Boundary-Integral Methods in Molecular Science and Engineering Lecture 1: Biology is Awesome.

Jaydeep P. Bardhan Rush University Medical Center

jaydeep_bardhan@rush.edu

Outline for Lectures

- 1. Biology is awesome. If you can solve Poisson, you can join in the fun!
- 2. There's more than one way to skin a cat. Sometimes PDEs can be advantageously reframed as *integral equations*.
- 3. Numerical solution of integral equations presents different challenges than PDEs.
- 4. A diversity of unusual computational challenges will continue to drive biological simulation.

Example 1: Bacterial Chemotaxis

• "Nutrient receptors" cover cell membrane and guide cell towards higher-concentration areas

No food gradient

Mostly "tumbling"

Mostly "gradient following"

Correlation of swimming behaviour and flagellar rotation in *E. coli*

straight swim

 Filament
 Hook

 Filament
 Junction

 Junction
 Rod

 Periplasmic
 Stator

 Space
 MS-ring

 C-ring
 C-ring

 Type III
 secretion system

Nature Reviews | Molecular Cell Biology

Example 2: Nuclear Pore Complex

Example 3: Electrostatics In Wound Healing

Key

●Tight junction ▼Na⁺ channel ▼CI⁻ transporter ♦Na⁺/K⁺ ATPase

FIG. 2. Plate I of the Commentarius (1791 edition). The prepared frog and the electric machine on the left allude to the spark experiment.

tear film epithelium

sub-epithelial tissues

Example 4: Compaction of DNA

Fact: Water Makes Life Possible

600	Sodium io	ns (Na*) ons (CI=)				
500	Potassium	ions (K+)		-	Keratinized	
(200 - 400 -	Selected cl			hannelopathies reviewed in this series		
2						
<u>E</u>		Protein	Gene	Disease	Functional defect	
5 300 I		Na,1.1	SCN1A	Generalized epilepsy with febrile seizures plus (GEFS+)	Hyperexcitability	
ltra		Na _v 1.2	SCN2A	Generalized epilepsy with febrile and afebrile seizures	Hyperexcitability	
200 ·		Nav1.4	SCN4A	Paramyotonia congenita, potassium-aggravated myotonia, hyperkalemic periodic paralysis	Hyperexcitability	
100		Na _v 1.5	SCN5A	LQTS/Brugada syndrome	Heart action potential	
100		KCN01	SUN ID	Autocomal-dominant LOTS with destness	Heart action potential/inper ear Kt secretion	
		KUNGT	Konur	Autocomal-receive LOTS	Heart action potential	
01		KCNH2	KCNH2	LOTS	Heart action potential	
	Seawater Extracellular Intra	Kir2.1	KCNJ2	LOTS with dysmorphic features	Heart action potential	
L.	Freberg	HERG	KCNH2	Congenital and acquired LOTS	Heart action potential and excessive	
	-	inerita.	nonn.	oongointal and columna Earlo	responses to drugs	
	Na	Ankvrin-B	ANKB	LOTS	Heart action potential	
	+ 2+	Ca, 1.2	CACNA2	Timothy syndrome	Multisystem disorders	
	H ^T Ca ⁻¹	Kir6.2	KCNJ11	Persistent hyperinsulinemic hypoglycemia of infancy	Insulin hypersecretion	
				Diabetes mellitus	Insulin hyposecretion	
	+ AIP K' ADP Na ⁺	SUR1	SUR1	Persistent hyperinsulinemic hypoglycemia of infancy	Insulin hyposecretion	
Ną	Ami ACTIVA	SUR2	SUR2	Dilated cardiomyopathy	Metabolic signaling	
	transport	KCNE1	KCNE1	Autosomal-dominant LQTS with deafness	Heart action potential	
	Na ^t			Autosomal-dominant LQTS	Heart action potential	
	$-K$ lon \wedge H^+	KCNE2	KCNE2	LQTS	Heart action potential	
	channels	CFTR	ABCC7	Cystic fibrosis	Epithelial transport defect	
		CIC-1	CLCN1	Myotonia (autosomal-recessive or -dominant)	Defective muscle repolarization	
C		CIC-5	CLCN5	Dent disease	Defective endosome acidification	
•		CIC-7	CLCN7	Osteopetrosis (recessive or dominant)	Defective bone resorption	
		CIC-Kb	CLCNKB	Bartter syndrome type III	Renal salt loss	
		RyR1	RyR1	Central core disease, malignant hyperthermia	Abnormal muscle activity	
	■GIUCOSE Excilitated	RyR2	RyR2	Catecholaminergic polymorphic tachycardia	Exercise-related cardiac arrhythmias	
Va						

Biology's Multiscale Challenges

Modeling and Simulations a state ME are desired range for simulations

Agarwal and Alam (2006); Ramasubramaniam (2007)

Molecular Machines, To Scale

http://mgl.scripps.edu/people/goodsell

A Crucial Consequence of Solvation

• Molecular binding involves sacrificing solute--solvent interactions for solute--solute interactions:

This is only a VERY SIMPLE MODEL for molecular binding!

Stepping Towards a Simpler Model

• To analyze protonation of ionizable groups:

- $HA \xrightarrow{\longrightarrow} H^+ + A^-$
- $\epsilon_{\rm water} \approx 80$ $\epsilon_{\rm protein} \approx 2-8$

Assume spherical protein

Kirkwood, 1934; Tanford, 1957

The Basic Continuum Electrostatic Model

- **Mixed-dielectric Poisson** problem with point charge sources
- Assumes molecule is at *infinite dilution*--more on that later
- $\Delta G = \frac{1}{2} \varphi^T q \quad \bullet \quad \text{Hundreds to thousands of} \\ \text{times faster than MD:}$ seconds to a few hours

This model can be derived rigorously from sophisticated statistical-mechanical theories (see, e.g., Beglov+Roux, 1996)

Biological Fluids are Electrolytes

- Mobile ions in solvent redistribute in response to electric fields
- Assuming that the charge density in the solvent is Boltzmann-like, we obtain the Poisson-Boltzmann equation Ω

 $\boldsymbol{\epsilon}_{_{I}}$

 $\nabla^2 \varphi(r) = -\sum_{i=1}^{n_c} \frac{q_i \delta(r - r_i)}{\epsilon_i}$

This treatment of ionic solutions is very useful, but incredibly oversimplified--more details in Lecture 4!

Π

 $\epsilon_{_{\rm II}}$

Applications of the Continuum Model

- How dielectric boundaries "focus" electric fields
- How ion channel proteins selectively pass one species but not others

Honig+Nicholls (1995)

Continuum Models Capture Important Physics

• Linear response means quadratic energy:

$$\varphi^{\text{REAC}} = Lq \quad \Longrightarrow E = \frac{1}{2}\varphi^{\text{REAC},T}q = \frac{1}{2}q^T Lq$$

Assume ligand rigidity, and no charge transfer:

- The optimal charge distribution...
 - ... balances the
 "desolvation penalty" against ligand-receptor interactions
 - ... is a *guide* for design

$$\Delta G_{\text{var,es}}^0 = \frac{1}{2} q^T \left(L_b - L_u \right) q + c^T q$$

- Under our assumptions, this energy function is convex
- The idea: It always *costs energy* to remove the water from the receptor volume

Solving the PDE Directly is Possible, But...

The idea: Just throw down a finite-difference grid or a finite-element mesh and go to town!

PDE Complications

- 1. Boundary conditions are at infinity
- 2. Point charges must be spread onto the grid
- 3. The dielectric interface is approximated

A Boundary Integral Method

- 1. Boundary conditions handled exactly
- 2. Point charges are treated exactly
- 3. Meshing emphasis can be placed directly on the interface

Differential vs Integral Equations

Differential operator

$$\nabla^2 \varphi(r) = -\rho(r)$$

Unknown Source/forcing

Integral operator

Unknown Source/forcing

Kernel: for our problems, this will be the Green's function of the corresponding PDE

Must specify boundary conditions

BCs automatically included (generally)

Operator is local

Operators are often nonlocal

Kinds of Integral Equations

First kindSecond kind $\int_D u(x)K(x;x')dx = f(x)$ $u(x) + \int_D u(x)K(x;x')dx = f(x)$

Fredholm: domain of integration is fixed (above: D)

Volterra: domain integration varies with the independent variable $x(t) + \int_{a}^{t} K(t, s, x(s))ds = y(t)$ $x(t) = x_{0} + \int_{a}^{t} f(s, x(s))ds$ Closely related to ODEs $\frac{dx}{dt} = f(t, x(t))$ $t \ge a$ $x(a) = x_{0}$

Integral equations can be linear or nonlinear.

Applications of Integral Equations

- Wiener-Hopf integral equations $\lambda x(t) \int_0^\infty k(t-s)x(s)ds = y(t)$
- Radiosity in graphics

$$B(x) = B^e(x) + \rho(x) \int_{M^2} \frac{c\cos(\theta_x)\cos(\theta_y)V(x,y)}{|x-y|^2} B(y)dy$$

• Fluid structure in chemistry $\rho(r) = \rho_0 \exp\left[-\beta U(r) + \int c(r, r') \left(\rho(r') - \rho_0\right) dr'\right]$

Boundary Integral Equations: Fluids

 Stokes: steady/unsteady incompressible, steady linearized compressible

• Wide applications in potential flow

ADXL76 accelerometer

(Analog Devices; picture courtesy Xin Wang and Jacob White)

(Images courtesy David Willis)

BIE Application: Electromagnetics

VLSI interconnect analysis: extracting parasitic capacitances and inductances in complex geometries

(b)

FIGURE 4-7: The complete DRAM model, (a), and with the dielectric interfaces remov

K. Nabors

S1

Х

vias and

larity, (b)

Modified Green's functions allow treatment of planar multi-laver substrates

Hu, Daniel et al (2007)

BIE Applications In Bioscience

Electrode E

Object

- Protein folding
- Molecular transport
- Ion channel selectivity

Next: Turning PDEs into BIEs

- Advantages and disadvantages of each
- The boundary element method (BEM) for solving BIEs numerically

References:

- 1. Gilson, M. http://pharmacy.ucsd.edu/labs/gilson/ce_www1a.pdf
- 2. Sharp, K.A. and Honig, B. 1990. *Electrostatic interactions in macromolecules: Theory and applications*. Annu. Rev. Biophys. Biophys. Chem. 19: 301-332.
- 3. Roux, B. and Simonson T. 1999. *Implicit Solvent Models*. Biophysical Chemistry. 78:1-20.
- 4. Bardhan, J. thesis http://www.rle.mit.edu/cpg/people_alumni.htm
- 5. Hildebrandt, A. thesis http://scidok.sulb.uni-saarland.de/volltexte/2007/1400/

Why Use Integral Equations?

Finite-Difference Method (FDM)

• Force discretized PDE to be satisfied at grid points

- Advantages:
 - 1. Can be applied to quite general problems
 - 2. Efficient, well-established methods exist
- Disadvantages:
 - 1. Grid representation introduces numerous errors
 - 2. Volume discretization results in poor scaling of computer resources for accuracy

Boundary-Element Method (BEM)

• Solve discretized integral-equation formulation

- Advantages:
 - 1. Surface discretization requires one dimension fewer unknowns
- Disadvantages:
 - 1. Discretized systems are dense
 - 2. Finding accurate problem representation is hard
 - 3. Matrix elements can be difficult to compute
 - 4. Complex problem geometries require complicated, problem-specific integral equations