420,000 

Sustained: 34.6 Tflops 

Performance/price: 80 Mflops/$ 

N=108:  

In 20 sec: 



PetFMM Scaling on Modest GPU Clusters 
•  100 million point charges, uniformly distributed 

•  Near perfect scaling up to 64 GPUs! 
•  Further optimizations are in progress 

Profiling Results 



Pre-corrected FFT Algorithm 

1.  Project charges to grid 
2.  FFT convolution of kernel with grid sources 
3.  Interpolate grid potentials 
4.  “Pre-correct” so that local interactions are accurate 

Phillips and White (1997) 

•  Inspired by particle-particle
 particle-mesh (P3M) 

•  O(N log N) but competitive in speed
 with fast multipole 

•  Algorithm is KERNEL INDEPENDENT 
Laplace, Helmholtz, others… 



Circuit Simulation 

Cadence Design Systems 

Applications of pFFT 

Willis, Peraire, White 

FastAero: coupled
 pFFT/tree code 

Each region has
 frequency
 dependent

 permittivity and
 permeability. 

EEG and MEG modeling 

Proteins 



Summary: 
•  Many problems in potential theory can be 

rewritten from PDE form to BIE form 

•  BIEs tend to be most advantageous for exterior 
problems or problems with highly irregular 
boundaries 

•  Boundary-integral operators map surface source 
distributions to surface potentials and fields 
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