
Easy, Effective, Efficient:
GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klöckner

Courant Institute of Mathematical Sciences
New York University

PASI: The Challenge of Massive Parallelism
Lab · January 7/8, 2011

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



A Monte-Carlo Simulation

In this lab, we will consider a Monte Carlo simulation.

For each sample, do:

1 Generate a vector x of random numbers on the CPU.

2 Transfer x to the GPU.

3 Compute y = Ax + b, for some matrix A and vector b.

4 Transfer y back to the CPU.

When finished, plot histogram of distribution of 2-norms ‖y‖.

Problem

Make this code go as fast as you can.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



http://tiker.net/tmp/pasi-lab.pdf

Overarching Goal

Here are some things to try, in order of increasing difficulty:

1 Insert (event-based) fine-grained timing code.

2 Overlap Host↔GPU transfers with computation.

Turn off profiling, use page-locked memory for actual overlap
(At least on Nvidia)

3 Compute 2-norms on the GPU.

4 Generate random numbers on GPU.

5 Compute Ax for multiple x alongside each other

Perhaps load (parts of) x into local memory.

Do 1, 2 and 3, after that pick one that looks like it’ll be fun.

Now:

Look at the code

Try running it, and

Start on task 1 (add timing).

We will reconvene in 15–20 minutes for
some discussion.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab.pdf


http://tiker.net/tmp/pasi-lab.pdf

Overarching Goal

Here are some things to try, in order of increasing difficulty:

1 Insert (event-based) fine-grained timing code.

2 Overlap Host↔GPU transfers with computation.

Turn off profiling, use page-locked memory for actual overlap
(At least on Nvidia)

3 Compute 2-norms on the GPU.

4 Generate random numbers on GPU.

5 Compute Ax for multiple x alongside each other

Perhaps load (parts of) x into local memory.

Do 1, 2 and 3, after that pick one that looks like it’ll be fun.

Now:

Look at the code

Try running it, and

Start on task 1 (add timing).

We will reconvene in 15–20 minutes for
some discussion.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab.pdf


http://tiker.net/tmp/pasi-lab.pdf

Login Instructions

To get to your work environment, do the following:

1 ssh pasiNN@gpu.progrape.jp

2 wget http://tiker.net/tmp/pasi-lab.tar.gz

3 tar xvfz pasi-lab.tar.gz

4 cd student-dir/monte-carlo

5 python pasi-lab.py

6 wget

http://tiker.net/tmp/pasi-lab-1-instrumented.py

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab.pdf
http://tiker.net/tmp/pasi-lab.tar.gz


http://tiker.net/tmp/pasi-lab.pdf

Questions?

?

Any questions about the code?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab.pdf


http://tiker.net/tmp/pasi-lab.pdf

Making performance guesstimates

With your first look complete, let’s try and answer these questions:

Where is the most time being spent?

Is the matrix-vector code compute- or memory-bound?

Which code change will give the greatest performance win?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab.pdf

