
  

 

Abstract—We present a dynamic neural network (DNN) 

solution for detecting time-varying occurrences of tremor and 

dyskinesia at 1 s resolution from time series data acquired from 

surface electromyographic (sEMG) sensors and tri-axial 

accelerometers worn by patients with Parkinson's disease (PD). 

The networks were trained and tested on separate datasets, 

each containing approximately equal proportions of tremor, 

dyskinesia, and disorder-free data from 8 PD and 4 control 

subjects performing unscripted and unconstrained activities in 

an apartment-like environment.  During DNN testing, tremor 

was detected with a sensitivity of 93% and a specificity of 95%, 

while dyskinesia was detected with a sensitivity of 91% and a 

specificity of 93%. Similar sensitivity and specificity levels were 

obtained when DNN testing was carried out on subjects who 

were not included in DNN training. 

I. INTRODUCTION 

DVANCES in machine learning algorithms [1] and    

fast evolving wearable sensor technology have created 

the potential for developing systems that may someday allow 

clinicians to remotely and unobtrusively detect functional 

activities and/or movement disorders of sensor-wearing 

patients in their natural environments of daily living. This 

type of detection would offer a more accurate and reliable 

alternative to self-report diaries that are currently used in 

clinical practice for medical management of patients with 

motor disorders. For example, the best agreements between 

self-report diaries of motor disorders and expert assessments 

have been reported [2] to range only between 0.49 and 0.78 

using a kappa statistic.  

We have been developing algorithms to address the 

specific problem of detecting movement disorders associated 

with Parkinson‟s disease (PD), such as tremor [3] and 

dyskinesia [4]. The algorithms are applied to data from 

wearable miniaturized sensors that are attached to parts of 
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the body as illustrated in Figure 1. Each customized sensor 

acquires and wirelessly transmits three channels of tri-axial 

accelerometer (ACC) data and one channel of surface 

electromyographic (sEMG) data, all sampled at 1 KHz (with 

appropriate anti-aliasing filtering). In our laboratory, we 

have acquired an extensive database of such sEMG/ACC 

data for a period of 4 hours per subject while they carried out 

unscripted and unconstrained activities in an apartment-like 

environment. Each subject was videotaped during the 

experiments and the resulting videotapes were annotated on 

a per second basis by individuals trained in identifying PD 

motor signs (tremor, dyskinesia, and others). These 

annotations were then used to guide the development of a 

process for detecting the presence of dyskinesia and/or 

tremor through the analysis of ACC and sEMG data. 

 In order to understand the challenges of our tremor and 

dyskinesia detection problem, consider the raw 12-second 

ACC and sEMG signals in Figure 2 collected from three 

different subjects. Figure 2(a) shows the signals from a 

subject who exhibits neither tremor nor dyskinesia; there is 

little fluctuation in the ACC signals except during a short 

period of voluntary movement beginning around the 6 

second mark; the sEMG signal also shows very little activity 

except for a period of force generation in the associated 

muscle during the voluntary movement. Figure 2(b) shows 

the signals from a subject who exhibits tremor except during 

a short period (shaded in the figure) between the 6 and 10 

second marks. Being able to differentiate between the 

presence and absence of a disorder for such short episodes 

motivates us to carry out the overall detection process on a 

per second basis. However, on such a small time scale it is 
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Fig. 1. Conceptual diagram of our tremor and dyskinesia system is 

illustrated.  The sensors attached to various parts of the body of the 

subject wirelessly transmit ACC and sEMG signals to a dynamic 

neural network system to detect movement disorders. 
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challenging to detect the periodicity features of tremor for 

the following two reasons: 

1. Extra fluctuations (typically non-periodic) in the 

ACC signal during voluntary movements. 

2. Extra components (typically non-periodic) in the 

sEMG signal during force exertions that may occur 

during voluntary movements.  

In Figure 2(b) one can also see one of the reasons why we 

have employed both ACC and sEMG sensor data. Note that 

a voluntary wrist extension movement (between the 2 second 

and 4 second marks) is followed by an interval where the 

periodicity of tremor is hard to detect in the ACC signals but 

easy to detect in the sEMG signal. Similarly, in regions (not 

shown in Figure 2) where the muscle is exerting force but 

there is no limb movement, the periodicity of tremor can be 

easily extracted from the ACC signal but not from the sEMG 

signal. 

 Finally, Figure 2(c) shows the ACC and sEMG signals 

from a subject who exhibits dyskinesia except during the 

interval that is shaded (2 to 6 s). We observe that the 

dyskinesia regions are marked by relatively large “spike-

like” erratic fluctuations in the ACC signals as opposed to 

the more gradual fluctuations of voluntary movements. 

II. PREVIOUS WORK 

 In previous work by our research group [5], we have 

used static neural networks and a neuro-fuzzy inference 

framework to detect instances of a set of 11 scripted 

activities of daily living (e.g. sit-to-stand, tooth-brushing, 

shirt-buttoning) performed by sensor-wearing stroke patients 

in a constrained laboratory environment. Both sEMG and 

ACC sensor data was collected from each patient. The 

resulting system performed the detections with 95% mean 

sensitivity and 99.7% mean specificity and it had a 

misclassification rate of below 10% on an additional set of 

10 scripted activities of daily living that were selected for 

their similarity to the first set. This research established the 

efficacy of a combined sEMG-ACC approach for the 

classification of patient activity, but it was limited in the 

sense that each activity of interest had to be performed in 

isolation during well-delineated time segments. Clearly, the 

isolated-activity limitation is too restrictive for our current 

investigation where the activities of interest (tremor and 

dyskinesia) occur in the midst of other unscripted activities 

being carried out by the PD subjects. 

In previous work by Salarian et al. [6], the detection of 

tremor was considered on a per-second basis using tri-axial 

gyroscope signals from subjects performing a scripted 

sequence of activities such as tooth-brushing while standing 

and eating while sitting. Their algorithm yielded 99.5% 

sensitivity on tremor-only data and 94.2% specificity on 

tremor-free data. This algorithm, however, was not designed 

to discriminate between tremor and dyskinesia and was 

therefore not tested on datasets containing instances of 

dyskinesia.  

The detection of dyskinesia from ACC sensors worn by 

PD patients carrying out unscripted and unconstrained 

activities was considered by Keijsers et al. [7] using static 

neural network processing.  They reported accurate detection 

of dyskinesia on a minute by minute basis. However, they 

did not consider the problem of discriminating dyskinesia 

from tremor, in this or other publications. 

III. METHODS 

We used the dynamic (as opposed to static) neural 

network approach [8] to design machine learning algorithms 

for detecting time-varying tremor and dyskinesia. While a 

static neural network (SNN) is constrained to learn time-

independent weights to apply to the features of the 

underlying data, a DNN can learn time-dependent weights to 

apply to the features of the underlying data. This allows 

DNNs to be trained to learn how features of tremor or 

dyskinesia change over time rather than being restricted to 

learning from static snapshots of their features at particular 

times.  

The DNN we have designed for detecting tremor is a 

multi-layered neural network with a hidden layer of 4 nodes 

(See Figure 3). The hidden nodes and the output node use 
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Fig. 2. Sensor signals from the combined sEMG/ACC sensor attached to 

the dominant arm as illustrated in top picture. The signals in panel (a) are 

from a control subject with no dyskinesia or tremor. The signals in panel 

(b) are from a PD subject with tremor. The signals in panel (c) are from a 

PD subject with dyskinesia. The shaded regions in panels (b) and (c) 

indicate intervals where the corresponding movement disorders are absent. 
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the weights of a 5-point FIR filter to be applied to time-

delayed and time-advanced versions of their respective input 

data. The seven input nodes consist of various features 

extracted from 2-second windowed sections of the sEMG 

and ACC sensor signals: 

 

 Energy of ACC signal after it is lowpass filtered 

with a cutoff frequency of 2.5 Hz. 

 Energy of ACC signal after it is highpass filtered 

with a cutoff frequency of 2.5 Hz. 

 Lag of first peak (not at origin) in autocorrelation 

of highpass ACC signal. 

 Ratio of height of first peak (not at origin) to 

height of peak at origin in autocorrelation of 

highpass ACC signal. 

 Energy of sEMG signal. 

 Lag of first peak (not at origin) in autocorrelation 

of sEMG signal, provided significant peaks also 

exist at integer multiples of that lag. 

 Ratio of height of first peak (not at origin) to 

height of peak at origin in autocorrelation of 

sEMG signal, provided significant peaks also 

exist at integer multiples of the first peak‟s lag. 

 

The DNN we have designed for detecting dyskinesia is a 

multi-layered neural network with a hidden layer of 2 nodes 

(See Figure 4). The hidden nodes and the output node use 

the weights of a 5-point FIR filter to be applied to time-

delayed and time-advanced versions of their respective input 

data. The input nodes represent the same four features that 

pertain to the ACC signals in the case of the tremor net. 

After designing the dyskinesia and tremor DNNs, we 

conducted two experiments to determine how well these 

DNNs perform on ACC and sEMG data collected from 8 

different PD subjects and 4 control subjects. The data we 

used in these experiments was collected from a hybrid 

sEMG/ACC sensor that was attached near the wrist extensor 

muscle of the dominant arm (see top of Figure 2) of each 

subject as he/she carried out unscripted and unconstrained 

activities. 

Experiment 1:  The purpose of this experiment was to test 

how well our DNNs perform when they are trained on one 

set of data and tested on a different set of data from the same 

set of subjects. Two datasets (A and B) were created. Each 

dataset contained 10 minutes of sensor data from 4 PD 

subjects exhibiting tremor and voluntary movement in the 

dominant arm, 10 minutes of sensor data from 4 PD subjects 

exhibiting dyskinesia and voluntary movement in the 

dominant arm, and 10 minutes of sensor data from 4 control 

subjects exhibiting no tremor or dyskinesia while carrying 

out voluntary movements in the dominant arm. The data 

were selected to represent a variety of situations from each 

subject‟s 4-hour unscripted, freeform experiment. The video 

data, the sEMG data, and the ACC data within sets A and B 

were visually inspected to set on a per second basis the 

“truth” of whether the subject was exhibiting tremor and/or 

dyskinesia in the dominant arm. One tremor DNN (referred 

to as Tr-DNN-A) was trained on set A and one tremor DNN 

(referred to as Tr-DNN-B) was trained on set B. Similarly, 

one dyskinesia net (Dy-DNN-A) was trained on set A and 

the other dyskinesia net (Dy-DNN-B) was trained on set B. 

The trained DNNs were tested on the dataset that was 

excluded from its training and the detection results were 

evaluated for sensitivity and specificity. 

Experiment 2: The purpose of this experiment was to test 

how the trained DNNs from Experiment 1 perform on data 

from subjects who had not been included in the training of 

the DNNs. Two subjects were selected for this purpose and 

we created a dataset (C) containing five minutes of tremor 

data and five minutes of dyskinesia data from each of the two 

selected subjects. The trained DNNs from Experiment 1 

were then applied to dataset C and evaluated for sensitivity 

and specificity.   

IV. RESULTS 

Experiment 1 Results: The sensitivity and specificity 

results of Experiment 1 are summarized in Table I. Clearly, 

sensitivities and specificities are above 90% in every case. 

As an addendum, we also repeated Experiment 1 with the 
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Fig. 3. Dynamic Neural Network used for detecting tremor. There are 7 

input nodes, 4 hidden nodes, and one output node. Each FIR filter has 5 

weights. 
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Fig. 4. Dynamic Neural Network used for detecting dyskinesia. There are 

4 input nodes, 2 hidden nodes, and one output node. Each FIR filter has 5 

weights. 
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number of FIR weights per hidden/output node of the DNN 

reduced to 1. This turns the DNN into an SNN. The 

performance of the network degraded, particularly in tremor 

regions with movement such as the one illustrated in Figure 

5. The SNN mistakenly declares the region around the 10 

second mark as containing no evidence for tremor. However, 

the DNN does not make that error. 

Experiment 2 Results: The sensitivity and specificity 

results of applying the four trained neural networks of 

Experiment 1 to dataset C are shown in Table II. Clearly, the 

sensitivities and specificities are of the same order as in 

Table I, even though the test data for Table II was from 

subjects who were not used for training the DNNs. 

V. CONCLUSIONS 

In this paper, we have presented a DNN solution for 

detecting two motor signs (tremor and dyskinesia) of 

Parkinson‟s disease using sEMG and ACC data from 

wireless miniaturized sensors that can be conveniently worn 

by PD patients. The DNN solution was found to have high 

specificity levels and high sensitivity levels on a dataset that 

included data from subjects with tremor, data from subjects 

with dyskinesia, and data from subjects with no motor 

disorders. These high levels of sensitivity and specificity 

were also observed when the test data was from subjects who 

were not included in the training of the DNNs. In our on-

going research, we are also developing and evaluating DNN 

solutions for detecting other PD motor signs (such as 

bradykinesia and akinesia) from sEMG and ACC wearable-

sensor data.  In future research, we will be combining these 

DNN solutions within a larger artificial intelligence 

framework to carry out not only the detection but also the 

quantitative assessment of PD motor signs. 
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Fig. 5. Top two panels show an ACC and an sEMG signal recorded from 

a sensor at the wrist extensor while the subject was flexing the wrist. In 

contrast to the DNN, the SNN makes an error by declaring “no tremor” at 

the 10 s mark.  

 

TABLE I 

EXPERIMENT 1 RESULTS 

Network Test Data Sens Spec 

Tr-DNN-A B 92.4% 96.7% 

Tr-DNN-B A 92.9% 93.7% 

Dy-DNN-A B 93.5% 91.2% 

Dy-DNN-B A 90.3% 95.1% 

 Tr-DNN-A and Tr-DNN-B represent the tremor DNNs that were 

respectively trained on dataset A and dataset B. Dy-DNN-A and Dy-

DNN-B represent dyskinesia DNNs that were respectively trained on 

dataset A and dataset B. Each dataset contains 10 minutes of tremor 

data, 10 minutes of dyskinesia data, and 10 minutes of data without 

either disorder. There is no common data between dataset A and 

dataset B. 

TABLE II 

EXPERIMENT 2 RESULTS 

Network Sens Spec 

Tr-DNN-A 87.2% 92.0% 

Tr-DNN-B 91.7% 93.0% 

Dy-DNN-A 93.4% 94.9% 

Dy-DNN-B 95.7% 93.6% 

The four DNNs of Experiment 1 were applied to 

dataset C which contains ten minutes of tremor data 

and ten minutes of dyskinesia data from subjects who 

did not have any of their data included in the training 

of the DNNs. 
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