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Plan
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Part I : Discussion of the Riemann solution for one-
dimensional linear and nonlinear shallow water wave 
equations

Part II : Approximate Riemann solvers in GeoClaw;  
discussion of accuracy, and extensions to higher 
dimensions; f-wave approach to well-balancing.

Part III : Adaptive mesh refinement (AMR).
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Shallow water wave equations
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The shallow water wave equations,  given by

is an example of a system of equations written in conservative 
form.   More generally, we can write PDEs in conservative form 
as 

qt + f(q)x = 0

These are typically derived from conservation laws for mass, 
momentum, energy,  species, and so on.
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GeoClaw
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• Based on solving the conservative form of the shallow 
water wave equations using a finite volume method. 

• At the heart of many finite volume methods is a Riemann 
solver which is used to compute numerical fluxes. 

• In GeoClaw, these are stored in files like rpn2_geo.f 
and  rpt2_geo.f
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Finite volume method
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Ci = [xi�1/2, xi+1/2]

How does the average evolve?                                     

d

dt

�

Ci

q(x, t) dx = �
�

Ci

d

dx
f(q(x, t)) dx

= f(q(xi�1/2, t))� f(q(xi+1/2, t))

Define cell averages over the interval 

Qn
i =

1
�x

�

Ci

q(x, tn) dx

Assume a conservation law of the form 

qt + f(q)x = 0
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Finite volume method
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Evolution of the cell average value : 

⇤

Ci

q(x, tn+1) dx =
⇤

Ci

q(x, tn) dx

+
⇤ tn+1

tn

�
f(q(xi�1/2, t))� f(q(xi+1/2, t))

⇥
dt

d

dt

Z

Ci

q(x, t) dx = f(q(xi�1/2, t))� f(q(xi+1/2, t))

Integrate in time
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Finite volume method
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Qn+1
i = Qn

i �
�t

�x

�
Fn

i+1/2 � Fn
i�1/2

⇥

Using numerical fluxes, we use the update formula :  

Written as 

this form resembles the conservation law : 
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Numerical fluxes

PASI : Tsunami Workshop Jan 2-14 2013

Fn
i�1/2 = F(Qn

i , Qn
i�1)

Qi

Qi�1

xi�1/2

Qi+1

Qi�2

�� �

We want to approximate the numerical flux.  

For an explicit time stepping scheme, we try to find formulas 
for the flux of the form 

F

n
i�1/2 ⇡ 1

�t

Z tn+1

tn

f(q(xi�1/2, t)) dt
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q
t

+ f(q)
x

= 0

1d Riemann problem
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At each cell interface, solve the hyperbolic problem with 
special initial data, i.e. 

subject to

q(x, 0) =
⇢

Q

i�1 x < x

i�1/2

Q

i

x > x

x�1/2

xi�1/2

t = 0
Qi�1

Qi
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1d Riemann problem
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xi�1/2

t = 0

t > 0

xi�1/2

q⇤

Qi

Qi�1

Qi�1

Qi

Solve the conservation 
law with piecewise 
constant initial data
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Fi�1/2 = f(q⇤)

1d Riemann problem
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Numerical flux at cell interface is then approximated by

This is the classical Godunov approach for solving hyperbolic 
conservation laws.

t > 0

xi�1/2

q⇤

Qi

Qi�1

• Resolves shocks and rarefactions

Thursday, January 10, 13



d

dt

Z
xb

xa

q(x, t) dx = �
Z

xb

xa

(f(q))
x

dx = f(q(x
a

, t))� f(q(x
b

, t))

Conservation?
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Integrating over entire domain, we have 

Discrete case 

MX

i=1

Q

n+1
i =

MX

i=1

Q

n
i �

�t

�x

MX

i=1

�
Fi+1/2 � Fi�1/2

�

=
MX

i=1

Q

n
i �

�t

�x

�
FM+1/2 � F1/2

�

Quantities are conserved up to fluxes at domain boundaries.
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Scalar advection
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It is easy to verify that 

Consider the constant initial value problem

solves the initial value problem.

q
t

+ ūq
x

= 0
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Scalar advection
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We can describe the problem in terms of how the solution
behaves along curves in the x-t plane. 

We might look for curves                       along which the 
solution is constant or 

Then we would get
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Characteristic curves
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But this is true only if

or

Solution is constant along characteristic curves.  For           ,  
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or 

Characteristic curves
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The solution can be traced back along characteristics.  That is,
           can be found by determining the       from which the
solution propagated.  Solve 
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Scalar advection
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Consider the scalar advection equation : 

The solution travels along characteristic rays in the (x,t) plane
given by                           .  For u < 0 : 

t = 0�

t = 1�

q
t

+ ūq
x

= 0
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Riemann problem for scalar advection
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subject to particular initial conditions

q(x, 0) =
�

q� x < 0
qr x > 0

q
t

+ ūq
x

= 0

t

q� qr

Solution : 
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Scalar Riemann Problem
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subject to initial conditions

q(x, 0) =
�

q� x < 0
qr x > 0

q
t

+ ūq
x

= 0

t

q� qr

Solution : 

Solution to the 
Riemann problem

x/t = ū
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Scalar constant coefficient advection
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t = 0�

t = 1�

Discontinuity propagates at speed     and has strength 
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A = R⇤R�1

R = [r1, r2, . . . rm] ⇤ = diag(�1, �2, . . . �m)

Solving constant coefficient linear systems
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We assume that  A has a complete set of eigenvectors and real 
eigenvalues and so can be written as 

q
t

+Aq
x

= 0, A 2 Rm⇥m

Examples : Linearized shallow water wave equations, 
constant coefficient acoustics, ...
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Solving a constant coefficient system
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Characteristic equations decouple into m scalar equations : 

Define characteristic variables                as

�(x, t) = R�1 q(x, t), �(x, 0) = R�1 q(x, 0)

� � Rm

⇥p(x, t) = ⇥p(x� �pt, 0)

Solution to characteristic equations are given by

⇥p
t + �p⇥p

x = 0, p = 1, 2, . . . ,m

Assume that A is 
diagonalizable

q
t

+Aq
x

= 0 ! q
t

+R⇤R�1 q
x

= 0, A 2 Rm⇥m
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t

x

Solving a constant coefficient systems
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q(x, t) = R ⇥(x, t) =
m�

p=1

⇥p(x, t) rp

=
m�

p=1

⇥p(x� �pt, 0) rp

qt + A qx = 0 � ⇥p
t + �p⇥p

x = 0

q(x, t)

⇥2(x� �2t, 0) ⇥1(x� �1t, 0)⇥3(x� �3t, 0)

Solution for general initial conditions            : q(x, 0)

`

p
q(x� �

p
t, 0) = !

p(x� �

p
t, 0)
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Riemann problem for systems
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q(x, 0) =
�

q� x < 0
qr x > 0

with piecewise constant initial data : 

which can be decomposed as : 

q` =
3X

p=1

!p
` r

p qr =
3X

p=1

!p
r r

p

Assume a constant coefficient system : 
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Riemann problem for systems
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q� =
m�

p=1

�p
� rp qr =

m�

p=1

�p
r rp

t > 0

t = 0
q� qrx1

q(x1, t) = �1
� r1 + �2

� r2 + �3
� r3

Piecewise constant initial data

= q`

x = 0
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Riemann problem for systems
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t > 0

t = 0

q(x2, t) = �1
r r1 + �2

� r2 + �3
� r3

qt + A qx = 0

q� =
m�

p=1

�p
� rp qr =

m�

p=1

�p
r rp

q� qrx2
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Riemann problem for systems
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t > 0

t = 0

q(x3, t) = �1
r r1 + �2

r r2 + �3
� r3

qt + A qx = 0

q� =
m�

p=1

�p
� rp qr =

m�

p=1

�p
r rp

q� qrx3

Thursday, January 10, 13



= qr

Riemann problem for systems
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t > 0

t = 0

qt + A qx = 0

q� =
m�

p=1

�p
� rp qr =

m�

p=1

�p
r rp

q� qr x4

q(x4, t) = �1
r r1 + �2

r r2 + �3
r r3
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Riemann problem for systems
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qt + A qx = 0

q(x1, t) = �1
� r1 + �2

� r2 + �3
� r3

q(x2, t) = �1
r r1 + �2

� r2 + �3
� r3

q(x3, t) = �1
r r1 + �2

r r2 + �3
� r3

q(x4, t) = �1
r r1 + �2

r r2 + �3
r r3

t > 0

t = 0
q� qr
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Riemann problem for systems
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qt + A qx = 0

} ???qp(x, t)

t > 0

t = 0
q� qr

Thursday, January 10, 13



Riemann problem for systems
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qt + A qx = 0

q(x1, t) = �1
� r1 + �2

� r2 + �3
� r3

q(x2, t) = �1
r r1 + �2

� r2 + �3
� r3

q(x2, t)� q(x1, t) = (�1
r � �1

� ) r1

}
qp(x, t)
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Riemann problem for systems
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qt + A qx = 0

q(x2, t) = �1
r r1 + �2

� r2 + �3
� r3

q(x3, t) = �1
r r1 + �2

r r2 + �3
� r3

q(x3, t)� q(x2, t) = (�2
r � �2

� ) r2

}
qp(x, t)
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Riemann problem for systems
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qt + A qx = 0

q(x3, t) = �1
r r1 + �2

r r2 + �3
� r3

q(x4, t) = �1
r r1 + �2

r r2 + �3
r r3

q(x4, t)� q(x3, t) = (�3
r � �3

� ) r3

}qp(x, t)
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Riemann problem for systems
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qt + A qx = 0

qp(x, t)

q(x4, t)� q(x1, t) =
3�

p=1

(⇥p
r � ⇥p

� ) rp

⇥
3�

p=1

�p rp

{
R � = qr � q�

{
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Riemann problem for systems
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Solving the Riemann problem for linear problem
qt + A qx = 0

(1) Compute eigenvalues and eigenvectors of matrix A

(2) Compute characteristic variables by solving

(3) Use eigenvalues or “speeds” to determine piecewise 
constant solution

R � = qr � q�

q(x, t) = q⇧ +
�

p : �p<x/t

�p rp

= qr �
�

p : �p>x/t

�p rp
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q
t

+ f(q)
x

= 0, f(q) = Aq

Numerical solution
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Qn+1
i = Qn

i �
�t

�x

�
Fn

i+1/2 � Fn
i�1/2

⇥

q⇤ = Qi�1 + ↵1r1 = Qi � ↵3r3 � ↵2r2

xi�1/2

Qi�1

Qi

Decompose jump in Q at the interface into waves : 

�2 > 0
wave          travels at 
speed 

↵2r2

q⇤

Fi�1/2 ⇡ 1

�t

Z t+�t

t
f(q(xi�1/2, t))dt = Aq

⇤
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Example  : Linearized shallow water
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Eigenvalues : 

Eigenvectors : 

Characteristic information : 

q
t

+Aq
x

= 0, A =

✓
U H
g U

◆
, q =

✓
h
u

◆

�1 = U �
p

gH, �2 = U +
p

gH

r1 =

✓
�
p
gH
g

◆
, r2 =

✓ p
gH
g

◆
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Example : Linearized shallow water
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Characteristic variables : R� = qr � q�

Define : 

✓
↵1

↵2

◆
=

1

2gH

✓
�
p
gH Hp
gH H

◆✓
�1
�2

◆

q(x, t) =

8
>>>>>><

>>>>>>:

q` =

✓
h`

u`

◆
x/t < U �

p
gH

q` + ↵1r1 U �
p
gH < x/t < U +

p
gH

qr =

✓
hr

u`

◆
x/t > U +

p
gH

� = qr � q` !
�1 = hr � h`

�2 = ur � u`
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Linear shallow water wave equations
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Initial height and velocity

W2 ! W1
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Extending to nonlinear systems
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q` qr

t

q⇤

q⇤ � q` = ↵1r1

A(q⇤ � q`) = ↵1Ar1

A(q⇤ � q`) = �1(↵1r)

A(q⇤ � q`) = �1(q⇤ � q`)

f(q) = Aq ! f(q⇤)� f(q`) = �1(q⇤ � q`)

Rankine-Hugoniot 
condition for the constant 
coefficent linear system
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Rankine-Hugoniot conditions
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A(q⇤ � q`) = �1(q⇤ � q`)

A(qr � q⇤) = �2(qr � q⇤)

For a 2x2 linear system, we have 

For                 ,  we can write this as : f(q) = Aq

The left and right states     and     as “connected” by an 
intermediate state   . 

q` qr
q⇤
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Constant coefficient Riemann problem
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q` qrt

q⇤

?

We could have asked “Find an intermediate state     such 
that 

q⇤

For                  ,  this leads to the eigenvalue problem that 
we solved.

f(q) = Aq

”
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Extending to nonlinear systems
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q` qr

t

Reminder :  Solutions to the constant coefficient linear 
system travel along characteristic curves                :

Solution remains constant along straight lines

          must be an eigenvalue of    , i.e. 
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Nonlinear shallow water wave equations
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q =

✓
h
hu

◆
, f(q) =

✓
hu

hu2 + 1
2gh

2

◆

f 0(q) =

✓
0 1

�u2 + gh 2u

◆

q
t

+ f(q)
x

= 0

where

for smooth solutions, this can also be written as 

where

is the flux Jacobian matrix.

Show!
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What changes in the nonlinear case?

PASI : Tsunami Workshop Jan 2-14 2013

We can still ask “Are there characteristic curves on which 
the solution remains constant?

q
t

+ f(q)
x

= 0

For smooth solutions, we have

where                          is the flux Jacobian matrix.

Characteristics are governed by eigenvalues of the flux Jacobian
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Shallow water wave equations
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q =

✓
h
hu

◆
, f(q) =

✓
hu

hu2 + 1
2gh

2

◆

f 0(q) =

✓
0 1

�u2 + gh 2u

◆

�1 = u�
p

gh, �2 = u+
p

gh

Eigenvalues and eigenvectors depend on q!

Eigenvalues and eigenvectors of the flux Jacobian          :  

r1 =

✓
1

u�
p
gh

◆
, r2 =

✓
1

u+
p
gh

◆
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What can happen?
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q` qr

t

?

2-characteristics

q` qr

?

1-characteristics

Thursday, January 10, 13



Riemann solution for the SWE
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Using the conservation law, we can write

Assume that left and right 
states are constant in this 
infinitesimal box

Show!

Consider the case where                           :  
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Riemann problem for SWE
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This leads to 

This is the required jump condition across shocks.    More 
generally we can write this condition as

where    is the shock speed.  

q` qr

Rankine Hugoniot 
jump condition
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Rarefaction waves
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The denominator is 
never 0!

Solve resulting ODE to get         in the centered rarefaction. 

Consider the case where                        :

Let          be the slope of the characteristic.  We need to find   
for                          .   Recall that                             .  Then

q` qr

slope = 
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Centered rarefaction
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q` qr

Solve the system of two ODEs (for SWE) : 

subject to

Use Riemann invariants to solve for unknown constants.
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Solving the Riemann problem
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q` qrt

q⇤

?

Find a state     such that      is connected to     by a physically 
correct 1-shock wave or 1-rarefaction,  and      is connected to              
     by a physically correct 2-shock or 2-rarefaction. 

The need to find a state     that simultaneously satisfies both 
conditions above means we have to solve something... 
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Solving the Riemann problem
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1-rarefaction

2-rarefaction

1-shock

2-
sh

oc
k

Curves represent states that can be connected to     or     by  
a shock or a rarefaction.   Use a nonlinear root-finder to find 
the middle state     .

Formulas for these 
curves are relatively 
simple.

• Determine the structure of the rarefaction (if there is one).
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Riemann solution
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q` qr

t

q⇤1-rarefaction
2-shock

The structure of the Riemann solution depends on the initial conditions.
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Next : 
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Can we avoid the nonlinear solve?

How does this extend to the two dimensional shallow 
water equations? 

How does GeoClaw use Riemann solvers?

For details, see Finite Volume Methods for Hyperbolic Problems, 
R. J. LeVeque (Cambridge University Press, 2002).
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Lab sessions : 
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• Experiment with linear SWE using ClawPack. 

• Experiment with nonlinear SWE using ClawPack.

Goals : 

• Learn about how Riemann solvers are used in Clawpack and 
GeoClaw

• Include bathymetry to see the effects of well-balancing.

• Learn about various plotting parameters in Clawpack

• Leave Chile with a simple 1d solver for the linear and 
nonlinear shallow water wave equations.

See PASI website on Piazza for website describing project. 
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