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1 Introduction
e classic N-body problem refers to determining the motion of N particles that interact
via a long-distance force, such as gravitation or electrostatics. A straightforward approach
to obtaining the forces affecting each particle is the evaluation of all pair-wise interac-
tions, resulting inO(N2) computational complexity. is method is only reasonable for
moderate-size systems, or to compute near-field interactions, in combination with a far-
field approximation. In the previous GPU Gems volume (Nguyen, 2007), the accelera-
tion of the all-pairs computation on GPUs was presented for the case of the gravitational
potential of N masses. e natural parallelism available in the all-pairs kernel allowed ex-
cellent performance on the GPU architecture, and the direct kernel of Nyland et al. (2007)
achieved over 200Gigaflops on theGeForce 8800GTX, calculatingmore than 19 billion
interactions per second with N =16,384. In the present contribution, we have addressed
themore involved task of implementing the fast N-body algorithms that are used for pro-
viding a far-field approximation: the O(N log N) treecode (Barnes and Hut, 1986) and
O(N) fast multipole method (Greengard and Rokhlin, 1987).

Before embarking on the presentation of the algorithms and how they are efficiently cast
onto the GPU, let us give some context. e N-body problem of astrophysics was such a
strong motivator to computational science, that it drove creation of a special supercom-
puter in Japan. e history of this massively successful series of machines, called GRAPE,
is summarized in the book by its creators, Makino and Taiji (1998); a popular science
magazine article also gives an overview (Taubes, 1997). e GRAPE machines continued
to break records into the 21st century, but the size of the problems they can tackle using
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theO(N2) all-pairs force evaluation is still limited by the computational complexity. As
stated in Board and Schulten (2000), “complexity trumps hardware.”

Clever algorithms can have a drastic impact on the capabilities of computational science
to solve challenging problems. A case in point is the fast Fourier transform, which has
enabled a variety of successful research areas (e.g., the triumph of spectral methods in the
simulation of turbulence). e first viable fast algorithms for N-body problems (Appel,
1985; Barnes andHut, 1986) combined two ideas: (i) approximating the effect of a group
of distant particles (charges, or masses) by their first few moments, and (ii) rationally di-
viding space in a hierarchical fashion to establish acceptable margins of distance for these
approximations. ese two ideas combined in an algorithmresult in the so-called treecode,
reducing the computational complexity to O(N log N). e critical third idea that was
introduced in the fastmultipolemethod, FMM, is the “local expansion”. ismathematical
representation allows groups of distant particles to interact with groups of targets, thereby
reducing the complexity further to the idealO(N) scaling.

e advantage of fast algorithms was appreciated by the GRAPE team early on; a modified
treecode by Barnes (1990) was first used in combination with the GRAPE hardware by
Makino (1991), and continued in later generations of the machine (Makino and Taiji,
1995; Kawai et al., 1999). e hardware architecture limited the order of the multipole
expansions to only the dipole term, however, which motivated the development of a new
algorithm: the pseudo-particle method (Makino, 1999). us, the interesting history of
the GRAPE project illustrates well the interplay between architecture and algorithms. In
fact, there are many parallels with GPUs, as used for general-purpose scientific computing.
We are reminded here of the statement in Trefethen and Bau (1997):

“the fundamental law of computer science [is]: the faster the computer, the
greater the importance of speed of algorithms.”

Fast algorithms for N-body problems have diverse practical applications. We have men-
tioned astrophysics, the paradigm problem. Of great importance is also the calculation of
electrostatic (Coulomb) interactions of many charged ions in biological molecules. Pro-
teins and their interactions with other molecules constitute a great challenge for com-
putation, and fast algorithms can enable studies at physiologically relevant scales (Board
et al., 1992; Fenley et al., 1996; Sagui andDarden, 1999). Both gravitational and electro-
static problems are mathematically equivalent to solving a Poisson equation for the scalar
potential. A general method for the solution of Poisson problems in integral form is de-
scribed in Greengard and Lee (1996), using the FMM in a very interesting way to patch
local solutions. In Ethridge and Greengard (2001), instead, the FMM is applied directly to
the volume integral representation of the Poisson problem. ese general Poisson solvers
based on FMM open the door to using the algorithm in various situations where complex
geometries are involved, such as fluid dynamics, and even areas such as shape representa-
tion and recognition (Gorelick et al., 2006).
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e FMM for the solution of Helmholtz equations was first developed in Rokhlin (1990),
and is explained in great detail in the book by Gumerov and Duraiswami (2004). e
integral-equation formulation is an essential tool in this context, reducing the volumetric
problem into one of an integral over a surface. e FMM allows fast solution of these prob-
lems by accelerating the computationof densematrix-vector products arising from the dis-
cretization of the integral problem. In fact, the capability of boundary element methods,
BEM, is in this way significantly enhanced; see Nishimura (2002) and Liu and Nishimura
(2006). ese developmentsmake possible the use of the FMM formany physical and engi-
neering problems, such as seismic, magnetic and acoustic scattering (e.g., Fujiwara, 1998;
Donepudi et al., 2003; Darve and Have, 2004; Gumerov and Duraiswami, 2009). e
recent book by Liu (2009) covers applications in elastostatics, Stokes flow, and acoustics;
some notable applications including acoustic fields of building and sound barrier combi-
nations, and also a wind turbine model, were presented in Bapat et al. (2009).

Due to the variety and importance of applications of treecodes and FMM, the combination
of algorithmic acceleration with hardware acceleration could have tremendous impact.
Unfortunately, programming these algorithms efficiently is no piece of cake. In this con-
tribution, we aim to present GPU kernels for treecode and FMM in, as much as possible, an
uncomplicated, accessible way. e interested reader should consult some of the copious
literature on the subject for a deeper understanding of the algorithms themselves. Here,
wewill offer the briefest of summaries. Wewill focus our attention on achieving a GPU im-
plementation that is efficient in its utilization of the architecture, but without applying
the most advanced techniques known in the field (which would complicate the presenta-
tion). ese advanced techniques that we deliberately did not discuss in the present con-
tribution are briefly summarized in section 6, for completeness. Our target audience is the
researcher involved in computational science with an interest in using fast algorithms for
any of the applications mentioned above: astrophysics, molecular dynamics, particle sim-
ulation with non-negligible far fields, acoustics, electromagnetics, and boundary integral
formulations.

2 Fast N-body simulation
As in Nyland et al. (2007), we will use as our model problem the calculation of the grav-
itational potential of N masses. We have the following expressions for the potential and
force, respectively, on a body i:

Φi = mi

N
∑
j=1

mj

rij

Fi = −∇Φi (1)

Here, mi and mj are themasses of bodies i and j, respectively; and rij = xj − xi is the vector
frombody i to body j. Since the distance vector rij is a function of both i and j, an all-pairs
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summation must be performed. is results inO(N2) computational complexity. In the
treecode, the sum for the potential is factored into a near-field and a far-field expansion,
in the following way,

Φi =
∞
∑
n=0

n
∑

m=−n
mir−n−1

i Ym
n (θi, ϕi)

N
∑
j=1

mjρ
n
j Y−m

n (αj, β j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mm
n

. (2)

Calculating the summation for Mm
n in this manner can be interpreted as the clustering of

particles in the far field. In the above expression, Ym
n is the spherical harmonic function,

and (r, θ, ϕ); (ρ, α, β) are the distance vectors from the center of the expansion to bodies
i and j, respectively. e key is to factor the all-pairs interaction into a part that involves
only i, and a part that involves only j, hence allowing the summation of j to be performed
outside of the loop for i. e condition ρ

r < 1, which is required for the series expansion to
converge, prohibits the clustering of particles in the near field. erefore, a tree structure
is used to form a hierarchical list of log N cells that interact with N particles. is results
inO(N log N) computational complexity.

e complexity can be further reduced by considering cluster-to-cluster interactions ¹. In
the FMM, a second series expansion is used for such interactions:

Φi =
∞
∑
n=0

n
∑

m=−n
mirn

i Ym
n (θi, ϕi)

N
∑
j=1

mjρ
−n−1
j Y−m

n (αj, β j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lm
n

, (3)

where the near-field expansion and far-field expansion are reversed. e condition for this
expansion to converge is r

ρ < 1, which means that the clustering of particles using Lm
n is

only valid in the near field. e key here is to translate multipole expansion coefficients
Mm

n of cells in the far field to local expansion coefficients Lm
n of cells in the near field,

resulting in a cell-cell interaction. Due to the hierarchical nature of the tree structure,
each cell needs to only consider the interaction with a constant number of neighboring
cells. Since the number of cells is ofO(N), the FMM has a complexity ofO(N). Also, it is
easy to see that keeping the number of cells proportional to N results in an asymptotically
constant number of particles per cell. is prevents the direct calculation of the near field
from adversely affecting the asymptotic behavior of the algorithm.

e flow of the treecode/FMM calculation is illustrated in Figure 1. is schematic shows
how the information of all source particles is propagated to a particular set of target par-
ticles. e purpose of this figure is to introduce the naming conventions we use for the 7
distinct operations (PP, PM,MM,MP,ML, LL, LP, PP), and to associate these steps to
a graphical representation. ese naming conventions and graphical representations are

¹ e groups or clusters of bodies reside in a sub-division of space for which various authors use the term
“box” or “cell”; e.g., “leaf-cell” as used in Nyland et al. (2007) corresponds to the smallest sub-domain.
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M2M
multipole to multipole
treecode & FMM

M2L
multipole to local
FMM

L2L
local to local
FMM

L2P
local to particle
FMM

P2P
particle to particle
treecode & FMM

M2P
multipole to particle
treecode

source particles
target particles

information moves from red to blue

P2M
particle to multipole
treecode & FMM

Figure 1: Flow of the treecode and FMM calculation.

used later to describe the GPU implementation and to assess its performance. e differ-
ence between the treecode and FMM can be explained concisely using this illustration.

First, the mass/charges of the particles are aggregated into the multipole expansions by
calculating Mm

n at the center of all cells (the PM operation). Next, the multipole expan-
sions are further clustered by translating the center of each expansion to a larger cell and
adding their contributions at that level (MM operation). Once the multipole expansions
at all levels of the tree are obtained, the treecode calculates Eq. (2) to influence the target
particles directly (the MP operation). In contrast, the FMM first transforms the multi-
pole expansions to local expansions (ML operation), and then translates the center of
each expansion to smaller cells (LL operation). Finally, the influence of the far field is
transmitted from the local expansions to the target particles by calculating Eq. (3) in the
LP operation. e influence of the near field is calculated by an all-pairs interaction of
neighboring particles (PP). In the present contribution, all of the above operations are
implemented as GPU kernels.

e schematic in Fig. 1 shows 2D representations of the actual 3D domain sub-divisions.
ere are two levels of cell division shown, one with 16 cells and another with 64 cells.
For a typical calculation with millions of particles, the tree is further divided into 5 or 6
levels (or more). Recall that the number of cells must be kept proportional to the num-
ber of particles for these algorithms to achieve their asymptotic complexity. When there
are many levels in the tree, the MM and LL operations are performed multiple times to
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p Threads

N Bodies

N/p Blocks

p steps between
loads from global memory

Figure 2: Thread block model of the direct evaluation on GPU; as in Nyland et al. (2007).

propagate the information up and down the tree. Also, the ML and MP operations are
calculated at every level. e PM, LP, and PP are only calculated at the finest (leaf ) level
of the tree. Since the calculation load decreases exponentially as we move up the tree, the
calculation at the leaf level dominates the work load. In particular, it is the ML/MP and
PP that consume most of the runtime in an actual program.

3 CUDA Implementation of the Fast N-body Algorithms
In our GPU implementation of the treecode and FMM algorithms we aim for consistency
with the N-body example of Nyland et al. (2007). us, we will utilize their concept of
a computational tile: a grid consisting of p rows and p columns representing a subset of
the pair-wise interactions to be computed. Consider Fig. 2, which is adapted from a sim-
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Figure 3: Thread block model of the particle-particle interaction on GPUs.

ilar diagram used by the previous authors. Each subset of target particles will be handled
by different thread blocks in parallel; the parallel work corresponds to the rows on the
diagram. Each subset of source particles is sequentially handled by all thread blocks in
chunks of p, where p is the number of threads per thread block. As explained in Nyland
et al. (2007): “Tiles are sized to balance parallelism with data reuse. e degree of paral-
lelism (that is, the number of rows)must be sufficiently large so thatmultiple warps can be
interleaved to hide latencies in the evaluation of interactions. e amount of data reuse
grows with the number of columns, and this parameter also governs the size of the trans-
fer of bodies from device memory into shared memory. Finally, the size of the tile also
determines the register space and shared memory required.”

e particle-to-particle (PP) interactions of the treecode and FMM are calculated in a sim-
ilar manner (see Figure 3). e entire domain is decomposed into an oct-tree, and each
cell at the leaf-level is assigned to a thread block. When the number of particles per cell is
larger than the size of the thread block, it is split intomultiple thread blocks. emaindif-
ference with an all-pairs interaction is that each thread block has a different list of source
particles. us, it is necessary for each thread block to have its unique index list for the
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Figure 4: Thread block model of the cell-cell interaction on GPUs

offset of source particles. Only the initial offset (for the cells shown in purple in Figure 3)
is passed to the GPU, and the remaining offsets are determined by increments of p.

In order to ensure coalescedmemory access, we accumulate all the source data into a large
buffer. On theCPU, we performa loopover all interaction lists as ifwewere performing the
actual kernel execution, but instead of calculating the kernel we store the position vector
and mass/charge into one large buffer that is passed on to the GPU. is way, the memory
access within the GPU kernel is always contiguous, because the variables are being stored
in exactly the same order that they will be accessed. e time it takes to copy the data into
the buffer is less than 1% of the entire calculation. Subsequently, the GPU kernel is called
and all the information in the buffer is processed in one call (if it fits in the globalmemory
of the GPU).e buffer is split up into an optimum size if it becomes too large to fit on the
globalmemory. We also create a buffer for the target particles, which contains the position
vectors. Once they are passed to the GPU, the target buffer will be accessed in strides of
p, assigning one particle to each thread. Since the source particle list is different for each
target cell (see Figure 3), having particles from two different cells in one thread block
causes branching of the instruction. We avoid this by padding the target buffer, instead
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of accumulating the particles in the next cell. For example, if there are 2000 particles per
box and the thread block size is 128, the target buffer will be padded with 48 particles so
that it uses 16 thread blocks of size 128 (16 ⋅ 128 = 2048) for that cell. In such a case, 1 out
of the 16 thread blocks will be doing 37.5% excess work, which is an acceptable trade-off
to avoid branching of the instruction within a thread block.

e implementation model used for the PP calculation can be applied to all other steps
in the FMM. An example for the ML translation kernel is shown in Figure 4. Instead of
having particle information in each cell, the cell-cell interactions containmany expansion
coefficients per cell. us, it is natural to assign one target expansion coefficient to each
thread while assigning the cell itself to a thread block. Since the typical number of ex-
pansion coefficients is in the order of 10-100, the padding issue discussed in the previous
paragraph has greater consequences for this case. In the simplest CUDA implementation
that we wish to present in this contribution, we simply reduce the thread block size p to
alleviate the problem. In the case of particle-cell interactions (PM) or cell-particles inter-
actions (MP, LP), the same logic is applied where either the target expansion coefficients
or target particles are assigned to each thread, and the source expansion coefficients or
source particles are read from the source buffer in a coalesced manner and sequentially
processed in strides of p.

4 Improvements of Performance
We consider the performance of the treecode and FMM on GPUs for the samemodel prob-
lem as in Nyland et al. (2007). We would like to point out that the performance metrics
shown here apply for the very basic and simplified versions of these kernels. e pur-
pose of this contribution is to show the reader how easy it is to write CUDA programs for
the treecode and FMM.erefore, many advanced techniques, which would be considered
standard for the expert in these algorithms, are deliberately omitted (see section 6). e
performance is reported to allow the reader to reproduce the results and verify that their
code is performing as expected, and to motivate the discussion about the importance of
fast algorithms; we do not claim that the kernels here are as fast as they could be. e
CPU tests were run on an Intel Core i7 2.67 GHz, and the GPU tests on an NVIDIA 295GTX.
e gcc-4.3 compiler with option -O3 was used to compile the CPU codes and nvcc with
-use_fast_math was used to compile the CUDA codes.

Figure 5 shows the calculation time against the number of bodies for the direct evaluation,
treecode and FMMon aCPU andGPU.edirect calculation is about 300 times faster on the
GPU, compared to the single core CPU. e treecode and FMM are approximately 100 and
30 times faster on theGPU, respectively. For N < 104, the overhead in the tree construction
degrades the performance of the GPU versions. e crossover point between the treecode
and direct evaluation is 3 × 103 on the CPU and 2 × 104 on the GPU. e crossover point
between the FMM and direct evaluation is 3× 103 on the CPU and 4× 104 on the GPU. Note
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Figure 5: Calculation time for the direct method, treecode and FMM on CPU and GPU.

(Normalized L2 norm error of the force is 10−4 for both treecode and FMM).

that both in the case of the treecode and FMM, the number of particles at the leaf-level of
the tree is higher on the GPU, to obtain a well-balanced calculation (i.e., comparable time
should be spent on the near field and on the far field). e crossover point between the
treecode and FMM is 3 × 103 on the CPU, but is unclear on the GPU, for the range of our
tests.

When the treecode and FMM are performed on the CPU, the PP and MP/ML consume
more than 99% of the execution time. When these computationally-intensive parts are
executed on the GPU, the execution times of the other stages are no longer negligible. is
can be seen in the breakdown shown in Figure 6 for the N = 107 case. e contribu-
tion of each stage is stacked on top of one another, so the total height of the bar is the
total execution time. e legend on the le and right correspond to the treecode and
FMM, respectively; “sort” indicates the time it takes to reorder the particles so that they
are contiguous within each cell; “other” is the total of everything else, including memory
allocation, tree construction, interaction list generation, etc. e “sort” and “other” oper-
ations are performed on the CPU. e depth of the tree in this benchmark is the same for
both the treecode and FMM.

As shown in Figure 6, the PP takes the same amount of time for the treecode and FMM.
is is due to the fact that we use the same neighbor list for the treecode and FMM. It
may be worth noting that the standard treecode uses the distance between particles to
determine the clustering threshold (for a given desired accuracy), and has an interaction
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Figure 6: Breakdown of the calculation time for the treecode and FMM on GPUs using

N = 107 particles.

list that is slightly more flexible than that of the FMM. A common measure to determine
the clustering in treecodes is the Barnes-Hut multiple acceptance criteria (MAC) θ > l/d
(Barnes and Hut, 1986), where l is the size of the cell, and d is the distance between the
particle and center of mass of the cell. e present calculation uses the standard FMM

neighbor list shown in Figure 1 for both the FMM and treecode, which results in a MAC of
θ = 2/3.

e PM operation takes longer for the FMM because the order of multipole expansions is
larger than in the treecode, to achieve the same accuracy. e calculation load of MM, LL
and LP are small compared to the MP and ML. e MP has a much larger calculation
load than the ML, but it has more data-parallelism. erefore, the GPU implementation
of these two kernels has a somewhat similar execution time. e high data-parallelism of
the MP is an important factor we must consider when comparing the treecode and FMM

on GPUs.

Figure 7 shows the measured performance on the GPU measured in Gflop/s; this is actual
operations performed in the code, i.e., a sqrt counts 1, etc. Clearly, for N = 104 the
GPU is underutilized, but performance is quite good for the larger values of N. e PP
operation performs very well, achieving in the order of 300 Gflop/s for the larger values
ofN of these tests. eMPperformsmuchbetter than theML, due to thehigher inherent
parallelism. is explains why we see the treecode accelerating better overall, compared
to FMM, on Figure 5.
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5 Detailed description of the GPU kernels
In this section, we give a detailed explanation of the implementation of the treecode/FMM

in CUDA.e code snippets shownhere are extracted directly from the code available from
the distribution released with this article². In particular, we will describe the implemen-
tation of the PP and ML kernels, which take up most of the calculation time.

5.1 The PP kernel implementation
We start with the simplest kernel for the interaction of a single pair of particles, shown in
Listing 1. Equation (1) is calculated here without the mi. In other words, it is the accel-
eration ai = Fi/mi that is being calculated. is part of the code is very similar to that of
the nbody example in the CUDA SDK, which is explained in detail in Nyland et al. (2007).
e only difference is that the present kernel uses the reciprocal square-root function in-
stead of a square-root and division. ere are 19 floating-point operations in this kernel,
counting the 3 additions, 6 subtractions, 9 multiplications, and 1 reciprocal square-root.
e list of variables is as follows:

▸ posTarget is the position vector of the target particles; it has a float3 data type
and is stored in registers.

▸ sharedPosSource is the position vector and the mass of the source particles; it has
a float4 data type and resides in shared memory.

² We will add the correct URL aer final revisions
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Listing 1: PP kernel for a single interaction

1 __device__ float3 p2p_kernel_core(float3 accel,
2 float3 posTarget, float4 sharedPosSource)
3 {
4 float3 dist;
5 dist.x = posTarget.x - sharedPosSource.x;
6 dist.y = posTarget.y - sharedPosSource.y;
7 dist.z = posTarget.z - sharedPosSource.z;
8 float invDist = rsqrtf(dist.x * dist.x + dist.y * dist.y + dist.z * dist.z + eps);
9 float invDistCube = invDist * invDist * invDist;
10 float s = sharedPosSource.w * invDistCube;
11 accel.x -= dist.x * s;
12 accel.y -= dist.y * s;
13 accel.z -= dist.z * s;
14 return accel;
15 }

▸ accel is the acceleration vector of the target particles; it has a float3 data type and
is stored in registers.

▸ the float3 data type is used to store the distance vectors dist.

▸ eps is the soening factor (see Aarseth, 2003).

e function shown in Listing 1 is called from an outer kernel which calculates the pair-
wise interactions of all particles in the PP interaction list. is outer kernel is shown in
Listing 2, and its graphical representation is shown in Figure 3. e input variables are de-
viceOffset, devicePosTarget, devicePosSource, and the output is deviceAccel. e
description of these variables is as follows:

▸ deviceOffset contains the number of interacting cells and the offset of the particle
index for each of these cells;

▸ devicePosTarget contains the position vector of the target particles;

▸ devicePosSource is the position vector of the source particles, and

▸ deviceAccel is the acceleration vector of target particles.

All variables that begin with “device” are stored in the device memory. All variables that
begin with “shared” are stored in shared memory. Everything else is stored in the reg-
isters. Lines 4–10 are declaration of variables; it is possible to reduce register space us-
age by reusing some of these variables, but for pedagogical purposes we have chosen to
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Listing 2: The entire PP kernel

1 __global__ void p2p_kernel(int* deviceOffset, float3* devicePosTarget,
2 float4* devicePosSource, float3* deviceAccel)
3 {
4 int jbase, jsize, jblok, numInteraction;
5 int j, ij, jj, jb;
6 const int threadsPerBlock = threadsPerBlockTypeA;
7 const int offsetStride = 2 * maxP2PInteraction + 1;
8 float3 posTarget;
9 float3 accel = {0.0f, 0.0f, 0.0f};
10 __shared__ float4 sharedPosSource[threadsPerBlock];
11 posTarget = devicePosTarget[blockIdx.x * threadsPerBlock + threadIdx.x];
12 numInteraction = deviceOffset[blockIdx.x * offsetStride];
13 for(ij = 0; ij < numInteraction; ij++){
14 jbase = deviceOffset[blockIdx.x * offsetStride + 2 * ij + 1];
15 jsize = deviceOffset[blockIdx.x * offsetStride + 2 * ij + 2];
16 jblok = (jsize + threadsPerBlock - 1) / threadsPerBlock;
17 for(j = 0; j < jblok-1; j++){
18 jb = jbase + j * threadsPerBlock + threadIdx.x;
19 sharedPosSource[threadIdx.x] = devicePosSource[jb];
20 __syncthreads();
21 #pragma unroll 32
22 for(jj = 0; jj < threadsPerBlock; jj++){
23 accel = p2p_kernel_core(accel, posTarget, sharedPosSource[jj]);
24 }
25 __syncthreads();
26 }
27 jb = jbase + j * threadsPerBlock + threadIdx.x;
28 sharedPosSource[threadIdx.x] = devicePosSource[jb];
29 __syncthreads();
30 for(jj = 0; jj < jsize - (j * threadsPerBlock); jj++){
31 accel = p2p_kernel_core(accel, posTarget, sharedPosSource[jj]);
32 }
33 __syncthreads();
34 }
35 deviceAccel[blockIdx.x * threadsPerBlock + threadIdx.x] = accel;
36 }

declare each variable that has a different functionality. ere are 4 variables that are de-
fined externally. One is the threadsPerBlockTypeA, which is the number of threads per
thread-block for the PP kernel. We use a different number of threads per thread-block,
threadsPerBlockTypeB, for the other kernels that have expansion coefficients as targets.
On line 5, threadsPerBlockTypeA is passed to threadsPerBlock as a constant. Another
external variable is used on line 7, where maxP2PInteraction (the maximum number of
neighbor cells in a PP interaction) is used to calculate offsetStride (the stride of the
data in deviceOffset). e other two externally defined variables are threadIdx and
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blockIdx, which are thread index and thread-block index provided by CUDA.

On line 11, the position vectors are copied from the global memory to the registers. On
line 12, the number of interacting cells is read from the deviceOffset, and on line 13 this
number is used to form a loop that goes through all the interacting cells (27 cells for the
PP interaction). Note that each thread block handles (part of ) only one target cell, and
the interaction list of the neighboring cells is identical for all threads within the thread
block. In other words, blockIdx.x identifies which target cell we are looking at, and ij
identifies which source cell it is interacting with. On line 14, the offset of the particle
index for that source cell is copied from deviceOffset to jbase. On line 15, the number
of particles in the source cell is copied to jsize.

Now we have the information of the target particles and the offset and size of the source
particles that they interact with. At this point, the information of the source particles
still resides in the device memory. is information is copied to the shared memory in
coalesced chunks of size threadsPerBlock. However, the number of particles per cell
is not always a multiple of threadsPerBlock, so the last chunk will contain a remainder
that is different from threadsPerBlock. It is inefficient to have a conditional branching to
detect if the chunk is the last one or not, and it is a waste of storage to pad for each source
cell. erefore, on line 16 the number of chunks jblok is calculated by rounding up jsize
to the nearest multiple of threadsPerBlock. On line 17, a loop is executed for all chunks
except the last one. e last chunk is processed separately on lines 27–33. On line 18, the
index of the source particle on the device memory is calculated by offsetting the thread
index first by the chunk offset j*threadsPerBlock and then by the cell offset jbase. On
line 19, this global index is used to copy the position vector of the source particles from
device memory to shared memory. Subsequently, __syncthreads() is called to ensure
that the copy to sharedmemory has completed on all threads before proceeding. On lines
21–24, a loop is performed for all elements in the current chunk of source particles, where
the p2p_kernel_core is called per pairwise interaction. e #pragma unroll 32 is the
same loop unrolling suggested in Nyland et al. (2007). On line 25, __syncthreads() is
called to keep sharedPosSource from being overwritten for the next chunk before having
been used in the current one. Lines 27–33 are identical to lines 18–25 except for the
loop counter for jj, which is the remainder instead of threadsPerBlock. On line 35,
the acceleration vector in registers is copied back to the device memory by offsetting the
thread index by blockIdx.x * threadsPerBlock.

5.2 The ML kernel implementation
As shown in Equations (2) and (3), the multipole-to-local translation in the FMM is the
translation of themultipole expansion coefficients Mm

n in one location to the local expan-
sion coefficients Lm

n at another. If we relabel the indices of the local expansion matrix to
Lk

j , the ML translation can be written as
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Lk
j =

p−1

∑
n=0

n
∑

m=−n

Mm
n i∣k−m∣−∣k∣−∣m∣Am

n Ak
j Y

m−k
j+n (α, β)

(−1)j Am−k
j+n ρj+n+1

(4)

where i is the imaginary unit, p is the order of the series expansion, Am
n is defined as

Am
n =

1√
(n −m)!(n +m)!

(5)

and Ym
n is the spherical harmonic

Ym
n (α, β) =

¿
ÁÁÀ(n − ∣m∣)!
(n + ∣m∣)!

P∣m∣n (cos α)eimβ. (6)

In order to calculate the spherical harmonics, the value of the associated Legendre poly-
nomials Pm

n must be determined. e associated Legendre polynomials have a recurrence
relation, which require only the information of x = cos α to start. e recurrence relations
and identities used to generate the full associated Legendre polynomial are,

(n −m + 1)Pm
n+1(x) = x(2n + 1)Pm

n (x)− (n +m)Pm
n−1(x), (7)

Pm
m (x) = (−1)m(2m − 1)!(1− x2)m/2, (8)
Pm

m+1 = x(2m + 1)Pm
m (x) (9)

e ML kernel calculates Equation (4) in two stages. First, Ym
n /ρn+1/Am

n is calculated
using Equations (5)–(9). en, Equation (4) is calculated by substituting this result aer
switching the indices n → j + n and m → m − k. us, Mm

n i∣k−m∣−∣k∣−∣m∣Am
n Ak

j /(−1)j is
calculated at the second stage. Furthermore, in the GPU implementation the complex part
eimβ in Equation (6) is multiplied at the end of the second stage so that the values remain
real until then. At the end of the second stage, we simply put the real and complex part
of the Lk

j into two separate variables.

e GPU implementation of the first part for Ym
n /ρn+1/Am

n is shown in Listing 3. As was
the case with Listing 1, this function is called from an outer function that calculates the
entire ML translation for all cells. e inputs are rho, alpha, and sharedFactorial. e
output is sharedYnm. Since, we do not calculate the eimβ part of the spherical harmonic
at this point, beta is not necessary. sharedFactorial contains the values of the factorials
for a given index, i.e. sharedFactorial[n]= n!. Also, it is Ym

n /ρn+1/Am
n that is stored in

sharedYnm and notYm
n itself. Basically, Equation (7) is calculated on line 24, Equation (8)

is calculated on line 27, andEquation (9) is calculated on line 16. p, p1, and p2 correspond
to Pm

n+1, Pm
n , and Pm

n−1, respectively. However, p is used in lines 14 and 21 before it is
updated on lines 16 and 24, so it represents Pm

n at the time of usage. is Pm
n is used to

calculate Ym
n /ρn+1/Am

n on lines 14 and 21, although the correspondence to the equation
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Listing 3: Calculation of the spherical harmonic for the ML kernel

1 __device__ void m2l_calculate_ynm(float* sharedYnm,
2 float rho, float alpha, float* sharedFactorial)
3 {
4 int i, m, n;
5 float x, s, fact, pn, p, p1, p2, rhom, rhon;
6 x = cosf(alpha);
7 s = sqrt(1 - x * x);
8 fact = 1;
9 pn = 1;
10 rhom = 1.0 / rho;
11 for(m = 0; m < 2 * numExpansions; m++){
12 p = pn;
13 i = m * (m + 1) /2 + m;
14 sharedYnm[i] = rhom * p;
15 p1 = p;
16 p = x * (2 * m + 1) * p;
17 rhom /= rho;
18 rhon = rhom;
19 for(n = m + 1; n < 2 * numExpansions; n++){
20 i = n * (n + 1) / 2 + m;
21 sharedYnm[i] = rhon * p * sharedFactorial[n - m];
22 p2 = p1;
23 p1 = p;
24 p = (x * (2 * n + 1) * p1 - (n + m) * p2) / (n - m + 1);
25 rhon /= rho;
26 }
27 pn = -pn * fact * s;
28 fact = fact + 2;
29 }
30 }

is not obvious at first hand. e connection to the equation will become clear when we
do the following transformation,

Ym
n

ρn+1Am
n
=
√
(n −m)!/(n +m)!Pm

n eimβ

ρn+1/
√
(n −m)!(n +m)!

= (n −m)!Pm
n

ρn+1 eimβ (10)

Asmentioned earlier, we do not calculate the eimβ at this point so sharedYnm is symmetric
with respect to the sign of m. erefore, the present loop for the recurrence relation is
performed for only m ≥ 0 and the absolute sign for m in Equation (6) disappears. We
can also save shared memory consumption by storing only the m ≥ 0 half of the spherical
harmonic in sharedYnm.

e second stage of the ML kernel is shown in Listing 4. e inputs are j, beta, shared-
Factorial, sharedYnm, and sharedMnmSource. e output is LnmTarget. In this second
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stage of the ML, the remaining parts of Equation (4) are calculated to obtain Lk
j . Each

thread handles a different coefficient in Lk
j . In order to do this, we must associate the

threadIdx.x to a pair of j and k. In the outer function, which will be shown later, the
index j corresponding to threadIdx.x is calculated and passed to the present function.
Lines 9–11, determine the index k from the input j and threadIdx.x.

Wewill remind the reader again that this part of theML kernel calculates Mm
n i∣k−m∣−∣k∣−∣m∣

Am
n Ak

j /(−1)j. is results in a quadruple loop over the indices j, k, m, and n. However, in
the GPU implementation the first two indices are thread-parallelized, only leaving m and
n as sequential loops starting from lines 13, 14, and 28. Lines 14–27 are for negative m,
while lines 28–42 are for positive m. Ak

j /(−1)j is calculated on line 12. We define a pre-
processed function “#define ODDEVEN(n) ((n & 1 == 1) ? -1 : 1)”, which calculates
(−1)n without using a power function. Am

n is calculated on lines 19 and 33. i∣k−m∣−∣k∣−∣m∣ is
calculated on line 34 for the m ≥ 0 case, and is always 1 for m < 0. Since ∣k −m∣− ∣k∣− ∣m∣
is always an even number, it is possible to calculate i∣k−m∣−∣k∣−∣m∣ as −1(∣k−m∣−∣k∣−∣m∣)/2 and
use the ODDEVEN function defined previously. en, anm, ajk, and sharedYnm are multi-
plied to this result. e complex part eimβ that was omitted in the first stage is calculated
on lines 17–18 and 31–32 using the index m − k instead of m; ere is the real part and
eim is the imaginary part. CnmReal and CnmImag in lines 21–22 and 36–37 are the real
and imaginary parts of the product of all the terms described above. Finally, these val-
ues are multiplied to Mm

n in lines 23–26 and 38–41, where sharedMnmSource[2*i+0] is
the real part and sharedMnmSource[2*i+1] is the imaginary part. We use the relation
M−m

n = Mm
n to reduce the storage of sharedMnmSource. erefore, the imaginary part has

opposite signs for the m ≥ 0 case and m < 0 case. e real part of Lk
j is accumulated in

LnmTarget[0], while the imaginary part is accumulated in LnmTarget[1].

e functions in Listings 3 and 4 are called from an outer function shown in Listing 5.
is function is similar to the one shown in Listing 2. e inputs are deviceOffset and
deviceMnmSource. e output is deviceLnmTarget. e definitions are:

▸ deviceOffset contains the number of interacting cells, the offset of the particle
index for each of these cells, and the 3D index of the relative positioning of the
cells.

▸ threadsPerBlockTypeB and maxM2LInteraction are defined externally.

▸ maxM2LInteraction is the maximum size of the interaction list for the ML, which
is 189 for the present kernels.

▸ offsetStride, calculated on line 6, is the stride of the data in deviceOffset.

On line 8, the size of the cell is read from deviceConstant[0], which resides in constant
memory. On line 10, LnmTarget is initialized. Each thread handles a different coeffi-
cient in Lk

j . In order to do this, we must associate the threadIdx.x to a pair of j and
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Listing 4: Calculation of Lm
n in the ML kernel

1 __device__ void m2l_kernel_core(float* LnmTarget,
2 int j, float beta,
3 float* sharedFactorial,
4 float* sharedYnm,
5 float* sharedMnmSource)
6 {
7 int i, k, m, n, jnkm;
8 float ere, eim, anm, ajk, cnm, CnmReal, CnmImag;
9 k = 0;
10 for(i = 0; i <= j; i++) k += i;
11 k = threadIdx.x - k;
12 // using pre-processed function ODDEVEN
13 ajk = ODDEVEN(j) * rsqrtf(sharedFactorial[j - k] * sharedFactorial[j + k]);
14 for(n = 0; n < numExpansions; n++){
15 for(m = -n; m < 0; m++){
16 i = n * (n + 1) / 2 - m;
17 jnkm = (j + n) * (j + n + 1) / 2 - m + k;
18 ere = cosf((m - k) * beta);
19 eim = sinf((m - k) * beta);
20 anm = rsqrtf(sharedFactorial[n - m] * sharedFactorial[n + m]);
21 cnm = anm * ajk * sharedYnm[jnkm];
22 CnmReal = cnm * ere;
23 CnmImag = cnm * eim;
24 LnmTarget[0] += sharedMnmSource[2 * i + 0] * CnmReal;
25 LnmTarget[0] += sharedMnmSource[2 * i + 1] * CnmImag;
26 LnmTarget[1] += sharedMnmSource[2 * i + 0] * CnmImag;
27 LnmTarget[1] -= sharedMnmSource[2 * i + 1] * CnmReal;
28 }
29 for(m = 0; m <= n; m++){
30 i = n * (n + 1) / 2 + m;
31 jnkm = (j + n) * (j + n + 1) / 2 + abs(m - k);
32 ere = cosf((m - k) * beta);
33 eim = sinf((m - k) * beta);
34 anm = rsqrtf(sharedFactorial[n - m] * sharedFactorial[n + m]);
35 cnm = ODDEVEN((abs(k - m) - k - m) / 2);
36 cnm *= anm * ajk * sharedYnm[jnkm];
37 CnmReal = cnm * ere;
38 CnmImag = cnm * eim;
39 LnmTarget[0] += sharedMnmSource[2 * i + 0] * CnmReal;
40 LnmTarget[0] -= sharedMnmSource[2 * i + 1] * CnmImag;
41 LnmTarget[1] += sharedMnmSource[2 * i + 0] * CnmImag;
42 LnmTarget[1] += sharedMnmSource[2 * i + 1] * CnmReal;
43 }
44 }
45 }
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k. sharedJ returns the index j when given the threadIdx.x as input. It is declared on
line 11, initialized on lines 16–18, the values are calculated on lines 19–24, and then
passed to m2l_kernel_core() on line 40. sharedMnmSource is the copy of deviceMnm-
Source in shared memory. It is declared on line 12 and the values are copied on lines
35–36 before it is passed to m2l_kernel_core() on line 41. sharedYnm contains the real
spherical harmonics. It is declared on line 13 and its values are calculated in the function
m2l_calculate_ynm on line 39 before they are passed to m2l_kernel_core on line 41.
sharedFactorial contains the factorial for the given index and is declared on line 14 and
its values are calculated on lines 25–29 before they are passed to m2l_kernel_core on line
41. On line 15, the number of interacting cells is read from deviceOffset and its value
numInteraction is used for the loop on line 30. e offset of particles are read from de-
viceOffset on line 31, and the relative distance of the source and target cell are calculated
on lines 32–34. On line 38, this distance is transformed into spherical coordinates using
an externally defined function cart2sph. e two functions shown in Listings 3 and 4 are
called on lines 39–41. Finally, the results in LnmTarget are copied to deviceLnmTarget
on line 45.

Listings 1–5 are the core components of the present GPU implementation. We hope that
the other parts of the open-source code that we provide along with this article are under-
standable to the reader without explanation.

6 Overview of Advanced Techniques
ere are various techniques that canbeused to enhance theperformanceof the treecode/FMM.
e FMM presented in this article uses the standard translation operator for translating
multipole/local expansions. As the order of expansion p increases, the calculation in-
creases as O(p4) for this method. ere are alternatives that can bring the complexity
down to O(p3) (Cheng et al., 1999) or even O(p2) (Gumerov and Duraiswami, 2004).
In the code that we have released along with this article, we have included an implemen-
tation of the O(p3) translation kernel by Cheng et al. (1999) as an extension. We have
omitted the explanations in this text, however, and consider the advanced reader able to
self-learn the techniques from the literature to understand the code.

Some other techniques that can improve the performance are the optimization of the or-
der of expansion for each interaction (Daschel, 2010), the use of a more efficient ML
interaction stencil (Gumerov and Duraiswami, 2008), and the use of a treecode/FMM hy-
brid, as suggested in Cheng et al. (1999). It is needless to mention that the parallelization
of the code formulti-GPU calculations (Hamada et al., 2009; Lashuk et al., 2009) is an im-
portant extension to the treecode/FMM on GPUs. Again, this is an advanced topic beyond
the scope of this contribution.

When reporting theGPU/CPU speedup, it is bad form to compare the results against anun-
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Listing 5: The entire ML kernel

1 __global__ void m2l_kernel(int* deviceOffset, float* deviceLnmTarget,
2 float* deviceMnmSource)
3 {
4 int i, j, k, ij, ib, numInteraction, jbase;
5 const int threadsPerBlock = threadsPerBlockTypeB;
6 const int offsetStride = 4*maxM2LInteraction+1;
7 float3 dist;
8 float boxSize = deviceConstant[0];
9 float rho, alpha, beta, fact;
10 float LnmTarget[2] = {0.0f, 0.0f};
11 __shared__ int sharedJ[threadsPerBlock];
12 __shared__ float sharedMnmSource[2 * threadsPerBlock];
13 __shared__ float sharedYnm[numCoefficients];
14 __shared__ float sharedFactorial[2 * numExpansions];
15 numInteraction = deviceOffset[blockIdx.x * offsetStride];
16 for(i = 0; i < threadsPerBlock; i++){
17 sharedJ[i] = 0;
18 }
19 for(j = 0; j < numExpansions; j++){
20 for(k = 0; k <= j; k++){
21 i = j * (j + 1) / 2 + k;
22 sharedJ[i] = j;
23 }
24 }
25 fact = 1.0;
26 for(i = 0; i < 2 * numExpansions; i++) {
27 sharedFactorial[i] = fact;
28 fact = fact * (i + 1);
29 }
30 for(ij = 0; ij < numInteraction; ij++){
31 jbase = deviceOffset[blockIdx.x * offsetStride + 4 * ij + 1];
32 dist.x = deviceOffset[blockIdx.x * offsetStride + 4 * ij + 2] * boxSize;
33 dist.y = deviceOffset[blockIdx.x * offsetStride + 4 * ij + 3] * boxSize;
34 dist.z = deviceOffset[blockIdx.x * offsetStride + 4 * ij + 4] * boxSize;
35 for(i=0;i<2;i++) sharedMnmSource[2 * threadIdx.x + i] =
36 deviceMnmSource[2 * (jbase + threadIdx.x) + i];
37 __syncthreads();
38 cart2sph(rho, alpha, beta, dist.x, dist.y, dist.z);
39 m2l_calculate_ynm(sharedYnm, rho, alpha, sharedFactorial);
40 m2l_kernel_core(LnmTarget, sharedJ[threadIdx.x], beta,
41 sharedFactorial, sharedYnm, sharedMnmSource);
42 __syncthreads();
43 }
44 ib = blockIdx.x * threadsPerBlock + threadIdx.x;
45 for(i=0;i<2;i++) deviceLnmTarget[2 * ib + i] = LnmTarget[i];
46 }
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optimized serial CPU implementation. Sadly, this is oen done, which negatively affects
the credibility of results in the field. For this contribution, we have used a reasonable
serial code in C, but it is certainly not as fast as it could be. For example, it is possible
to achieve over an order of magnitude performance increase on the CPU by doing single-
precision calculations using SSE instructions with inline assembly code(Nitadori et al., in
preparation). For those that are interested in the comparison between a highly tuned CPU

code and highly tuned GPU code, we provide a highly tuned CPU implementation of the
treecode/FMM in the code package that we release with this article.

7 Conclusions
is contribution is a follow-on from the previous GPU Gems 3, Chapter 31 (Nyland
et al., 2007), where the acceleration of the all-pairs computation on GPUs was presented
for the case of the gravitational potential of N masses. We encourage the reader to consult
that previous contribution, as it will complement the presentation we have given³.

As can be seen in the results presented here, the cross-over point where fast N-body al-
gorithms become advantageous over direct, all-pairs calculations is in the order of 103 for
the CPU and in the order of 104 for the GPU. Hence, utilizing the GPU architecture moves
the cross-over point upwards by one order of magnitude, but this size of problem is much
smaller than many applications require. If the application of interest involves, say, mil-
lions of interacting bodies, the advantage of fast algorithms is clear, in both CPU and GPU

hardware. With our basic kernels, about 15× speedup is obtained from the fast algorithm
on the GPU for a million particles. For N = 107, the fast algorithms provide 150× speedup
over direct methods on the GPU. However, if the problem at hand requires small systems,
smaller than 104, say, one would be justified to settle for the all-pairs, direct calculation.

emain conclusion that we would like the reader to draw from this contribution is that
constructing fast N-body algorithms on the GPU is far from a formidable task. Here, we
have shown basic kernels that achieve substantial speedup over direct evaluation in less
than 200 lines of CUDA code. Expert-level implementations will, of course, bemuchmore
involved, and would achieve more performance. But a basic implementation like the one
shown here is definitely worthwhile.
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