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Presentation Outline 
 Numerical setup for large-scale coastal 

wave problems 
 Bathy, wave generation, etc. 
 Which equations to use? 

  Applications 
 Hurricane waves and levee overtopping 
 Nearshore waves and wave-induced 

circulation 
 Harbor resonance studies 



Creating bathy maps 
 Where do we get our bathy/topo? 

 GEBCO – 2 min data, expect inaccuracy in shallow 
water (<50 m depth). http://www.gebco.net/  

 NOAA Tsunami DEMs – gridded data down to 1/3 
arcsec (~10 m). Great for coastal bathy, but only 
available in select locations. 
http://www.ngdc.noaa.gov/mgg/inundation/tsun
ami/inundation.html  

 NOAA Coastal Services Center's Digital Coast Data 
– some very high resolution coastal bathy/topo 
(lidar datasets ~1m resolution), lots of different 
datasets, US only. 
http://csc.noaa.gov/dataviewer/  

 Often need to rely on old navigation charts in areas 
with no coastal data.  Buy the chart and digitize… 

http://www.gebco.net/
http://www.ngdc.noaa.gov/mgg/inundation/tsunami/inundation.html
http://www.ngdc.noaa.gov/mgg/inundation/tsunami/inundation.html
http://csc.noaa.gov/dataviewer/


How to generate waves 
 Hot start 

 Earthquake sources – ∆h = ∆η 
 With velocity (e.g. Solitary Wave) our without 

(EQ) 



How to generate waves 
 Internal Source 

 Add a forcing term to the equations, adding either 
mass or momentum, along a strip inside the 
domain 

Linear Boussinesq-type equations 
over constant depth 
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Boundary conditions 
 For lateral boundaries, little success 

with local radiation boundary conditions 
(nonlinear dispersive waves) 

 Use sponge layers – another source term 
in both mass and momentum equations 
to remove mass & energy along the 
boundaries 
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Dissipation Parameters 
 Bottom Friction 

…+ 



Dissipation Parameters 
 Breaking (ad-hoc “tack-on” to 

momentum equation) 

…+ Fb=0 

 Tune parameters in eddy viscosity model 
based on comparisons with lab & field 
data 
 See: Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A. 

(2000).‘‘Boussinesq modeling of wave transformation, breaking, and 
runup. I:1D.’’ J. Wtrwy., Port, Coast., and Oc. Engrg., ASCE, 126(1), 39–
47. 

 …Or just use limiters 



Which Equations to use?   




Which Equations to use?   
 Weakly nonlinear, “extended” 

Boussinesq-type model (Nwogu, O., 1993. Alternative 
form of Boussinesq equations for nearshore wave propagation. Journal of 
Waterway, port, Coastal, and Ocean Engineering 119 (6), 618–638. 

 Continuity equation has as truncation error = 
O(εµ2,µ4) , includes 1st to third (uxxx) derivatives. 

 Momentum equation has truncation error = O(εµ2 
,µ4) w/ ε=a/h, µ=h/L, includes 1st to third (uxxt) 
derivatives. (same as Peregrine’s model) 

 Needed a differencing scheme with truncation 
error derivative order at least (uxxxx) and time 
integration of at least (utttt)  

 Considerably better dispersion properties that 
Peregrines model (usually important) 
 



Which Equations to use?   
 Highly nonlinear, “extended” Boussinesq-

type model (Wei, G., Kirby, J.T., Grill, S.T., Subramanya, R., 1995. A 
fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear 
unsteady waves. Journal of Fluid Mechanics 294, 71–92.) 

 Continuity equation has as truncation error = O(µ4) 
, includes 1st to third (uxxx) derivatives. Nonlinear 
high-order derivatives as well, e.g (vux)xy 

 Momentum equation has truncation error = O(µ4) 
includes 1st to third (uxxt) derivatives.  

 Need a differencing scheme with truncation error 
derivative order at least (uxxxx) and time 
integration of at least (utttt)  

 Better prediction of very nonlinear waves (e.g. 
near breaking)  [sometimes important, but near 
the “noise” level of field data] 
 



Which Equations to use?   
 Weakly nonlinear, Peregine model 

 Memory cost per 100x100 grid points (using 2nd order FV 
method, not memory optimized) ~ 2 MB 

 Intermediate variable “groups” size (nx,ny) ~20 
 Stencil is 3 points wide 
 CPU time / time step ~ 0.0025 s (single core, simple problem) 

 Weakly nonlinear, “extended” model 
 Memory cost per 100x100 grid points (using 4th order FV 

method, not memory optimized) ~ 5 MB 
 Intermediate variable “groups” size (nx,ny) ~25 
 Stencil is 5 points wide 
 CPU time / time step ~ 0.01 s (single core, simple problem) 

 Highly nonlinear, “extended” model 
 Memory cost per 100x100 grid points (using 4th order FV 

method, not memory optimized) ~ 15 MB 
 Intermediate variable “groups” size (nx,ny) ~80 
 Stencil is 9 points wide 
 CPU time / time step ~ 0.025 s (single core, simple problem) 

 



Which Equations to use?   

 
 
 Weakly nonlinear, “extended” model 

 Memory cost per 100x100 grid points (using 4th order FV 
method, not memory optimized) ~ 5 MB 

 Intermediate variable “groups” size (nx,ny) ~25 
 Stencil is 5 points wide 
 CPU time / time step ~ 0.01 s (single core, simple problem) 

 

For the Boussinesq-type class of model to have a 
future it must be favorably competitive (in terms of 
computational time) with 3D models. 
Can this equation set be accurately (and efficiently) 
solved on GPU?  If not… 

 



Hurricane Katrina 

• Max sustained winds 175 
mph (280 km/h) 

• Made landfall just west of 
New Orleans with winds of 
125 mph (205 km/h) 

• Max storm surge (just east 
of the eye) was 28 ft (8.5 
m) 

• Max storm surge in eastern 
New Orleans ~20 ft (6 m); 
surge in northern New 
Orleans, Lake Pontchartrain 
~14 ft (4 m) 

 
  

movie 



Hurricane Katrina -Damage in Mississippi 
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Hurricane Katrina – Damage in New Orleans 

• Most of New 
Orleans is 
below sea 
level, and 
requires a 
complex 
system of flood 
walls and 
levees to 
protect against 
hurricane 
surges 
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Hurricane Katrina – Damage in New Orleans 
• U.S. Army Corps of Engineers organized a large 

forensic study of Katrina & its impact 
– Interagency Performance Evaluation Task Force (IPET) 
– Goals were to examine: 

• The System 
• The Storm 
• The Performance 
• The Consequences 

 
  
• Many different aspects, 

hydrodynamic, structural, geotech, 
social science,… 

• Nearshore wave forces & impact 
through detailed hydrodynamic 
modeing 



  

Hurricane Katrina – IPET Hydrodynamics 
• Multi-model, multi-scale simulation approach: 

– Surge predicted by ADCIRC, based on the 
observed/simulated wind and pressure field 

• Resolution ~100m, but as low as ~1m in certain areas 
– Wave generation predicted by STWAVE, based on wind 

and water levels 
• Coupled with ADCIRC 
• Resolution ~100m, cannot resolve nearshore hydrodynamics 

– For the nearshore, Boussinesq is used 
• Water level provided by ADCIRC 
• Incident waves provided by STWAVE 
• Resolution ~1m 

• Simulate the entire Gulf of Mexico (1 million square miles 
= 2.5*1012 m2) with refined resolution ~ 1m 

 
  



  

Damage in New Orleans - IPET 



  

Damage in New Orleans - IPET 

Physical & 
Numerical Models 



  

Damage in New Orleans 
• Failures in the some of the canals 

occurred well before the water level 
reached the top of the wall 

• Observations and simulations 
indicate that waves near the failures 
were very small ~0.3-0.5m 
– Walls should not have failed 

• Study showed that failures were 
geotechnical based 

 
  

Porous or weak underlying 
soils allowed for gaps to be 
created between the panels 

 



  

Damage in New Orleans- IPET 
• Failures on the eastern levees were numerous 
• Surge ~14-18’, design elevation of the levees 

was 17.5’ 
– In addition, serious subsidence in this area, 

some levees were only 12.5’ before 
Katrina 
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“Magic Number” for levee 
failure ~0.1 ft3/s/ft (0.01 
m3/s/m) 

 

 

This value taken from 
detailed hydrodynamic 
simulations, and appears 
to have a high correlation 
with damaged levees 

Damage in New Orleans- IPET 
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Damage in New Orleans- IPET 



Hurricane Sandy 
• Max sustained winds 

110 mph (175 km/h) 
• Made landfall in 

southern New Jersey 
with winds of 80 
mph (130 km/h) 

• Max storm surge was 
13-16 ft (4-5 m) 

• Surge in New York 
City ~14’ (4.2m) 
occurring within 30 
minutes of high 
(Spring) tide 

• Waves offshore of 
NYC ~30’ (9 m) 

 
  

movie 
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110 mph (175 km/h) 
• Made landfall in 

southern New Jersey 
with winds of 80 
mph (130 km/h) 

• Max storm surge was 
13-16 ft (4-5 m) 

• Max water level in 
New York City ~14’ 
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within 30 minutes of 
high (Spring) tide 

• Waves offshore of 
NYC ~30’ (9 m) 

 
  

movie 



Hurricane Sandy -Damage in New Jersey 
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Hurricane Sandy -Damage in New Jersey 

4.8 m 

Quality 
Piles! 



Hurricane Sandy -Damage in New Jersey 
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Hurricane Sandy -Damage in New Jersey 
Stone seawall was built in 
1896, buried in sand by 
wind and beach 
nourishment projects 
through 1960’s. 
Most residents did not 
know it existed! 



Hurricane Sandy -Damage in New Jersey 



Hurricane Sandy -Damage in New Jersey 



Wave Overtopping – Limitations with Boussinesq 
• Wave overtopping is a turbulent, 3D problem 

– Strong vertical velocity and acceleration components 



Wave Overtopping – Limitations with Boussinesq 
• Wave overtopping is a turbulent, 3D problem 

– Strong vertical velocity components 



Wave Overtopping – Limitations with Boussinesq 
• Turbulent interaction with reflected wave leads to a non-uniform 

overtopping time series, even for regular incident waves 



• Now, with the Boussinesq, we cannot model this turbulent 3D 
interaction 
– How important is this phenomenon to predicting overtopping??? 
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• Now, with the Boussinesq, we cannot model this turbulent 3D 
interaction 
– How important is this phenomenon to predicting overtopping??? 

• Experimental data comparisons indicate that, in the time-
averaged sense, the Boussinesq provides reasonable results 

• Mean OT rate = OK 
• Variance statistics = not OK 

– Would need to use physical modeling or N-S modeling 

Wave Overtopping – Limitations with Boussinesq 



Generation of Rip Currents 



Wave Evolution of Reefs and Shelves 



Harbor Resonance 



Nearshore application of the Boussinesq on 
the large scale - Conclusions 

• What can we do now? 
– Field scale simulation of waves in the time domain 

• Large domains (>100 km2, 50 million grid points) 
• Long time simulations (days) 

– Wave induced currents 
– Tidal/river flows, inlets 
– Wind wave & tsunami interaction with nearshore 

structures and complex bathymetry 
• What we want to do in the future… 

– Sediment transport (storm erosion AND recovery) 
– Coupled/hybrid modeling with fully 3D models 
– Think stochastic (need to decrease wall clock time) 
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