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Natural disaster summary 1900 - 2011 (linear-interpolated smoothed lines)
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Estimated damage (US$ billion) caused by reported natural disasters 1900 - 2011
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The number of ND have skyrocketed over the last century

The number of affected people and estimated damage follow the
trend

The number of dead people decouples from the trend

Source : EM-DAT International Disasters Database
CRED - http://www.emdat.be/
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* Extreme, large and rapid flooding
— Tsunamis, flash floods, GLOF, storm waves

» Significant consequences

— Human lives
— Facilities and structures
— Social and environmental impact
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Recent Large River
Floods in Chile

Chaitén, 2008

Mapocho, 1982
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Recent Glacial Lake Outburst Floods in Chile

GLOF in the Chilean Patagonia (Chachet 2)
More than 6 episodes since april 2008

4.5m stage rise and 3500m3/s peak discharge
in Baker River in less than 48 hours.

Glaciologia.cl
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Recent Major Tsunamis
in Chile
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Recent Major Storm Waves
in Chile

Source : El Mostrador — http://www.elmostrador.cl/
August 16t 2012
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Nonlinear waves are in permanent action, shaping our
environment, and questioning the way the society fits in it

* Wide temporal and spatial scales
* Complex nonlinear interactions

* Strange consequences?

=> Amazing research opportunities for
contributing to the understanding of
these processes and their consequences

Truc vert beach, French Atlantic Coast
Courtesy of P. Larroudé (LEGI)
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Shoaling,
breaking and
run-up of an
incident
laboratory
wave

=> “Simplified” 2DV
view of nearshore
wave propagation

Source : Laboratory Experiment in the LEGI Wave Flume, France
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Nonlinearity & = a/ho

’
Dispersion O = ho /L

>

Long wave (shallow water) models

o<0.1



Wave merging in the inner surf zone

Sea surface elevation (m)
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Higher harmonics release after a bar
Sénéchal, Bonneton, Dupuis (2002)
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Regular waves shoaling over a submerged bar, and higher
harmonics release once water depth increases

=> Generation of bound higher harmonics in the shoal (shallow water

propagation)
= Over “intermediate” depths, higher harmonics travel at their “own” speed

h=0.40m 3,=0.02m T =1.00s A h ¢ 0.05 kh =1.27 slope=1/35 dx=0.04m di=0.03s

0.1

0 2 4 & i 10 12 14 16 15 20
wAm)

Source : Cienfuegos et al., 2007 ; Dingemans, 1994 experiments
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h°=0.38m a°=0.03m T°=1 02s ao.»m°=o.09 kh°=1 51 slope=1/34 dx=0.04m di=0.02s

(a] 2 4 & = 10 12 14 16
wA)

B0-02m T =S 3S7= 2 .,7n ~0.0S Eh =0 56 slope=1/33 dx=0.04am di=0.0Zs

= LD

=> Wave propagation creates a set-down and set-up in the mean sea level
=> Fission of the main wave front for longer period waves

Source : Cienfuegos et al., 2010 ; Hansen and Svendsen, 1979 experiments
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Set-down/Set-up over a as
uniform beach under =] a0
regular wave propagation | N
" o ﬁ 1.0
MEAN WATER LEVEL {
=> Radiation stress concept for g N 105
wave-averaged quantities - ST B °
(Longuet-Higgins and n Y
Stewa rt’ 1962) ENVELOPE OF WAVE HEIGHT Po:'ggmsf s
x"!** x) BEACH 1
WAVE CREST x“,x,x* J Lt
oS B an
—=t pg(i+h) == 0 -
0x 0x . sl
C 1 xxxxxxxuxxxxxxxxx*"*n*"""“"“""xx 7‘2
S. =E [0032 0+ 1] —£—— . L . L 4
C 2 400 300 200 100 0

DISTANCE FROM STILL WATER LINE ON BEACH, X (cms.)

Comparison of experiments with theory for set-down and set-up on a plane
- wave period = 1.14 s; deep water wave height H, = 6.45 cm; breaker
= 8.55 m; beach slope = 0.082 (from Bowen et al,, 1968, J. Geophys. Res.).
Source : Bowen et al., 1968 '
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Infragravity wave (IG) generation under random wave forcing

=> Long waves forced by high-frequency wave groups

Lzzl

l <
r f Ak
- ._JEnvelope

2nd Order Long Wave Generation Mechanism
Negative correlation

g
-h S C
- - {C l\
between group AD&,,
envelope and I1G \/ V \/--
=y J—
Envelope - Adapted form Dean and

waves
Dalrymple, 1984
Figure 4.12 Characteristics of a “group” of waves.

-

Mean water level pulsation associated to wave groups’ set-
up/set-down (Longuet-Higgins and Stewart, 1962)

=> Bound long waves propagating at group velocity
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Infragravity wave (IG) generation under random wave forcing

=> Long waves forced by a variable breakpoint location

The slow modulation of the breaking point under a random wave field
produces a dynamic set-up/set-down

Adapted from L.H. Holthuijsen, 2007 playa

Positive correlation
2 -1
e between group envelope
k] 2 and IG waves

pomit

SURF BEAT (Symonds, 1982)
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Practical consequences of IG waves: Increased run-ups

h°=0.55m a°'=0.08m T°=3.033 a—o-m0=o.w kh°=0.49 slope=1135 dx=0.06m di=0 023

02

0 5 [0 15 20 25
% {0

=> Random short waves transfer energy to infragravity waves while propagating towards the
shore

=> Very important for swash zone dynamics and maximum observed run-ups
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* The breaking process
is responsible for the
release of IG waves

* |G waves reflect at
the coast (swash)

* Refraction traps IG
(so-called edge waves)




Practical consequences of IG waves: Edge waves

10.934[s]
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Incident periodic waves:
H=1m ; T=100s ; 6,=30°

Uniform beach profile:
h,=10; s=1/40

=> Reflected waves are
trapped and propagate in
the alongshore direction

=> Important consequences
for maximun run-up
distribution

NSWE FV model developed
by M. Guerra (PUC MSc
thesis)

Numerical simulation by
José Galaz (PUC undergrad
student)
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Practical consequences of IG waves? Rip instabilities

Water height : t= 0[s]

* Frontal incident random wave
trains with a small amplitude
- perturbation in the center

* Rip current generation

_* Slow mean current pulsations

* Quasi-periodic ejection of drifters

PhD thesis of Leandro Suarez (PUC-LEGI grad student)
Suarez et al., ICCE 2012 ; Suarez et al., CD 2013
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Different methods to cope & understand water waves

Laboratory experiments DNS and LES

o
v

1DAQ pregram

MORUIT project

| ~ modeling : l

Nearshore modeling

Field measurements

Source: P. Bonneton, 2010

MODLIT and IDAD
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General Definitions and Framework
L

7 a
Arbitrary bottom h
bathymetry h,
z=§
Incompressible and inviscid
fluid
v

Quasi-Irrotational flow
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Non-dimensional depth-averaged mass and momentum equations

0 Nonlinearity & = a/ho

h, +¢| hi | }

el hit | + [h(e? + ]_7)] + &, p‘g =0 Dispersion o =M,/ L

Where the pressure field is written as :
&n

p(x,2,t) = (sn — z) + sasz(x,z,t)dz
Z

and the function I' represents the vertical acceleration of fluid particles :

Dw 1
[(x,z,t)=——=w, +&luw, +— ww,
Dt o
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Using approximate expressions for the velocity field (potential flow theory) we get
the fully nonlinear weakly dispersive Serre/Green-Naghdi Equations (Cienfuegos et
al., 2006; Lannes and Bonneton, 2009)

h+elhu], =0

(), + (i), + h(h+ &), + hz(ép(x,t)%Q(x,t)) +

X

+ azgxh(%p(x,m Q(x,t)) _0(o*)
Where :

P(x, t) = —h(uxt + Ul . — eui ) Dropping overbars for simplicity

Q(x,t) =& (ut + Euu )+ 8§xxu2
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A 4th Order FV S/G-N Model (Cienfuegos et al., 2006, 2007)

* A strongly nonlinear and weakly dispersive Boussinesq system O(d?)

h+F =0

q+G. =0
With the following definitions for flux functions and auxiliary variables
F = hu

G =uqg + g(h +§)—%u2(l + fxz )+ hu & u - 1 (hux )2

2
q=(1+r)u—3Lh(h3ux)x
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Incorporating Breaking Energy Dissipation (Mignot and Cienfuegos,
2009; Cienfuegos et al., 2010)

* Diffusive-like terms in both, mass and momentum conservation equations

h+F. +D, =0

y |
Qt+Gx+zDhu=O

Self-similar shape function

Diffusivity
function

Local re- Freesugf X
D = (Vh hx) distribution of a
’ mass and

D =[V hu ] momentum below |
fu hu( )x X breakers

Similar to Kennedy et al., 2000
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L.H. Holthuijsen, 2007
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seicke

surges

tsun gmi s

infra-gravity waves

wind-generated waves

10

107

10

captllury
nonlinear Processes "

107

10" frequency [Hz] 10"

107 10!

* Typical wind-generated waves : 0.05Hz (20s) — 1Hz (1s)

* Nonlinear processes (shoaling, breaking, swash) generate
infragravity (IG) waves : 0.001Hz (1000s) — 0.05Hz (20s)
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* 70m long x 1.5m wide x 1.5m
deep wave tank

* Piston wave paddle with
active absorption (DHI)

* Resistive probes for free
surface measurements

* Sontek MicroADV for
velocity measurements

* Very mild slope beach 1/80

hz 52[cm]




PASI Coastal Hazards 2013
Boston University — Mechanical Engineering

s V UTFSM 2-13 January 2013

—_ . -

Random Incident Wave Field

* Jonswap spectrum (Hasselmann, 1973) for incident wave field

Tp=4 s (0.25Hz) ; H_ =18 cm ; h,=52cm

* Without phase structure (uniform
random distribution [0,27])

* Highly nonlinear shallow water
regime

i
-
-

Power Density Spectrum (m* M2
= = = =
/7

=> Although the forcing wave field does T B
not contain energy in the infragravity
band, experiments show important
energy content at these frequencies




Separation of Incident and Reflected Waves

* Radon transform (Deans, 1983) in time domain to separate incident

and reflected signals (Almar et al., 2013)

Free surface
time stacks

Free surface
at x=20m

Amplitude
evolution

40/d)
€ 30T
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50 100150200250
time (s)

)
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10 20 30 40 50
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Reflected

f) “ \
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VIMAAMANN
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Total

1t harmonic

Wave vl e b
distribution = — armonic

Crest-trough wave
asymmetry (Sk)

Left-right wave
symmetry (As)

X (m) x (m)
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Spectral Energy Evolution Along the Experimental Flume

x=-22m x=-9m

. 1 L 1 1 L 1 L
-20 -10 0 10 20 30 40
Posicidn X[m]

Natural modes

f,=0.013Hz
: : f,=0.023Hz
Partial reflection at the wave paddle produces £,=0.031Hz

low frequency selection in the flume



E(f) [m2Hz]

E(f) [m2Hz]
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Model Performance in Spectral Energy Evolution

x=-22[m] x=-9[m]

E(f) [mHz]
)

x=0[m] x=9[m] Blue: Experiments
Red : Model

=> The model succeeds in transferring energy to higher harmonics and IG
waves but no clear modal selection (open boundary condition)
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Cross-correlation maps between group amplitude and IG wave
amplitude at each location
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Cross-correlation maps between group amplitude at the first gauge
and IG wave amplitude at each location
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* A bound IG appears rapidly in the shoaling zone forced by short
wave groups (negative correlation slightly lagging the group)

* A positive long wave surge preceding the group develops as the
short waves propagate towards the shore (positive correlation
running ahead of the group)

* There is a phase shift for the positively correlated IG wave in the
inner surf zone

* Both IG waves appear to be partially reflected on run-up (some
dissipation by breaking might occur)
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* The shallow water regime (Cg~C) produces a nearly resonant
condition for IG wave forcing (Nielsen and Baldock, 2010)

=> The so-called N-shaped long wave is forced as a bound wave in the shoaling
zone

Non-resonant condition Resonant condition

Fig. 3. At resonance, ¢; = +/gh, which happens in the shallow water limit, the Gaussian
Fig. 1. Steady, bowl-shaped long wave (solid line) driven by a steady, non-resonant shaped S, forcing - x - from the wave pulse generates an U-shaped long wave which
wave group (thin line) with S,, varying as indicated by - x -. grows linearly with time.
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* The phase shift in the positively correlated IG wave in the inner surf

zone is due to a strong interaction between short waves and IG motions

in very shallow waters (merging of short frequency waves)

sof
0 f= =

20 =y

D4 X Im)
o

-0f

BCO 820 a40 8E0 880 800 820
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Free surface time series at different locations along
the numercal wave flume
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Merging of high frequency waves on a bi-
chromatic experiment (Van Dongeren et
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Model Performance for Incident and Reflected IG Waves

Long Wave
Time Stacks
250 e —
———
Total = 100 ,_,,a_._.——_—i—-—"‘ _:;—-_:
50 ———
500 e
400} — ————
. o 300 - —
=~ ,__‘._u———-ﬁf"—":—-——'_’;
Incident = 200l —
100 m—
n——|
500
400
- 300
Reflected = 200
100 "
20 10 0 10 20 30
X (m)

Black : Experiments

Red : Model

o N

o N

A (cm)
o N BN (o))

A (cm)
o N BN (o))

Long Wave
Amplitude

Dashed line : theoretical free long wave amplitude shoaling

=> Under estimation of
incident IG wave

=> Good representation
of incident IG wave
generation and shoaling

=> Under estimation of
reflected IG wave
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Summary

* Maximum run-ups under highly nonlinear waves are strongly
dependent on infragravity wave motions (strong under estimation of
maximum run-ups using linear wave theories)

* Fully nonlinear Boussinesq-type equations including breaking and
run-up are able to cope with the complex energy transfer processes
within the nearshore producing accurate estimations of short wave
propagation and IG generation and dynamics

* More research is needed to (fully) understand nearshore wave
processes and its (un)expected consequences on morphodynamics
and coastal hazards
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Source: Google earth & Geo eye
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* The land subsided (~0.5-1.0m)

* The sand spit was washed
away by tsunami waves

* The sand spit rapidly reformed
under highly energetic waves
(strong wave and aeolian
alongshore sand transport)

La Pesca.

d iSCharge Abril 2010 - Noviembre 2012

[ J Three years of IOW river Seguimiento Barra Mataquito.

=> The sand spits reformed but
different than before f

~wre | Radiocontrolada
“Eilms, www.naturefilms.cl
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Video images post processed by R. Almar, IRD-LEGOS, France
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