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Mathematical models
for tsunami waves



Model Types

* Nonlinear Shallow Water Equations 1

— Linear Shallow Water Equations

* Boussinesg-type Equations

* Computational Fluid Dynamics
— RANS, SPH, LES, DNS




CFD models

o Navier-Stokes equations

V-u=90

0
p<8—?+u-Vu) = -_Vp+uViu+g

where (u= (u,v,w)) 18 the velocity vector and p the
pressure.

O Boundary conditions and 1nitial conditions

1. On the free surface, z= (x,y,f) the kinematic boundary
condition

D(z ) 0 0 0
=0, of —tu—+v—=w
Dt ot ox  dy




2. On the free surface, the dynamic boundary condition
requires:

p=p, =0, onz= (x,y,t)

3. On the seafloor, z = A(x, y,t), the kinematic boundary
condition

D(z h) oh  oh  Oh
=0, or —tu—+v—=w
Dt ot odx dy

If the time history of the seafloor displacement is
prescribed, this boundary condition 1s linear.



o Initial conditions

1. If the time history of the seafloor displacement 1s prescribed,
the initial conditions can be given as:

=0,u=0,ats=0.
2. If seafloor 1s stationary, the bottom boundary condition
become oh  oh
u—+v—= w,onz="h(x,y)
ox  dy

The 1mitial free surface displacement needs to be prescribed,

(x,y,t=0)= ,(x,y) with u(x,y,z,t=0)=0,

where ,(x,y) mimics the final seafloor displacement after an
carthquake.



Approximated long-wave models

o Long-wave assumptions

o Depth-integrated equations (reduce 3D to 2D)
* Boussinesg-type equations
* Shallow-water equations
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Brief Review on Tsunami Models

* N-S model (3-D) O(months-years)

> Based on Navier-Stokes Equations (or Euler Equations
for potential flow)

e.g., Truchas (Los Alamos Lab, USA)
* Boussinesq Model (H2D) O(days-months)

> Based on Boussinesq-type Equations for weakly
dispersive waves, e.g.

FUNWAVE (Wei and Kirby, 1995; Kirby et al, 1998)
CoulWave (Lynett and Liu, 2004)

« SWE Model (H2D) O(hours)

> based on Shallow Water Equations for non-dispersive
waves, e.g.,

COMCOT (Liu et al,1995),
MOST (Titov et al, 1997)
Anuga (Australia) Dispersion is neglected!!
TSUNAMI (ARSC, UAF)
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Long wave approximations

Consider small amplitude single harmonic progressive wave:

_ 4ot D

gkA coshk(z+h) R

u(x,z,t)=

cosh kh

igkA sinhk(z+5) g

W, 2,0) = cosh kh

coshk(z+h)
cosh kh

C=—=_[Etanh kh
r \%

pP= &

o Q Q
\l Q |l Q
h/L>1/2
e = —

h/L>1/2 Sea bottom

1 > 1 4
coshk(z+h) = 1+5[k(z+h)] +ﬁ[k(z+h)] +

sinhk(z+h) =[k(z+h)]+=[k(z+ h)]3 T

1
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Shallow water wave equations

* Assumptions:

1. Horizontal scales (i.e., wavelength) are much longer
than the vertical scale (i.e., the water depth). Accurate
only for very long waves, kh < 0.25 (wavelength > 25
water depths)

2. Ignore the viscous effects.

* Consequences:

1. The vertical velocity, w, 1s much smaller than the
horizontal velocity, (u,v).

2. The pressure is hydrostatic, p= g( 2
3. The leading horizontal velocity 1s uniform 1n water depth.



* Nonlinear shallow-water wave equations

Conservation of mass:

é;[-+h}+§§ ( +h)u +é§ ( +h)y =0

Momentum equations:

Qg+u u+ =0
Y g g

* Linear shallow—water wave equations



Special case: One- dlmensmnal and constant depth

d
—+— hu =0,
at+8x ( T )u

which can be rewritten as

P (u+C) (u+2C)=0,

d
2 )L (u 20)=0.
o )ax (u2€)

whereC=g( +h)
dx

u = C are Riemann invariants along charateristics along "
5

=ux2C.



Linear shallow water wave equation

a—+ha—u:0,
ot 0x

ou 0

M el 0.
ot T& 0x

which can be combined into a wave equation

2 2
AR
ot ox
The general solutionis = (xxCt), C= \/E

Wave form does not change! NO dispersion!



Boussinesq equations
(Peregrine, 1967; Ngowu, 1993)

o Pressure field 1s not hydrostatic: quadratic
o Horizontal velocities are not vertically uniform

u(x,z,t)=A(x,t)+ z B(x,t)+z" C(x,¢)

— _/
~

should be small compared to A(x,?)

Accurate for long and
intermediate depth waves,
kh <3 (wavelength > 2
water depths)

Functions B, C lead to 3
order spatial derivatives in
model




High-Order Boussinesq Equations (Gobbi et al., 2000)

u(x,z,t)=A(x,t)+ z*B(x,t)+z" *C(x,t)

+ 22 *D(x,t)+z** E(x,1)

— _/
V

Should be small compared to B,C group

- Accurate for long,
intermediate, and
moderately deep waves,
kh <6 (wavelength > 1
water depth)

- Functions D, E lead to
5% order spatial
derivatives in model
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Derivation of depth-integrated wave equations

* Normalize the conservation equations and the
associated boundary conditions
(z,y) = (¢,y') /Lo, z=2"/ho, t=1'/(Lo/\/gho), h="h/ho
u=u'/ (\/gToao/ho) , w=uw'/ (\/ﬁao/Lo) , p=1p'/pgao, n="1"/ag
= Perturbation analysis

-~ h
f: Z:Lﬂnf(n)a f:ua w, p, 1N, :L_O= 1
0

n=0

* Integrate the governing equations and employ
o the irrotational condition
o the boundary conditions



Boussinesq-type equations
O( )=1,0( *)=1

10h  On
~ 5 + 5 + V- [(en + h) u]

_2V - { {63’73; h> _ (en gh)kj vs} = O (i)

2
%—u—keu Vu+ Vi + i g {k VS + kVT}

+ep” [(u -VE)YVT +EkV(u-VT)+k(u-VEk)VS + k—QV (u- VS)]

oT 5 o 0S
+€p [TVT V( 8t)]+euV(nST—?E—nu VT)

2
+63:u2v [% (52 —u- VS)] + Ffrict,ion + Fl)rea,king =0 (:u4>
a ho 1 Oh
€= h_()’ M= L_O S=V.u, I'=V- (hu)+ Zaa u = (uav)lz:k(m,y,t)
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Boussinesqg equations

O()=0( *);k= h

l%+aa—t+ ( +h)u +§ R (w)=0(" %Y

2
aa—l;+u u+ +%”‘7 (u) b ( hu) =0(* 2 %)

Different Boussinesq equation forms can be derived by using different
Representative velocity or by substituting the higher order terms by an

Order one relation, e.g.,
Mo ro(, )

The resulting equations have slightly different dispersion characteristics.



Modeling the dispersion effects

To apply the depth-integrated equations for shorter waves, higher
order terms can be included. However, it more difficult to solve the

high-order model
— Momentum equation:

ou ou 0 u
—tu—+..+C—=
ot o0x o0x

— To solve consistently, numerical truncation error (Taylor series
error) for leading term must be less important than included

terms.
* For example: 2" order in space finite difference:
du(x,,t) u(x,+ xt) u(x, xt) x u(x,,t)
o 2 x 6 ox’

* High-order model requires use of 6-point difference formulas
(Dx® accuracy). Additionally, time integration would require a
Dt® accurate scheme.

* It is difficult to specify boundary conditions.

0
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COULWAVE (Cornell University Long and Intermediate Wave Modeling)
A Multiple Layers Approach

e Divide water column into arbitrary layers

— Each layer governed by an independent velocity profile, each in the

same form as traditional Boussinesq models:
YA

u(z)=A +Bz+Cz’

u,(z)=A, +B,z+C,z’°

P77 77777777 7727 77777777777 7777
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COULWAVE (Cornell University Long and Intermediate Wave Modeling)

* Regardless of # of layers, highest order of derivation is 3
* The more layers used, the more accurate the model
* Any # of layers can be used

— 1-Layer model = Boussinesq model

— Numerical applications of 2-Layer model to be discussed

* Location of layers will be optimized for good agreement
with known, analytic properties of water waves

u(z)=A4, + Bz+C,z"




COULWAVE

* Governing equations: multi-layer, fully-nonlinear

kh=3 kh=6 kh=9

0 0 T 0 T

-0.2 { -02 / ) -0.2 / -
1’.,
-0.4 / 1 -04p -04f
X f
-0.6 / { -osf -06 - )
/ i -
08t | -8 ! -08f |
] |
COULWAVE > | | |
"o 0.5 1 o 0.5 1 o 0.5 1
/umax U/umax / max
0 _ 0 — 0
-02 A7 -2 / - -02 / -
-0.4 ’ 1 -04f / 04f |
R /! '"
-0.6 /! { -06 [ -0.6 {* \
' >/ /! 3 :
Linear theory -08r [/ { -o0s ; -0.8f ! hlgh-order,
i/ Al
- — b — b l — single-layer result
wiw . wiw . wiw .
max max max

* Numerical scheme: predictor-corrector method
o Predictor: explicit 3"-order Adams-Bashforth
o Corrector: implicit 4®-order Adams-Moulton
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Linear Dispersion Properties of Multi-Layer Model

e Compare phase and group velocity with linear theory

1.2 , [ — T L : L L L
Boussinesq \ High-Order N
1.1Equations Boussinesq  * «—Two-Layer Mode
(Dne-Layer Equations
P Four-Layer
§ "Nrodel) | d IV
S Three-Layer Model Mode
3 1.051 x ./—
1 - -
0.95 [ [ r : r | r
5 10 15 2 L L L
' igh- kh
Boussinesq High C_)l‘der
Equations Bouss.lnesq
1.2 uEquptions L L L L L
\’
1151 Two-Layer Model —
§ 1.1
3 Three-Layer Model '\i;l)ur-l'ayer
E odel
S, 1.051- —
O
1]
0.95 [ r : r | r |
5 10 15 20 o5 0 = -
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General remarks on tsunami modeling
by long-wave equations

» Add-hoc dissipation mechanism
o Bottom friction: quadratic form
o Wave breaking: parameterized model

* Controlling wave mechanism

o Near the earthquake source: linear, dispersive or
non-dispersive waves

o Deep ocean: linear, non-dispersive waves

o Close to the shore: nonlinear, non-dispersive waves
(Observation from the wave gauge data, and, the
analytical study of one-dimensional problem)
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Tsunami modeling packages

= Boussinesqg-type equations model

o COULWAVE (Cornell University Long and Intermediate
Wave Modeling Package)

o An improved multi-layer approach

= Shallow water equations model

o COMCOT (Cornell Multi-grid Coupled Tsunami Model)

o Covers tsunami generation, propagation, and wave
runup/rundown on coastal regions

o If desired, physical frequency dispersion can be
mimicked by the numerical dispersion

o This is a more practical choice for the tsunami
simulation



Numerical simulation of tsunami waves
= Governing equations (COMCOT)

o 1 (0P 0 oh
awcow{awwmw@}—‘a
OP 1 9 P2 109 P h+n)d
ot Rcosoodyn+h ROIpn+h  Rcos¢ Oy
0Q 1 0 PQ 1 0 Q7 g(h+n) on
1 P=_F
ot " Reosodinih T Roentn T R oo/ v

R : the radius of the Earth, (¢, ) = (latitude, longitude)
(P,Q) = (uh,vh) : the volume flux,
f =1Qsin¢ : the Coriolis force coefficient

F, ., : bottom friction term (Manning’s formula)

o Linear model: deep ocean
o Nonlinear model: shallower region
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COMCOT: numerical scheme
= Explicit leap-frog Finite Differencing Method

n+1
A n+1/2 n—1/2
Q’.-J 172 on n 1 oP LY — ;5
pnt . ot  Rcos¢ O At
h iz i 1 ,
AP o pfl!Z-.R'rlljlj n { 1 } Pi7j|—1/2,j - Pz'n—1/2,j
L)
4 R cos ¢ A1)
& [Za P 0J
[ A1)
(0 A T ’ T ‘"”? " --(? center of sub-level grid
. ‘T 4> o f» I. e —-»4
= Nested grid ; A !
— 4z — —- — (e > B> e - i
e o é? F T -(? center of parent grid
| [
volume flux of sub-level grid --j----------- (€ DT SR R ki
* 4 AN 4 4 LA
:-:-: g: T T :-; \
| ! . connecting boundary
I | I
) LIt s mmelZfDmm == = = L D=m
volume flux of parent grid | ! |
| : |
A\ ‘ A
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Inputs (initial conditions)
for the tsunami wave modeling

" Earthquake-generated seafloor displacement

o Impulsive model

* The seafloor deforms instantaneously and the entire
fault line ruptures simultaneously

e The sea surface follows the seafloor deformation
instantaneously

o Transient model

* The seafloor deformation and the rupture along the
fault line are both described as transient processes

* Require time histories of the horizontal and vertical
seafloor displacements



Fault plane models

= Impulsive vs. transient models
o Transient models are not always available

o The speed of the rupture is orders of magnitude
faster than the tsunami wave propagation speed

o Advanced impulsive models can provide detailed
spatial variations of the final seafloor displacement

o No significant difference in the resulting tsunami
wave height and propagation time from these two
types of fault plane models

* Analysis arguments: Kajiura (1963); Momoi (1964-5);
Tuck and Hwang (1972)
 Numerical experiments: Wang and Liu (2006)



Numerical simulations of tsunami waves

= Source: impulsive model
= Deep ocean: linear shallow water equations

= Shallower region (continental shelf, coastal
area): nonlinear shallow water equations

= Effects of frequency dispersion
o Near the source region

o Over a very long traveling distance

= Shoreline: moving boundary scheme
o Various numerical techniques

o Estimation on the runup (inundation)



Moving boundary algorithms

= Staircase representation (COMCOT)

i-1 172

= Extrapolation model (COULWAVE)
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Extrapolation scheme for
the moving shoreline

3 2 - =0 1

" extrapolation

P]:QPO—P_l

govw
P2:3P0—2p_17
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Staircase shoreline

n@Qi—1,4i+1; PQi—1/2,i+1/2

_________ ' n._q__i"'"_'"___- Pj11/2 = 0 = shoreline stays at 7;

I R

Pi11/2 # 0 = shoreline advances to 7;41

(h + 77)1+1 >0= Pit1/2 #0, Piy3/o =0 = shoreline @ ¢ + 1
(hiv1+m <0= Pi+1/2 = 0 = shoreline @ 4
(h+ 77)z’+1 < 01

\hz‘_{_l + 1; >0= Pz'_+_1/2 _T’L O, Pi+3/2 = 0 = shoreline Q 7 +1
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Validation of Runup Algorithm

(Lynett, Wu and Liu 2002, Coastal Engineering)

Runup of solitary wave around a
circular island

— Experimental data taken from Liu
et al. (J.FM. 1995)

Physical setup:
— Still water depth =0.32 m
— Slope of side walls = 1:4
— Depth profile >

Numerical simulation of conical island
runup:

— Wave amplitude =0.028 m
— Still water depth =0.32 m
— Beachslope=1:4

— Dx=0.1m

03

() uoC;J,laA:;[gi3 :
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3D animation of runup of solitary wave around a circular island
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1960 Chilean Tsunami

The epicenter of the 1960 Chilean earthquake was located about 100 km offshore of the
Chilean coast. The fault zone was roughly 800 km long and 200 km wide, and the
displacement of the fault was 24 m. The orientation of the fault was N10 E. The focal
depth of the slip was estimated at 53 km with a 90 degree slip angle and a 10 degree dip
angle. Using these estimated fault parameters, we can calculate the initial free-surface
displacement (Mansinha and Smylie, 1971). The wavelength of the initial tsunami form was
roughly 1,000 km and the wave height was roughly 10 m.



1960 Chilean Tsunami Inundation in Hilo Bay

+—-- initial shoreline
X x X observed

-——= Mader and Curtis
—— present model

Figure 4-10: The comparison of maximum inundation area.
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Figure 4-12 (c). The snapshot of velocity distribution (time = 15 hr 20 min).
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Some common difficulties in using depth-integrated wave
equations

 Most of numerical algorithms are dissipative, especially the moving
shoreline algorithms;

 Most of models do not include wave breaking;

* Most of models specify bottom friction coefficients and wave breaking
parameters empirically with limited validation;

 Depth-integrated wave equations can not adequately address the
wave-structure interaction issues.

Other open issues

e Coupling the hydrodynamic models with sediment transport models
e Coupling the hydrodynamic models with debris flow models
e Coupling the hydrodynamic models with soil (foundation) dynamic models



3D/2D Numerical Modeling of Tsunamis in Nearshore Environment
and Their Interaction with Structures

Turbulence Models

Approximate
Equations

Exact Equations

Time Average

DNS

Spatially Filter

More
Physics

Do not use
Boussinesq

Use Boussinesq

Reynolds Stress Model
(6 new PDEs)

Less
Work

2 Equation Models y
(k-epslion)

1 Equation
Models
(k-epslion) Algebraic

Model




