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Queen Charlotte quake

AP: Recent earthquake in Queen Charlotte Islands
A 7.7 magnitude earthquake occurred at 8:04 pm (PST) October
27, 2012 near the Queen Charlotte Islands off the west coast of
Canada, epicenter 155 kilometers (96 miles) south of Masset.

The Pacific Tsunami Warning Center announced that a tsunami
wave was headed toward Hawaii and that the first tsunami wave
could hit the islands by about 10:30 p.m. local time (1:30 am PST,
5.5 hours later).

A 69-centimeter (27”) wave was recorded off Langara Island on
the northeast tip of Haida Gwaii. Another 55 centimeter (21”) wave
hit Winter Harbour on the northeast coast of Vancouver Island.

The Queen Charlotte Islands are also known by their official
indigenous name of Haida Gwaii. Comprising about 150 islands
located north of Canada’s Vancouver Island, their total population
is about 5,000 of which the Haida people make up about 45%.



Where is Masset



How far is Hawaii?

2690 miles from Prince Rupert (YPR)



Where the waves were measured



Character of tsunamis

Conclusions drawn from the news:
Tsunamis are not very big (less than a
meter)

But they move very fast (close to the
speed of sound)

They can travel far (around the world)
and still be a threat

But how long are the waves?
A very long wave with small amplitude
can carry a great deal of energy!



Tsunami phases

There are three phases to tsunamis: formation, propagation
and innudation:



Tsunami formation

Tsunami formation (generation) often caused by
movement of tectonic plates under the ocean.

A relatively small uplift displaces a huge amount of
(incompressible) water.

These displacements can occur over long
distances (hundreds of miles) as the tectonic
plates move like thin plates.

Such movements can cause waves that are
essentially one-dimensional, propagating
perpendicular to the plate boundary.
Tsunamis also can be caused by landslides.



Tsunami proopagation

A key challenge is understanding the transport of
energy over long distances.

Tsunami propagation can often be modeled by
one-dimensional approximations to the
Navier-Stokes equations.

Waves of small amplitude with long wave-length in
constant depth can be well approximated by the
Korteweg-de Vries (KdV) and related equations.

We will examine the computational challenges
posed by these nonlinear, dispersive wave
equations.



Tsunami interaction with a shoreline

Most tsunamis in modern times are small enough
not to be a threat in open water.

When long waves experience a decrease in water
depth, they can steepen.

Changing topography requires different models
that accounts for variable depth.

Water flowing over previously dry terrain presents
further challenges.

Flow containing debris may be nonNewtonian.



Terminology

Water motion is multifactorial

advection

nonlinearity

shocks

dissipation

dispersion

We will study how each of these relates to
numerical methods



Advection: things that move



Advection model equation

Simple advection relates changes in time with
changes in space:

ut + cux = 0

Solutions to this equation satisfy

u(t , x) = v(x − ct)

The proof is simple:

ux = v ′ ut = −cv ′

Things just move to the right at speed c.



Nonlinear advection model equation

Some physical quantities satisfy a nonlinear
advection equation:

0 = ut + f (u)x = ut + f ′(u)ux

Solutions no longer just translate to the right:

u(t , x) 6= v(x − ct)

Things move to the right at speeds (c(t , x) = f ′(u))
that depend on the size of u and they can change
shape.
We can see what happens computationally in the
case is f (u) = u2.



Finite difference approximation

We can approximate u on a grid in space and time:

u(i∆t , j∆x) ≈ ui ,j

We write

ut(i∆t , j∆x) ≈ ui ,j − ui−1,j

∆t

f (u)x(i∆t , j∆x) ≈ f (u)i ,j − f (u)i ,j−1

∆x
Thus we obtain an algorithm

ui+1,j = ui ,j −
∆t
∆x

(f (u)i ,j − f (u)i ,j−1)



Nonlinearity: things change shape (f (u) = u2)



Shock formation

In the nonlinear advection case, we see that a
discontinuity (shock) can form.
But the integral of u is preserved: integrating the
advection equation in space (and integrating by
parts) gives

(
∫

u dx
)

t
=

∫

ut dx = −
∫

f (u)x dx = 0. (1)

Thus the area under the graph of u is constant,
and so its amplitude must decrease.



Shock properties

The integral of u2 is also preserved: multiplying
the advection equation by u and integrating in
space (and integrating by parts) gives

1
2

(
∫

u2 dx
)

t
=

∫

uut dx = −
∫

f (u)xu dx

=

∫

f (u)ux dx =

∫

g(u)x dx = 0
(2)

where g′ = f and g is an antiderivative of f with
g(0) = 0.



Shocks: discontinuities that move



Shock development

Shock fronts stay sharp, but back remains
continuous.

The amplitude has to decrease since the
integrals of u and u2 remain constant.

Over time, the wave amplitude goes to
zero.



Long-time development of shocks



Linear versus nonlinear shocks

In the linear case, even discontinuous
solutions are propagated by translation:

u(t , x) = v(x − ct)

Thus the linear case is quite different from
the nonlinear case.

Even though the exact solution is trivial,
let’s see what our difference method
produces.



Linear shocks: discontinuities that mush



Linear versus nonlinear shocks

Discontinuous solutions do propagate by
translation:

u(t , x) ≈ v(x − ct)

but the sharp edges are smoothed off.

We see an artifact of the numerical approximation.

We did not see this with smooth solutions or even
with discontinuous solutions for nonlinear
advection.

We need to understand what is going wrong.



Linear versus nonlinear shocks

linear advection: left .... nonlinear advection: right.

Suggests nonlinearity controls diffusion artifacts.

Harten advocated artificial compression [Sod78].



Finite difference approximation reviewed

Taylor’s approximation says

ui ,j − ui ,j−1

∆x
≈ ux(i∆t , j∆x) +

∆x
2

uxx(i∆t , j∆x) (3)

Thus the difference scheme is actually a better
approximation to

ut + ux −
∆x
2

uxx = 0

than it is to the advection equation

ut + ux = 0



Numerical dissipation

The second-order derivative term in (Burger’s
equation)

ut + f (u)x − ǫuxx = 0

is called a dissipation term due to the following.
Multiply the equation by u, integrate in space and
integrate by parts to get

1
2

(
∫

u2 dx
)

t
+ ǫ

∫

u2
x dx = 0 (4)

in view of (2).
Now we see that the integral of u2 must dissipate
to zero.



Numerical errors

It is possible to reduce numerical dissipation, but
not eliminate it [CH78].
For example, the Lax-Wendroff scheme is

ui+1,j =
1

∑

k=−1

bkui ,j

where b±1 = 1
2α(α± 1) and b0 = 1 − α2, where

α = ∆t/∆x is the CFL number, is a better
approximation to

ut + ux − γ∆x2uxxx = 0

Exercise: compute γ.



Numerical dispersion

The third-order derivative term in

ut + f (u)x − ǫuxxx = 0

is called a dispersion term.
Multiply the dispersion term by u, integrate in
space and integrate by parts to get

∫

uuxxx dx = −
∫

uxuxx dx

= −
∫

1
2((ux)

2)x dx = 0
(5)

In view of (2), we conclude that the integral of u2 is
conserved.



KdV equation

The equation balances nonlinear advection with
dispersion:

ut + 6uux + uxxx = 0 (6)

(Korteweg & de Vries 1895, Boussinesq [Bou77,
p. 360]); has a family of solutions

u(t , x) =
c
2

sech2 (1
2

√
c(x − ct)

)

which move at constant speed c without change of
shape.
Matches observations of J. Scott Russell (1845).



BBM equation

An equivalent equation that balances nonlinear
advection with dispersion is

ut + ux + 2uux − uxxt = 0 (7)

(Peregrine 1964, Benjamin, Bona and Mahoney
1972) which has similar solutions [ZWG02]

u(t , x) =
3
2

a sech2
(

1
2

√

a
a + 1

(

x − (1 + a)t
)

)

The BBM equation is better behaved numerically.

ut = −
(

1 − d
dx2

)−1
d
dx

(

u + u2) = B
(

u + u2)

(8)



Solitary wave exercises

The KdV and BBM equations can be compared by
using the underlying advection model ut + ux = 0.

Thus we can swap time derivatives for (minus)
space derivatives: ut ≈ −ux . This suggests the
near equivalence of the terms uxxx ≈ −uxxt .

Derive the solitary wave solution for

ut + ux + 2uux + uxxx = 0 (9)

and compare this with the solitary wave for BBM

Show that the two forms converge as the wave
amplitude goes to zero.



Tsunami controversy

Terry Tao says ”solitons are large-amplitude (and thus nonlinear)
phenomena, whereas tsunami propagation (in deep water, at
least) is governed by low-amplitude (and thus essentially linear)
equations. Typically, linear waves disperse due to the fact that the
group velocity is usually sensitive to the wavelength; but in the
tsunami regime, the group velocity is driven by pressure effects
that relate to the depth of the ocean rather than the wavelength of
the wave, and as such there is essentially no dispersion, thus
creating traveling waves that have some superficial resemblance
to solitons, but arise through a different mechanism.
It is true, though, that KdV also arises from a shallow water wave
approximation. The main distinction seems to be that the shallow
water equation comes from assuming that the pressure behaves
like the hydrostatic pressure, whereas KdV arises if one assumes
instead that the velocity is irrotational (which is definitely not the
case for tsunami waves).”



Tsunami analysis

We know that tsunamis must have long wave
lengths since their amplitude is small.

Otherwise, no devastating amount of energy
(height times width) can be transmitted.

The time scale of tsunami impact is minutes, not
hours as occurs in hurricane storm surge.

So the wave needs to be long and fast.

KDV/BBM provide such a mechanism.

Key question: what causes such a long wave to
form?
Modeling question: does KdV require flow to be
irrotational?



Different solutions to KdV/BBM

There are many other types of solutions
to KdV/BBM.

soliton interactions

dispersion

compare: no dispersion

dispersive shock waves [EKL12]

Exercise: explore different initial states

Compare with data [Gre61].



Soliton interaction (BBM)



Multi-soliton interaction (BBM)



Gaussian dispersion (BBM)



Compare Gaussian with no dispersion



Leading depression



Trailing depression=-leading depression



Very long waves are mostly linear

yo = a ∗ (exp(−c ∗ (r − s)2)), a = .0001, c = .004



Less long waves are more dispersive

yo = a ∗ (exp(−c ∗ (r − s)2)), a = .0001, c = .01



Shorter waves are very dispersive

yo = a ∗ (exp(−c ∗ (r − s)2)), a = .0001, c = .1
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